Factor Models and Variable Selection in High-dimensional Regression Analysis

PASCAL SARDA

Mathematical Institute of Toulouse
Group of Statistics and Probability
University Paul Sabatier
118, route de Narbonne,
31062 Toulouse Cedex, France
sarda@cict.fr

Working group STAPH http://www.math.univ-toulouse.fr/staph/

joint work with Alois KNEIP

High Dimensional Regression

Starting Model:

$$(1) Y_i = \boldsymbol{\beta}^{\tau} \mathbf{X}_i + \epsilon_i, \quad i = 1, \dots, n,$$

- $Y_i \in \mathbb{R}, \mathbf{X}_i = (X_{i1}, \dots, X_{ip})^{\tau} \in \mathbb{R}^p, i = 1, \dots, n$ are independent r.v.,
- β is a vector of parameters in \mathbb{R}^p
- $(\epsilon_i)_{i=1,...,n}$ are centered i.i.d. r.r.v. independent with \mathbf{X}_i with $Var(\epsilon_i) = \sigma^2$.

High Dimensional Regression

Starting Model:

$$(1) Y_i = \boldsymbol{\beta}^{\tau} \mathbf{X}_i + \epsilon_i, \quad i = 1, \dots, n,$$

- $Y_i \in \mathbb{R}, \mathbf{X}_i = (X_{i1}, \dots, X_{ip})^{\tau} \in \mathbb{R}^p, i = 1, \dots, n$ are independent r.v.,
- β is a vector of parameters in \mathbb{R}^p
- $(\epsilon_i)_{i=1,...,n}$ are centered i.i.d. r.r.v. independent with \mathbf{X}_i with $Var(\epsilon_i) = \sigma^2$.

The dimension p is much larger than the sample size n

High Dimensional Regression

Starting Model:

$$(1) Y_i = \boldsymbol{\beta}^{\tau} \mathbf{X}_i + \epsilon_i, \quad i = 1, \dots, n,$$

- $Y_i \in \mathbb{R}, \mathbf{X}_i = (X_{i1}, \dots, X_{ip})^{\tau} \in \mathbb{R}^p, i = 1, \dots, n$ are independent r.v.,
- β is a vector of parameters in \mathbb{R}^p
- $(\epsilon_i)_{i=1,...,n}$ are centered i.i.d. r.r.v. independent with \mathbf{X}_i with $Var(\epsilon_i) = \sigma^2$.

The dimension p is much larger than the sample size n

Two different situations:

- X_i : high dimensional vector of different predictor variables
- functional data: X_{ij} , $j=1,\ldots,p$ are discretization points of a same curve: $X_{ij}=X_i(t_j)$

In the following both situations are analyzed in a same way

General Outline

- Two main approaches for high dimensional regression in the literature:
 - Variable selection: select only a (small) set of variables with influence on the response
 - Functional (linear) regression: model (1) is a discrete version of an underlying FLR model. No variable has a particular influence on the response but *all together* explain a part of variability of the response. (Nonparametric models are also considered)

General Outline

- Two main approaches for high dimensional regression in the literature:
 - Variable selection: select only a (small) set of variables with influence on the response
 - Functional (linear) regression: model (1) is a discrete version of an underlying FLR model. No variable has a particular influence on the response but *all together* explain a part of variability of the response. (Nonparametric models are also considered)
- Objective. Combine the two approaches with the aim of considering:
 - possible high correlations between the predictors, Factor models. Roughly speaking, the predictors are decomposed in two components which respectively represent *common* and *specific* variabilities
 - variable selection in an augmented model which extend model (1) and includes principal components which may posses an additional power for predicting the response

General ideas

Studies of the "High dimensional model" rest on conditions on the coefficient vector $\boldsymbol{\beta}$ and/or the predictors X_{ij} .

General ideas

Studies of the "High dimensional model" rest on conditions on the coefficient vector β and/or the predictors X_{ij} .

Variable selection:

- β has coefficients that are mostly 0: sparseness;
- To retrieve non null coefficients, correlations between X_{ij} and X_{il} , $j \neq l$, are sufficiently "weak": almost uncorrelated e.g. in Candes and Tao (2007), more general Restricted Eigenvalue condition in Bickel, Ritov, Tsybakov (2009).

General ideas

Studies of the "High dimensional model" rest on conditions on the coefficient vector $\boldsymbol{\beta}$ and/or the predictors X_{ij} .

Variable selection:

- β has coefficients that are mostly 0: sparseness;
- To retrieve non null coefficients, correlations between X_{ij} and X_{il} , $j \neq l$, are sufficiently "weak": almost uncorrelated e.g. in Candes and Tao (2007), more general Restricted Eigenvalue condition in Bickel, Ritov, Tsybakov (2009).

• Functional regression:

- $\beta_j = \frac{\beta(t_j)}{p}$, $\beta \in L^2([0,1])$, $t_j = \frac{1}{p}$, continuous slope function, and as $p \to \infty$, $\sum_j \beta_j X_{ij} \to \int_0^1 \beta(t) X_i(t) dt$;
- the predictors are heavily correlated. As $p \to \infty$, $corr(X_i(t_i), X_i(t_{i+m})) \to 1$ for any fixed m

Functional regression: basis expansion

• Model is rewritten in term of a "sparse" basis expansion of the predictor functions X_i

Best possible basis, minimizing the L^2 -error, for a k-dimensional approximation of random functions X_i : eigenfunctions corresponding to the k largest eigenvalues of the covariance operator of X_i

$$\mathbb{E}(X_i \otimes X_i)$$

i.e. leading elements of the Karhunen-Loève decomposition

Functional regression: basis expansion

• Model is rewritten in term of a "sparse" basis expansion of the predictor functions X_i

Best possible basis, minimizing the L^2 -error, for a k-dimensional approximation of random functions X_i : eigenfunctions corresponding to the k largest eigenvalues of the covariance operator of X_i

$$\mathbb{E}(X_i \otimes X_i)$$

i.e. leading elements of the Karhunen-Loève decomposition

Important feature of the covariance operator of X_i : compact, nuclear \longrightarrow The (infinite) set of eigenvalues decrease rapidly to zero: actually, the sum is finite

Functional regression: estimation

• **Discretized case (model (1))**: this amounts to consider the eigenvalues $l_1 \geq l_2 \geq \ldots$ and corresponding eigenvectors ψ_1, ψ_2, \ldots of the covariance matrix $\mathbf{\Sigma} = \mathbb{E}(\mathbf{X}_i \mathbf{X}_i^T)$ \longrightarrow even if p > n, ψ_r $1 \leq r \leq k$, can be well estimated by the eigenvectors (principal components) $\widehat{\psi}_r$ of the empirical covariance matrix $\widehat{\mathbf{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i \mathbf{X}_i^T$.

Functional regression: estimation

- **Discretized case (model (1))**: this amounts to consider the eigenvalues $l_1 \geq l_2 \geq \ldots$ and corresponding eigenvectors ψ_1, ψ_2, \ldots of the covariance matrix $\mathbf{\Sigma} = \mathbb{E}(\mathbf{X}_i \mathbf{X}_i^T)$ \longrightarrow even if p > n, ψ_r $1 \leq r \leq k$, can be well estimated by the eigenvectors (principal components) $\widehat{\psi}_r$ of the empirical covariance matrix $\widehat{\mathbf{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i \mathbf{X}_i^T$.
- approximate model:

$$Y_i \approx \sum_{l=1}^k \alpha_l \widehat{\xi}_{il} + \epsilon_i$$

$$\widehat{\xi}_{il} = \sum_{j=1}^{p} X_i(t_j) \widehat{\psi}_{lj}$$

(k serves as smoothing parameter).

Coefficients α_j are estimated by least squares, then $\widehat{\beta}_j = \sum_{l=1}^k \widehat{\alpha}_l \widehat{\psi}_{jl}$ Hall and Horowitz (2008)

• **Sparseness**: $S := \#\{j | \beta_j \neq 0\} \ll p$

- **Sparseness**: $S := \#\{j | \beta_j \neq 0\} \ll p$
- Lasso (Tibshirani, 1996, Bickel, Ritov and Tsybakov, 2009):

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{n} \sum_{i=1}^n (Y_i - \mathbf{X}_i \boldsymbol{\beta})^2 + 2\rho \sum_{i=1}^n |\beta_j| \right\},$$

- **Sparseness**: $S := \#\{j | \beta_j \neq 0\} \ll p$
- Lasso (Tibshirani, 1996, Bickel, Ritov and Tsybakov, 2009):

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{n} \sum_{i=1}^n (Y_i - \mathbf{X}_i \boldsymbol{\beta})^2 + 2\rho \sum_{i=1}^n |\beta_j| \right\},$$

• **Dantzig selector** (Candes and Tao, 2007):

$$\widehat{\boldsymbol{\beta}} = \arg\min\left\{\|\widetilde{\boldsymbol{\beta}}\|_1 : \left\|\frac{1}{n}\mathbf{X}^T(\mathbf{Y} - \mathbf{X}\widetilde{\boldsymbol{\beta}})\right\|_{\infty} \le \rho\right\},$$

where **X** is the $n \times p$ -dimensional matrix with entries X_{ij}

- **Sparseness**: $S := \#\{j | \beta_j \neq 0\} \ll p$
- Lasso (Tibshirani, 1996, Bickel, Ritov and Tsybakov, 2009):

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{n} \sum_{i=1}^n (Y_i - \mathbf{X}_i \boldsymbol{\beta})^2 + 2\rho \sum_{i=1}^n |\beta_j| \right\},$$

• **Dantzig selector** (Candes and Tao, 2007):

$$\widehat{\boldsymbol{\beta}} = \arg\min\left\{\|\widetilde{\boldsymbol{\beta}}\|_1 : \left\|\frac{1}{n}\mathbf{X}^T(\mathbf{Y} - \mathbf{X}\widetilde{\boldsymbol{\beta}})\right\|_{\infty} \le \rho\right\},$$

where **X** is the $n \times p$ -dimensional matrix with entries X_{ij}

• Unlike L2 penalized estimators (such as Ridge Regression), Lasso and Dantzig selector will find coefficients that are exactly 0

Variable selection: General conditions

The diagonal elements of $\widehat{\Sigma} = \frac{1}{n} \mathbf{X}^{\tau} \mathbf{X}$ are equal to 1

Variable selection: General conditions

- The diagonal elements of $\widehat{\Sigma} = \frac{1}{n} \mathbf{X}^{\tau} \mathbf{X}$ are equal to 1
- Restricted eigenvalue assumption RE(S,c_0) (Bickel et al., 2009)

$$C(S, c_0) = \{ \boldsymbol{\delta} \in \mathbb{R}^p, \exists J_0 \subset \{1, \dots, p\}, |J_0| \le S, \|\boldsymbol{\delta}_{J_0^c}\|_1 \le c_0 \|\boldsymbol{\delta}_{J_0}\|_1 \}$$

with high probability $\delta = \widehat{\beta} - \beta \in C(S, c_0)$, with $\widehat{\beta}$ Lasso $(c_0 = 3)$ or Dantzig $(c_0 = 1)$ estimator and $J_0 = J(\beta)$ is the set of non null coefficients of β

$$\kappa(S, c_0) := \min_{\boldsymbol{\delta} \in C(S, c_0) \setminus \{0\}} \frac{(\boldsymbol{\delta}^T \widehat{\boldsymbol{\Sigma}} \boldsymbol{\delta})^{1/2}}{\|\boldsymbol{\delta}_{J_0}\|_2} > 0$$

• $RE(S, c_0)$ means that there is a kind of "restricted" positive definiteness which is valid only for vectors in $C(S, c_0)$

Variable selection: Results

- bounds on prediction loss and L^1 loss are obtained under $RE(S, c_0)$
- The bounds depends on the value of $\kappa(S, c_0)$: lower bounds are obtained for great values of $\kappa(S, c_0)$

Variable selection: Results

- bounds on prediction loss and L^1 loss are obtained under $RE(S, c_0)$
- The bounds depends on the value of $\kappa(S, c_0)$: lower bounds are obtained for great values of $\kappa(S, c_0)$
- For "purely" functional predictors, $\kappa(S, c_0)$ tends to zero as p tends to infinity.
 - In any case, variable selection such as penalized L1 procedures will not be efficient for this kind of data (at least when they are applied directly, solutions exit: work in progress in that direction)
 - When predictors are too heavily correlated, usual variable selection procedures will be not efficient to select a small set of variables that have influence on the response

Structure of predictors: factor model

$$\mathbf{X}_i = \mathbf{W}_i + \mathbf{Z}_i,$$

where \mathbf{W}_i and \mathbf{Z}_i are two uncorrelated r. v. in \mathbb{R}^p Z_{i1}, \ldots, Z_{ip} independent with $Var(Z_{ij}) = \sigma_j^2$

Structure of predictors: factor model

$$\mathbf{X}_i = \mathbf{W}_i + \mathbf{Z}_i,$$

where \mathbf{W}_i and \mathbf{Z}_i are two uncorrelated r. v. in \mathbb{R}^p Z_{i1}, \ldots, Z_{ip} independent with $Var(Z_{ij}) = \sigma_j^2$

• W_{ij} describes *common* variability while Z_{ij} induces *specific* variability

Structure of predictors: factor model

$$\mathbf{X}_i = \mathbf{W}_i + \mathbf{Z}_i,$$

where \mathbf{W}_i and \mathbf{Z}_i are two uncorrelated r. v. in \mathbb{R}^p Z_{i1}, \ldots, Z_{ip} independent with $Var(Z_{ij}) = \sigma_j^2$

- W_{ij} describes *common* variability while Z_{ij} induces *specific* variability
- Σ covariance matrix of \mathbf{X}_i ; with $\mathbf{\Gamma} = \mathbb{E}(\mathbf{W}_i\mathbf{W}_i^T)$ covariance matrix of \mathbf{W}_i

$$\Sigma = \Gamma + \Psi$$

• $\Psi = Diag(\sigma_1^2 \dots \sigma_p^2).$

Structure of predictors: factor model

$$\mathbf{X}_i = \mathbf{W}_i + \mathbf{Z}_i,$$

where \mathbf{W}_i and \mathbf{Z}_i are two uncorrelated r. v. in \mathbb{R}^p Z_{i1}, \ldots, Z_{ip} independent with $Var(Z_{ij}) = \sigma_j^2$

- W_{ij} describes *common* variability while Z_{ij} induces *specific* variability
- Σ covariance matrix of \mathbf{X}_i ; with $\mathbf{\Gamma} = \mathbb{E}(\mathbf{W}_i\mathbf{W}_i^T)$ covariance matrix of \mathbf{W}_i

$$\Sigma = \Gamma + \Psi$$

- $\Psi = Diag(\sigma_1^2 \dots \sigma_p^2).$
- A small number of eigenvectors of Γ suffices to approximate \mathbf{W}_i with high accuracy (in spirit: \mathbf{W}_i is of "functional nature")

Structure of predictors: factor model

$$\mathbf{X}_i = \mathbf{W}_i + \mathbf{Z}_i,$$

where \mathbf{W}_i and \mathbf{Z}_i are two uncorrelated r. v. in \mathbb{R}^p Z_{i1}, \ldots, Z_{ip} independent with $Var(Z_{ij}) = \sigma_j^2$

- W_{ij} describes *common* variability while Z_{ij} induces *specific* variability
- $oldsymbol{\Sigma}$ covariance matrix of $oldsymbol{\mathrm{X}}_i$; with $oldsymbol{\Gamma} = \mathbb{E}(oldsymbol{\mathrm{W}}_i oldsymbol{\mathrm{W}}_i^T)$ covariance matrix of $oldsymbol{\mathrm{W}}_i$

$$\Sigma = \Gamma + \Psi$$

- $\Psi = Diag(\sigma_1^2 \dots \sigma_p^2).$
- A small number of eigenvectors of Γ suffices to approximate \mathbf{W}_i with high accuracy (in spirit: \mathbf{W}_i is of "functional nature")
- Both W_i and Z_i are not observed

• For factor models, the Dantzig selector or the Lasso will retrieve the coefficients of a sparse model provided that the *specific* component \mathbf{Z}_i contributes in a determining way in the variability of \mathbf{X}_i . One of the central hypothesis is:

 $Var(Z_{ij}) = \sigma_j^2$ such that for some positive constants D_1 and D_2

$$(A.1) 0 < D_1 < \sigma_i^2 < D_2.$$

• For factor models, the Dantzig selector or the Lasso will retrieve the coefficients of a sparse model provided that the *specific* component \mathbf{Z}_i contributes in a determining way in the variability of \mathbf{X}_i . One of the central hypothesis is:

 $Var(Z_{ij}) = \sigma_j^2$ such that for some positive constants D_1 and D_2

$$(A.1) 0 < D_1 < \sigma_j^2 < D_2.$$

• The initial model (1) is normalized as

$$Y_i = \sum_{j=1}^p \beta_j^* X_{ij}^* + \epsilon_i, \ i = 1, \dots, n. \text{ with } X_{ij}^* = \frac{X_{ij}}{\left(\frac{1}{n} \sum_{i=1}^n X_{ij}^2\right)^{1/2}}$$

and $\beta_j^* = \beta_j \left(\frac{1}{n} \sum_{i=1}^n X_{ij}^2\right)^{1/2}$,

For factor models, the Dantzig selector or the Lasso will retrieve the coefficients of a sparse model provided that the *specific* component \mathbf{Z}_i contributes in a determining way in the variability of \mathbf{X}_i . One of the central hypothesis is:

 $Var(Z_{ij}) = \sigma_j^2$ such that for some positive constants D_1 and D_2

$$(A.1) 0 < D_1 < \sigma_j^2 < D_2.$$

• The initial model (1) is normalized as

$$Y_i = \sum_{j=1}^p \beta_j^* X_{ij}^* + \epsilon_i, \ i = 1, \dots, n. \text{ with } X_{ij}^* = \frac{X_{ij}}{\left(\frac{1}{n} \sum_{i=1}^n X_{ij}^2\right)^{1/2}}$$

and $\beta_i^* = \beta_j \left(\frac{1}{n} \sum_{i=1}^n X_{ij}^2\right)^{1/2}$,

• Sparseness. $\sharp\{\beta_j^*|\beta_j^*\neq 0\} \leq S, S \ll p$

For factor models, the Dantzig selector or the Lasso will retrieve the coefficients of a sparse model provided that the *specific* component \mathbf{Z}_i contributes in a determining way in the variability of \mathbf{X}_i . One of the central hypothesis is:

 $Var(Z_{ij}) = \sigma_j^2$ such that for some positive constants D_1 and D_2

$$(A.1) 0 < D_1 < \sigma_i^2 < D_2.$$

• The initial model (1) is normalized as

$$Y_{i} = \sum_{j=1}^{p} \beta_{j}^{*} X_{ij}^{*} + \epsilon_{i}, \ i = 1, \dots, n. \text{ with } X_{ij}^{*} = \frac{X_{ij}}{\left(\frac{1}{n} \sum_{i=1}^{n} X_{ij}^{2}\right)^{1/2}}$$

and $\beta_{j}^{*} = \beta_{j} \left(\frac{1}{n} \sum_{i=1}^{n} X_{ij}^{2}\right)^{1/2}$,

- Sparseness. $\sharp\{\beta_j^*|\beta_j^*\neq 0\} \leq S, S \ll p$
- The parameters β_j^* (and then β_j) are estimated either with Lasso or the Dantzig selector

• In the following $\mathbb{E}(X_{ij}) = 0$ and

$$\sup_{j} \mathbb{E}(X_{ij}^2) \le D_0 < \infty.$$

• In the following $\mathbb{E}(X_{ij}) = 0$ and

$$\sup_{j} \mathbb{E}(X_{ij}^2) \le D_0 < \infty.$$

• $Var(Z_{ij}) = \sigma_j^2$ such that for some positive constants D_1 and D_2

$$(A.1) 0 < D_1 < \sigma_j^2 < D_2.$$

• In the following $\mathbb{E}(X_{ij}) = 0$ and

vectors

$$\sup_{j} \mathbb{E}(X_{ij}^2) \le D_0 < \infty.$$

• $Var(Z_{ij}) = \sigma_j^2$ such that for some positive constants D_1 and D_2

$$(A.1) 0 < D_1 < \sigma_j^2 < D_2.$$

• (A.2) There exists a $C_0 < \infty$ such that $\sup_{1 \le j, l \le p} |\frac{1}{n} \sum_{i=1}^n W_{ij} W_{il} - cov(W_{ij}, W_{il})| \le C_0 \sqrt{\log p/n}$ $\sup_{1 \le j, l \le p} |\frac{1}{n} \sum_{i=1}^n Z_{ij} Z_{il} - cov(Z_{ij}, Z_{il})| \le C_0 \sqrt{\log p/n}$ $\sup_{1 \le j, l \le p} |\frac{1}{n} \sum_{i=1}^n Z_{ij} W_{il}| \le C_0 \sqrt{\log p/n}$ $\sup_{1 \le j, l \le p} |\frac{1}{n} \sum_{i=1}^n X_{ij} X_{il} - cov(X_{ij}, X_{il})| \le C_0 \sqrt{\log p/n}$ hold simultaneously with probability A(n, p) > 0, where $A(n, p) \to 1$ as $n, p \to \infty$, $\frac{\log p}{n} \to 0$. \longrightarrow Condition satisfied for instance for normally distributed random

• **RE condition**. Let $c_0 = 1, 3$ and assume (A.1), (A.2) as well as $D_1 - 3C_0 n^{-1/2} \sqrt{\log p} > 0$. Then for $S \le p/2$ the following inequality holds with probability A(n,p)

$$\kappa(S, c_0) := \min_{\boldsymbol{\delta} \in C(S, c_0 \setminus \{0\})} \frac{\left[\boldsymbol{\Delta}^T \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i^* \mathbf{X}_i^{*T} \boldsymbol{\delta} \right]^{1/2}}{\|\boldsymbol{\delta}_{J_0}\|_2} \\
\ge \left(\frac{D_1}{D_0 + C_0 n^{-1/2} \sqrt{\log p}} - \frac{8S c_0 C_0 n^{-1/2} \sqrt{\log p}}{D_1 - 3C_0 n^{-1/2} \sqrt{\log p}} \right)_+^{1/2}.$$

• **RE condition**. Let $c_0 = 1, 3$ and assume (A.1), (A.2) as well as $D_1 - 3C_0 n^{-1/2} \sqrt{\log p} > 0$. Then for $S \le p/2$ the following inequality holds with probability A(n,p)

$$\kappa(S, c_0) := \min_{\boldsymbol{\delta} \in C(S, c_0 \setminus \{0\})} \frac{\left[\boldsymbol{\Delta}^T \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i^* \mathbf{X}_i^{*T} \boldsymbol{\delta}\right]^{1/2}}{\|\boldsymbol{\delta}_{J_0}\|_2} \\
\ge \left(\frac{D_1}{D_0 + C_0 n^{-1/2} \sqrt{\log p}} - \frac{8S c_0 C_0 n^{-1/2} \sqrt{\log p}}{D_1 - 3C_0 n^{-1/2} \sqrt{\log p}}\right)_+^{1/2}.$$

- For n and p large enough $\kappa(S, c_0) > 0$ holds with high probability and thus the RE condition is satisfied. Then, results of Bickel et al. (2009) imply that bounds on prediction loss and L1 loss can be derived.
- In our Factor Model setup the Lasso or the Dantzig selector will retrieve the coefficients of a sparse model

Sparse model for Factor Model: some remarks

• The assumption (A.1) plays a crucial role: bounds depend on the smallest value of σ_j^2 the variances of the Z_{ij} . When this value is too small, the estimation procedure will not be efficient.

Sparse model for Factor Model: some remarks

- The assumption (A.1) plays a crucial role: bounds depend on the smallest value of σ_j^2 the variances of the Z_{ij} . When this value is too small, the estimation procedure will not be efficient.
- The traditional sparseness assumption is restrictive:

The *common* variability of the predictors may also influence the response (each component W_i and Z_i may posses a significant influence).

The augmented model - Introduction

• If W_i and Z_i were known, a possible improvement of the model would be

$$Y_i = \sum_{j=1}^p \beta_j^* W_{ij} + \sum_{j=1}^p \beta_j Z_{ij} + \epsilon_i, \ i = 1, \dots, n$$

with different sets of parameters β_j^* and β_j . Model can be rewritten as

$$Y_{i} = \sum_{j=1}^{p} (\beta_{j}^{*} - \beta_{j}) W_{ij} + \sum_{j=1}^{p} \beta_{j} X_{ij} + \epsilon_{i}$$

The augmented model - Introduction

• If W_i and Z_i were known, a possible improvement of the model would be

$$Y_i = \sum_{j=1}^p \beta_j^* W_{ij} + \sum_{j=1}^p \beta_j Z_{ij} + \epsilon_i, \ i = 1, \dots, n$$

with different sets of parameters β_j^* and β_j . Model can be rewritten as

$$Y_i = \sum_{j=1}^{p} (\beta_j^* - \beta_j) W_{ij} + \sum_{j=1}^{p} \beta_j X_{ij} + \epsilon_i$$

• \mathbf{W}_i can be rewritten in terms of principal components (the W_{ij} are heavily correlated). Denote $\lambda_1 \geq \lambda_2 \geq \ldots$ the eigenvalues of the standardized covariance matrix of \mathbf{W}_i , $\frac{1}{p}\Gamma = \frac{1}{p}\mathbb{E}(\mathbf{W}_i\mathbf{W}_i^T)$ and ψ_1, ψ_2, \ldots corresponding orthonormal eigenvectors. Then

$$\mathbf{W}_i = \sum_{r=1}^p (oldsymbol{\psi}_r^T \mathbf{W}_i) oldsymbol{\psi}_r$$

The augmented model - Definition

Assuming that a small number of leading PC suffice to describe the effects of W_i leads to the following augmented model

$$Y_i = \sum_{r=1}^k \alpha_r \xi_{ir} + \sum_{j=1}^p \beta_j X_{ij} + \epsilon_i, \quad i = 1, \dots, n,$$

where
$$\xi_{ir} = \boldsymbol{\psi}_r^T \mathbf{W}_i / \sqrt{p \lambda_r}$$

The augmented model - Definition

• Assuming that a small number of leading PC suffice to describe the effects of W_i leads to the following augmented model

$$Y_i = \sum_{r=1}^k \alpha_r \xi_{ir} + \sum_{j=1}^p \beta_j X_{ij} + \epsilon_i, \quad i = 1, \dots, n,$$

where $\xi_{ir} = \boldsymbol{\psi}_r^T \mathbf{W}_i / \sqrt{p \lambda_r}$

- $\alpha = (\alpha_1, \dots, \alpha_k)^T \in \mathbb{R}^k$ and $\beta = (\beta_1, \dots, \beta_p)^T \in \mathbb{R}^p$ vectors of parameters.
- the dimension k is fixed
- the vector $\boldsymbol{\beta}$ satisfies the sparseness condition for a fixed $S \ll p$.

• Step 1. Estimation of ξ_{ir} . As the W_{ij} are unknown, we use the eigenelements of standardized empirical covariance matrix $\frac{1}{np} \sum_{i=1}^{n} \mathbf{X}_{i}^{T} \mathbf{X}_{i}$: $\hat{\lambda}_{1} \geq \hat{\lambda}_{2} \geq \ldots$ eigenvalues and $\hat{\psi}_{1}, \hat{\psi}_{2}, \ldots$ orthonormal eigenvectors.

$$\longrightarrow \xi_{ir}$$
 is estimated by $\hat{\xi}_{ir} = \hat{\psi}_r^T \mathbf{X}_i / \sqrt{p \hat{\lambda}_r}$

- Step 1. Estimation of ξ_{ir} . As the W_{ij} are unknown, we use the eigenelements of standardized empirical covariance matrix $\frac{1}{np}\sum_{i=1}^{n}\mathbf{X}_{i}^{T}\mathbf{X}_{i}$: $\widehat{\lambda}_{1}\geq\widehat{\lambda}_{2}\geq\ldots$ eigenvalues and $\widehat{\psi}_{1},\widehat{\psi}_{2},\ldots$ orthonormal eigenvectors.
 - $\longrightarrow \xi_{ir}$ is estimated by $\hat{\xi}_{ir} = \hat{\boldsymbol{\psi}}_r^T \mathbf{X}_i / \sqrt{p \hat{\lambda}_r}$
- Step 2. Decorrelation of the X_{ij} . In the second term, X_{ij} is replaced by $(\widehat{\mathbf{P}}_k \mathbf{X}_i)_j$, where $\widehat{\mathbf{P}}_k = \mathbf{I}_p \sum_{r=1}^k \widehat{\boldsymbol{\psi}}_r \widehat{\boldsymbol{\psi}}_r^{\tau}$.

- Step 1. Estimation of ξ_{ir} . As the W_{ij} are unknown, we use the eigenelements of standardized empirical covariance matrix $\frac{1}{np} \sum_{i=1}^{n} \mathbf{X}_{i}^{T} \mathbf{X}_{i}$: $\hat{\lambda}_{1} \geq \hat{\lambda}_{2} \geq \ldots$ eigenvalues and $\hat{\psi}_{1}, \hat{\psi}_{2}, \ldots$ orthonormal eigenvectors.
 - $\longrightarrow \xi_{ir}$ is estimated by $\widehat{\xi}_{ir} = \widehat{\boldsymbol{\psi}}_r^T \mathbf{X}_i / \sqrt{p\widehat{\lambda}_r}$
- Step 2. Decorrelation of the X_{ij} . In the second term, X_{ij} is replaced by $(\widehat{\mathbf{P}}_k \mathbf{X}_i)_j$, where $\widehat{\mathbf{P}}_k = \mathbf{I}_p \sum_{r=1}^k \widehat{\boldsymbol{\psi}}_r \widehat{\boldsymbol{\psi}}_r^{\tau}$.
- After normalization, this finally leads to the approximated model

$$Y_{i} = \sum_{r=1}^{k} \widetilde{\alpha}_{r} \widehat{\xi}_{ir} + \sum_{j=1}^{p} \widetilde{\beta}_{j} \frac{(\widehat{\mathbf{P}}_{k} \mathbf{X}_{i})_{j}}{\left(\sum_{i=1}^{n} (\widehat{\mathbf{P}}_{k} \mathbf{X}_{i})_{j}^{2}\right)^{1/2}} + \widetilde{\epsilon}_{i} + \epsilon_{i}, \quad i = 1, \dots, n,$$

- Step 1. Estimation of ξ_{ir} . As the W_{ij} are unknown, we use the eigenelements of standardized empirical covariance matrix $\frac{1}{np}\sum_{i=1}^{n}\mathbf{X}_{i}^{T}\mathbf{X}_{i}$: $\widehat{\lambda}_{1}\geq\widehat{\lambda}_{2}\geq\ldots$ eigenvalues and $\widehat{\psi}_{1},\widehat{\psi}_{2},\ldots$ orthonormal eigenvectors.
 - $\longrightarrow \xi_{ir}$ is estimated by $\widehat{\xi}_{ir} = \widehat{\boldsymbol{\psi}}_r^T \mathbf{X}_i / \sqrt{p\widehat{\lambda}_r}$
- Step 2. Decorrelation of the X_{ij} . In the second term, X_{ij} is replaced by $(\widehat{\mathbf{P}}_k \mathbf{X}_i)_j$, where $\widehat{\mathbf{P}}_k = \mathbf{I}_p \sum_{r=1}^k \widehat{\boldsymbol{\psi}}_r \widehat{\boldsymbol{\psi}}_r^{\tau}$.
- After normalization, this finally leads to the approximated model

$$Y_{i} = \sum_{r=1}^{k} \widetilde{\alpha}_{r} \widehat{\xi}_{ir} + \sum_{j=1}^{p} \widetilde{\beta}_{j} \frac{(\widehat{\mathbf{P}}_{k} \mathbf{X}_{i})_{j}}{\left(\sum_{i=1}^{n} (\widehat{\mathbf{P}}_{k} \mathbf{X}_{i})_{j}^{2}\right)^{1/2}} + \widetilde{\epsilon}_{i} + \epsilon_{i}, \quad i = 1, \dots, n,$$

• Lasso or Dantzig selector are used to estimate the vector of parameters $(\widetilde{\alpha}_1, \dots, \widetilde{\alpha}_k, \widetilde{\beta}_1, \dots, \widetilde{\beta}_k)^T \longrightarrow \text{estimators of } \alpha_r \text{ and } \beta_j \text{ follow}$

Question: for which setting the empirical eigenelements of the empirical covariance matrix of X_i approximate well the eigenelements of the covariance matrix of the unknown W_i .

Question: for which setting the empirical eigenelements of the empirical covariance matrix of X_i approximate well the eigenelements of the covariance matrix of the unknown W_i .

• \mathbf{W}_i : $\lambda_1 \geq \lambda_2 \geq \ldots$, ψ_1, ψ_2, \ldots eigenelements of $\frac{1}{p}\Gamma$, $\longrightarrow \mathbf{X}_i$: $\mu_1 \geq \mu_2 \geq \ldots$, $\delta_1, \delta_2, \ldots$ eigenelements of $\frac{1}{p}\Sigma$ $\longrightarrow \widehat{\lambda}_1 \geq \widehat{\lambda}_2 \geq \widehat{\psi}_1, \widehat{\psi}_2, \ldots$ eigenelements of the standardized empirical covariance matrix $\frac{1}{p}\widehat{\Sigma}$

Question: for which setting the empirical eigenelements of the empirical covariance matrix of X_i approximate well the eigenelements of the covariance matrix of the unknown W_i .

- \mathbf{W}_i : $\lambda_1 \geq \lambda_2 \geq \ldots$, ψ_1, ψ_2, \ldots eigenelements of $\frac{1}{p}\Gamma$, $\longrightarrow \mathbf{X}_i$: $\mu_1 \geq \mu_2 \geq \ldots$, $\delta_1, \delta_2, \ldots$ eigenelements of $\frac{1}{p}\Sigma$ $\longrightarrow \widehat{\lambda}_1 \geq \widehat{\lambda}_2 \geq \widehat{\psi}_1, \widehat{\psi}_2, \ldots$ eigenelements of the standardized empirical covariance matrix $\frac{1}{p}\widehat{\Sigma}$
- (A.3) $\min_{j,l \le k, j \ne l} |\lambda_j \lambda_l| \ge v(k), \quad \min_{j \le k} \lambda_j \ge v(k)$ for some $1 \ge v(k) > 0$.
- (A.4) $C_0(\log p/n)^{1/2} \ge \frac{D_0}{pv(k)}$ and $v(k) \ge 3C_0(\log p/n)^{1/2}$.

• Under the above Assumptions (A.2)-(A.4) and under events with probability A(n, p) we have for all $r \le k$ and all $j = 1, \ldots, p$

$$|\lambda_r - \widehat{\lambda}_r| \le \frac{D_2}{p} + C_0 (\log p/n)^{1/2},$$

$$|\mu_r - \widehat{\lambda}_r| \le C_0 (\log p/n)^{1/2}$$

$$\|\psi_r - \widehat{\psi}_r\|_2 \le 5 \frac{\frac{D_2}{p} + C_0 (\log p/n)^{1/2}}{v(k)},$$

$$\|\delta_r - \widehat{\psi}_r\|_2 \le 3 \frac{C_0 (\log p/n)^{1/2}}{v(k)}$$

• Assume (A.1) and (A.2). There then exist constants $M_1, M_2 < \infty$, such that for all n, p, k satisfying (A.3) and (A.4), all $j \in \{1, \dots, p\}$,

$$\frac{1}{n} \sum_{i=1}^{n} (\widehat{\mathbf{P}}_{k} \mathbf{X}_{i})_{j}^{2} \geq \sigma_{j}^{2} - M_{1} \frac{kn^{-1/2} \sqrt{\log p}}{v(k)^{1/2}},$$

$$|\frac{1}{n} \sum_{i=1}^{n} (\widehat{\mathbf{P}}_{k} \mathbf{X}_{i})_{j}^{2} - \sigma_{j}^{2}| \leq \mathbb{E} \left((\mathbf{P}_{k} \mathbf{W}_{i})_{j}^{2} \right) + M_{2} \frac{kn^{-1/2} \sqrt{\log p}}{v(k)^{3/2}},$$

hold with probability A(n, p).

• If \mathbf{X}_i satisfies a k-dimensional factor model, $\mathbf{P}_k \mathbf{W}_i = 0$, The results state that for n and p large $(\widehat{\mathbf{P}}_k \mathbf{X}_i)_j$ behaves "in average" similar to the specific variables Z_{ij} .

Augmented model: properties

- the restricted eigenvalues conditions is satisfied with high probability. Define $\Phi_i := (\widehat{\xi}_{i1}, \dots, \widehat{\xi}_{ik}, \widetilde{X}_{i1}, \dots, \widetilde{X}_{ip})^T$, where $\widetilde{X}_{ij} = (\widehat{\mathbf{P}}_k \mathbf{P}_i)_j$.
- (A.5) $D_1/2 > M_1 \frac{kn^{-1/2}\sqrt{\log p}}{v(k)^{1/2}}$
- Assume (A.1) and (A.2). There then exists a constant $M_3 < \infty$ such that for all $n, p, k, S, k + S \le (k + p)/2$, satisfying (A.3)-(A.5), and $c_0 = 1, 3$

$$\kappa_{S}(k+S,k+S,c_{0}) := \min_{\boldsymbol{\delta} \in C(k+S,c_{0}) \setminus \{0\}} \frac{\left[\boldsymbol{\delta}^{T} \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\Phi}_{i} \boldsymbol{\Phi}_{i}^{T} \boldsymbol{\delta}\right]^{1/2}}{\|\boldsymbol{\delta}_{J_{0}}\|_{2}} \\
\geq \left(\frac{D_{1}}{D_{0} + C_{0} n^{-1/2} \sqrt{\log p}} - \frac{8(k+S)c_{0}M_{3}k^{2}n^{-1/2} \sqrt{\log p}}{v(k)D_{1} - kv(k)^{1/2}n^{-1/2} \sqrt{\log p}}\right)_{+}^{1/2},$$

holds with probability A(n, p).

Bounds for the Dantzig selector

- $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Compute the Dantzig selector with $\rho = A\sigma\sqrt{\frac{\log(k+p)}{n}} + \frac{kM_4\sum_{r=1}^k|\alpha_r|}{v(k)^2}\sqrt{\frac{\log p}{n}}, \, A<\sqrt{2}, \, M_4 \text{ is a positive constant.}$
- Assume (A.1)-(A.3)
- If M_5 is sufficiently large, then for all $n, p, k, k + S \le (k + p)/2$, satisfying (A.4), (A.5) as well as $\kappa(k + S, c_0) > 0$ the following inequalities hold with probability at least $A(n, p) (p + k)^{-A^2/2}$

$$\sum_{r=1}^{k} |\widehat{\alpha}_r - \alpha_r| \leq \frac{8(k+S)}{\kappa^2} \rho \left(1 + \frac{k(D_0 + C_0 n^{-1/2} \sqrt{\log p})^{1/2}}{(D_1 - M_1 \frac{kn^{-1/2} \sqrt{\log p}}{v(k)^{1/2}})^{1/2}} \right),$$

$$\sum_{j=1}^{p} |\widehat{\beta}_j - \beta_j| \leq \frac{8(k+S)}{\kappa^2 (D_1 - M_1 \frac{kn^{-1/2} \sqrt{\log p}}{v(k)^{1/2}})^{1/2}} \rho,$$

where
$$\kappa = \kappa(k+S,1)$$
.