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High Dimensional Regression

Starting Model:
(1) 3/1 :/BTXZ'—I—EZ', ’I:Il,...,’n,,

VieR X, = (Xi1,...,Xip)” € RP i =1,...,nareindependentr.v.,
3 Is a vector of parameters R

(€i)i=1,...n are centered i.i.d. r.r.v. independent wXh with
Var(e;) = o?.
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High Dimensional Regression

Starting Model:
(1) 3/1 :/BTXZ'—FEZ', ’1:21,...,72,,

VieR X, = (Xi1,...,Xip)” € RP i =1,...,nareindependentr.v.,
3 Is a vector of parameters R

(€i)i=1,...n are centered i.i.d. r.r.v. independent wXh with
Var(e;) = o2,

The dimensiom is much larger than the sample size

Two different situations:
X, high dimensional vector of different predictor variables

functional dataX;;, j = 1, ..., p are discretization points of a same
curve: X;; = X;(t;)

In the following both situations are analyzed in a same way
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General Outline

Two main approaches for high dimensional regression initeéeture:

Variable selectionselect only a (small) set of variables with
Influence on the response

Functional (linear) regressiomodel (1) is a discrete version of an
underlying FLR model. No variable has a particular influeone
the response bull togetherexplain a part of variability of the
response. (Nonparametric models are also considered)
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General Outline

Two main approaches for high dimensional regression initeéeture:

Variable selectionselect only a (small) set of variables with
Influence on the response

Functional (linear) regressiomodel (1) is a discrete version of an
underlying FLR model. No variable has a particular influeone
the response bull togetherexplain a part of variability of the
response. (Nonparametric models are also considered)

Objective. Combine the two approaches with the aim of considering:

possible high correlations between the predictbes;tor models
Roughly speaking, the predictors are decomposed in two
components which respectively represeminmorandspecific
variabilities

variable selection in aaugmented modatvhich extend model (1)
and includes principal components which may posses an
additional power for predicting the response
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General Ideas

Studies of the “High dimensional model” rest on conditiongioe coefficient
vector3 and/or the predictorX;.
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General Ideas

Studies of the “High dimensional model” rest on conditiongioe coefficient
vector3 and/or the predictorX;.
Variable selection
3 has coefficients that are mostly §parseness

To retrieve non null coefficients, correlations betweéén and
X1, 7 # 1, are sufficiently “weak”. almost uncorrelated e.g. in

) /more general Restricted Eigenvalue
condition in
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General Ideas

Studies of the “High dimensional model” rest on conditiongioe coefficient
vector3 and/or the predictorX;.
Variable selection
3 has coefficients that are mostly §parseness
To retrieve non null coefficients, correlations betweéén and
X1, 7 # 1, are sufficiently “weak”. almost uncorrelated e.g. in
) /more general Restricted Eigenvalue
condition in
Functional regression
B = %, B e L*([0,1]), t; = Zl? continuous slope function, and
1
asp — 09, zj Binj — fO B(t)XZ(t)dt,
the predictors are heavily correlated. As—+ oo,
corr(X;(t;), Xi(tj+m)) — 1 for any fixedm
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Functional regression: basis expansion

Model is rewritten in term of a "sparse" basis expansion efdredictor

functionsX;
Best possible basis, minimizing ti&-error, for ak-dimensional

approximation of random functions,: eigenfunctions corresponding
to thek largest eigenvalues of the covariance operatoX pf

E(X; ® X;)

l.e. leading elements of th€éarhunen-Loeve decomposition
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Functional regression: basis expansion

Model is rewritten in term of a "sparse" basis expansion efdredictor
functionsX;

Best possible basis, minimizing ti&-error, for ak-dimensional
approximation of random functions,: eigenfunctions corresponding
to thek largest eigenvalues of the covariance operatoX pf

E(X; ® X;)
l.e. leading elements of th€éarhunen-Loeve decomposition

Important feature of the covariance operatoXgf compact, nuclear
— The (infinite) set of eigenvalues decrease rapidly to zestuadly,
the sum is finite
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Functional regression: estimation

Discretized case (model (1))this amounts to consider the eigenvalues
[y > I, > ... and corresponding eigenvectaps, 1., . .. of the
covariance matri = E(X,;X7)

—evenifp > n, ¢, 1 <r < k, can be well estimated by the
eigenvectors (principal component?a) of the empirical covariance
matrix> = L 3" X, X7
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Functional regression: estimation

Discretized case (model (1))this amounts to consider the eigenvalues
[y > I, > ... and corresponding eigenvectaps, 1., . .. of the
covariance matri = E(X,;X7)

—evenifp > n, ¢, 1 <r < k, can be well estimated by the
eigenvectors (principal component?a) of the empirical covariance
matrix> = L 3" X, X7

approximate modet

k
Y, = E il + €
—1

it = > iy Xi(ty)i;
(k serves as smoothing parameter).
Coefficientsa; are estimated by least squares, tfen= Zle Q)
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Variable selection: L1 penalized estimators

SparsenesssS := #{j|5; # 0} < p
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Variable selection: L1 penalized estimators

SparsenesssS := #{j|5; # 0} < p
Lasso(Tibshirani, 1996, Bickel, Ritov and Tsybakov, 2009):

n

~ 1 i
B = al“géglg) {HZ(YZ - X;8) +20;|5J‘|},

1=1
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Variable selection: L1 penalized estimators

SparsenesssS := #{j|5; # 0} < p
Lasso(Tibshirani, 1996, Bickel, Ritov and Tsybakov, 2009):

B = arg min, {NZ(Y - X;8) +2/)Z|5j|},
=1

1=1

Dantzig selector(Candes and Tao, 2007):

. - 1 -
8 = argmin{HﬁHl : HﬁXT(Y_Xﬂ)

Sp},
o

whereX is then x p-dimensional matrix with entrieX’; ;
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Variable selection: L1 penalized estimators

SparsenesssS := #{j|5; # 0} < p
Lasso(Tibshirani, 1996, Bickel, Ritov and Tsybakov, 2009):

R 1 mn n
— I — )/;_Xz : 2 ' )
g argﬁrgkg{nz:( B)” + p;lﬁgl}

1=1

Dantzig selector(Candes and Tao, 2007):

. - 1 -
8 = argmin{HﬁHl : HﬁXT(Y_Xﬂ)

Sp},
o

whereX is then x p-dimensional matrix with entrieX’; ;

Unlike L2 penalized estimators (such as Ridge Regresdi@sso and
Dantzig selector will find coefficients that are exactly O
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Variable selection: General conditions

The diagonal elements o = %XTX are equalto 1
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Variable selection: General conditions

The diagonal elements o = %XTX are equalto 1

Restricted eigenvalue assumption RE(Sg)
C(S,co) ={0 e RP,JJy C {1,...,p},|Jo] < 5,[|07ell1 < colld1,]1}

— with high probabilityd = 8 — 8 € C(S, ¢o), with 3 Lasso
(co = 3) or Dantzig ¢y = 1) estimator and/; = J(3) is the set of non
null coefficients of3

TS 5\1/2
k(S, co) = min (9 %9)

>0
5eC(S,co\{0} |10, |2

RE(S, cp) means that there is a kind of "restricted” positive
definiteness which is valid only for vectorsdiS, cg)
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Variable selection: Results

bounds on prediction loss arid loss are obtained und&E (.S, co)

The bounds depends on the value:0b, cy): lower bounds are
obtained for great values @&f(.5, ¢)

Séminaire BIA — 12 Octobre 2012 — p. 9/22



Variable selection: Results

bounds on prediction loss arid loss are obtained und&E (.S, co)

The bounds depends on the value:0b, cy): lower bounds are
obtained for great values @&f(.5, ¢)

For "purely"” functional predictors; (S, ¢g) tends to zero ag tends to
Infinity.

In any case, variable selection such as penalized L1 proesaull not
be efficient for this kind of data (at least when they are agupdlirectly,
solutions exit: work in progress in that direction)

When predictors are too heavily correlated, usual variaélection
procedures will be not efficient to select a small set of \@es that
have influence on the response
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Variable selection and Factor Models

Structure of predictordactor model

whereW, andZ, are two uncorrelated r. v. IRP

Zi1, - .., Zi, independent wittV ar(Z;;) = o7
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W, ; describesommonvariability while Z;; inducesspecificvariability
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Variable selection and Factor Models

Structure of predictordactor model

whereW, andZ, are two uncorrelated r. v. IRP
Zi1, - .., Zi, independent wittV ar(Z;;) = o7
W, ; describesommonvariability while Z;; inducesspecificvariability

3 covariance matrix oX;; with I' = E(W,; W) covariance matrix of

X =TI+4+P
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Variable selection and Factor Models

Structure of predictordactor model

whereW, andZ, are two uncorrelated r. v. IRP

Zi1, - .., Zi, independent wittV ar(Z;;) = o7

W, ; describesommonvariability while Z;; inducesspecificvariability

3 covariance matrix oX;; with I' = E(W,; W) covariance matrix of
W;
X =r+wv

¥ = Diag(oi...0}).

A small number of eigenvectors dfsuffices to approximat¥V,; with
high accuracy (in spiritW; is of "functional nature")
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Variable selection and Factor Models

Structure of predictordactor model

whereW, andZ, are two uncorrelated r. v. IRP

Zi1, - .., Zi, independent wittV ar(Z;;) = o7

W, ; describesommonvariability while Z;; inducesspecificvariability
3 covariance matrix oX;; with I' = E(W,; W) covariance matrix of
W;

X =r+v

¥ = Diag(oi...0}).

A small number of eigenvectors dfsuffices to approximat¥V,; with
high accuracy (in spiritW; is of "functional nature")

Both W, andZ; are not observed

Séminaire BIA — 12 Octobre 2012 — n. 10/22



Sparse model for Factor Models

For factor models, the Dantzig selector or the Lasso witiee¢ the
coefficients of a sparse model provided thatgpecificcomponen;
contributes in a determining way in the variability¥f. One of the

central hypothesis is:
Var(Z;;) = o7 such that for some positive constarils and D,

(A.1) 0 < Dy < 07 < Ds.
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Sparse model for Factor Models

For factor models, the Dantzig selector or the Lasso witiee¢ the

coefficients of a sparse model provided thatgpecificcomponen;
contributes in a determining way in the variability¥f. One of the

central hypothesis is:

Var(Z;;) = o7 such that for some positive constarils and D,

(A.1) 0 < Dy < 07 < Ds.

The initial model (1) is normalized as
Yi = ?:1/3;)(;}—#67;, 1 =1,...,n.with X;‘j: Xij

(l ;L:l X7,2]>1/2

n

1/2

andg; = 6; (5, i Xij)
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Sparse model for Factor Models

For factor models, the Dantzig selector or the Lasso witiee¢ the

coefficients of a sparse model provided thatgpecificcomponen;
contributes in a determining way in the variability¥f. One of the

central hypothesis is:

Var(Z;;) = o7 such that for some positive constarils and D,

(A.1) 0 < Dy < 07 < Ds.

The initial model (1) is normalized as
Yi = ?:1/3;)(;}—#67;, 1 =1,...,n.with X;‘j: Xij

(l ;L:l X7,2]>1/2

n

1/2

andsy = 6; (5 il X5)
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Sparse model for Factor Models

For factor models, the Dantzig selector or the Lasso witiee¢ the

coefficients of a sparse model provided thatgpecificcomponen;
contributes in a determining way in the variability¥f. One of the

central hypothesis is:

Var(Z;;) = o7 such that for some positive constarils and D,

(A.1) 0 < Dy < 07 < Ds.

The initial model (1) is normalized as

- p * * g : x Xij
1= 17

n

1/2

andB; = B (3 20 X5)
Sparsenesg{ 87|85 #0} < 5,5 <p

The parameters; (and then3;) are estimated either with Lasso or the
Dantzig selector
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Sparse model for Factor Model: theoretical results - 1

In the followingE(X;,) = 0 and

supIE(ij) < Dy < 0.
J
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In the followingE(X;,) = 0 and

supIE(ij) < Dy < 0.
J

Var(Z;;) = o7 such that for some positive constarils and D,

(A.1) 0 < Dy < 07 < Ds.
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Sparse model for Factor Model: theoretical results - 1
In the followingE(X;,) = 0 and

supIE(ij) < Dy < 0.
J

Var(Z;;) = o7 such that for some positive constarils and D,

(A.1) 0 < Dy < 07 < Ds.

(A.2) There exists &'y < oo such that
SUDP < 1<p |5 Dorey Wii Wiy — cov(Wij, Wy)| < Cov/log p/n
SUD | < 1<p | = 2oiy Zij Zit — cov(Ziz, Zq)| < Con/logp/n
SUP1 < 1<p LS L ZiiWa| < Cov/logp/n

SUDy < j1<p |5y Doies Xig X — cov(Xij, Xu)| < Coy/logp/n
hold simultaneously with probabiliti(n, p) > 0, whereA(n,p) — 1
asn,p — oo, 10% — 0.
— Condition satisfied for instance for normally distributemdom
vectors
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Sparse model for Factor Model: theoretical results - 2

RE condition. Letcy = 1, 3 and assume (A.1), (A.2) as well as
D1 —3Cyn~2\/logp > 0. Then forS < p/2 the following inequality
holds with probabilityA(n, p)

. (AT LS X XT a2
k(S,co) :=  min T
5€C(5,e0\{0} 167 |2
1/2

> D - SSCoCon_1/2V log p /
- D() + C’On—l/zvlogp Dy — 3007”&_1/2 \% logp +
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Sparse model for Factor Model: theoretical results - 2

RE condition. Letcy = 1, 3 and assume (A.1), (A.2) as well as
D1 —3Cyn~2\/logp > 0. Then forS < p/2 the following inequality
holds with probabilityA(n, p)

(AT Y Xi X T o)

k(S,co) = min
( O) 0cC(S,co\{0} H(SJO H2
> D - SSCoCon_1/2V logp Ve
- D() + C’On—l/zvlogp Dy — 3007”&_1/2 \% logp +

Forn andp large enough (S, c¢y) > 0 holds with high probability and
thus the RE condition is satisfied. Then, results of
Imply that bounds on prediction loss and L1 loss can be derive

In our Factor Model setup the Lasso or the Dantzig selectibr wi
retrieve the coefficients of a sparse model
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Sparse model for Factor Model: some remarks

The assumption (A.1) plays a crucial role: bounds dependien t
smallest value o> the variances of th&;;. When this value is too
small, the estimation procedure will not be efficient.
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Sparse model for Factor Model: some remarks

The assumption (A.1) plays a crucial role: bounds dependien t
smallest value o> the variances of th&;;. When this value is too
small, the estimation procedure will not be efficient.

The traditional sparseness assumption is restrictive:

Thecommorvariability of the predictors may also influence the
response (each compon@&M; andZ; may posses a significant
Influence).
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The augmented model - Introduction

If W, andZ,; were known, a possible improvement of the model would
be

p p
Y, = Zﬁ;Wij-FZﬁjZij-FGz‘, 1=1,...,n
j=1 j=1

with different sets of parametet andg;. Model can be rewritten as

Y; = > (85— B)Wi; + Z:lﬁsz'j + €
i

g=1
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The augmented model - Introduction

If W, andZ,; were known, a possible improvement of the model would
be

p p
Y, = Zﬁ;wij-i-z:ﬁjzij-l-% 1=1,...,n
j=1 j=1

with different sets of parametet andg;. Model can be rewritten as

Y, = Z(ﬁ; — B5)Wij + Z:lﬁsz'j + €
i

g=1

W, can be rewritten in terms of principal components (ittig are
heavily correlated). Denotk;, > Ay > ... the eigenvalues of the
standardized covariance matrixWf,, - T’ = ~E(W,; W) and
P4, 15, ... corresponding orthonormal eigenvectors. Then

p
W, =) (¢, W)y,
r=1
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The augmented model - Definition

Assuming that a small number of leading PC suffice to desthibe
effects of W; leads to the followingaugmented model

k p
Y, = Zarfir+25inj + 6, 1=1,...,n,
r=1 7=1

whereg;, = 1, Wi/v/pA,
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The augmented model - Definition

Assuming that a small number of leading PC suffice to desthibe
effects of W; leads to the followingaugmented model

k p
Y, = Zarfir+25inj + 6, 1=1,...,n,
r=1 7=1

where¢;, = ¥, W, /V/pA,
a=(ag,...,ar)T € R¥andB = (b4,...,3,)T € RP vectors of
parameters.

the dimensiork Is fixed

the vector3 satisfies the sparseness condition for a fixed: p.
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The augmented model - Estimation

Step 1. Estimation of&;,.. As theW;; are unknown, we use the
eigenelements of standardized empirical covariance xnatri

5 iy XXt AL > Ag > ... eigenvalues angby, i, . ..
orthonormal eigenvectors.

~ ~T ~
— & IS estimated by;,. = ¥, X;/1\/ pA,
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The augmented model - Estimation

Step 1. Estimation of&;,.. As theW;; are unknown, we use the
eigenelements of standardized empirical covariance xnatri
5 iy XXt AL > Ag > ... eigenvalues angby, i, . ..
orthonormal eigenvectors.

. . ~ ~T ~
— & IS estimated by;,. = ¥, X;/1\/ pA,

Step 2. Decorrelation of theX;;. In the second termX;, Is replaced
by (PX,;);, whereP;, = I, — Zﬁzl ’(,br’(b::.
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The augmented model - Estimation

Step 1. Estimation of&;,.. As theW;; are unknown, we use the
eigenelements of standardized empirical covariance xnatri
5 iy XXt AL > Ag > ... eigenvalues angby, i, . ..
orthonormal eigenvectors.
. . ~ ~T ~
— & IS estimated by;,. = ¥, X;/1\/ pA,
Step 2. Decorrelation of theX;;. In the second termX;, Is replaced
A~ A~ k? ~ ~NT
by (PrX;);, whereP, = 1, —-> ~_,¢¥.,.

After normalization, this finally leads to the approximataddel

k p 53
Y; = E a?"gir_l_g 6] ( R )j 1/2 T €€, 1= 17"'7”7
r=1 J=1 (Z?ﬂ(Psz)]z)
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The augmented model - Estimation

Step 1. Estimation of&;,.. As theW;; are unknown, we use the
eigenelements of standardized empirical covariance xnatri
5 iy XXt AL > Ag > ... eigenvalues angby, i, . ..
orthonormal eigenvectors.
. . ~ ~T ~
— & IS estimated by;,. = ¥, X;/1\/ pA,
Step 2. Decorrelation of theX;;. In the second termX;, Is replaced
A~ A~ k? ~ ~NT
by (PrX;);, whereP, = 1, —-> ~_,¢¥.,.

After normalization, this finally leads to the approximataddel

k p 53
Y; = E a?"gir_l_g 6] ( R )j 1/2 T €€, 1= 17"'7”7
r=1 J=1 (Z?ﬂ(Psz)]z)

Lasso or Dantzig selector are used to estimate the vect@rahpeters
(1, ..., 0k, P1,---,8k) —> estimators ofv,. and3; follow

Séminaire BIA — 12 Octobre 2012 —p. 17/22



Efficiency of principal components -1

Question: for which setting the empirical eigenelementhefempirical
covariance matrix oX; approximate well the eigenelements of the
covariance matrix of the unknoww .
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Efficiency of principal components -1

Question: for which setting the empirical eigenelementhefempirical
covariance matrix oX; approximate well the eigenelements of the
covariance matrix of the unknoww .

— Wil A > X\ > ..., 4,1, ... eigenelements o}fI‘,
— X, > e > ..., 01,04, ... eigenelements o%E

— Xl > Xg > fpl, @2, ... eigenelements of the standardized
empirical covariance matri%(z
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Efficiency of principal components -1

Question: for which setting the empirical eigenelementhefempirical
covariance matrix oX; approximate well the eigenelements of the
covariance matrix of the unknoww .

— Wil A > X\ > ..., 4,1, ... eigenelements o}fI‘,
— X, > e > ..., 01,04, ... eigenelements o%E

— Xl > Xg > fpl, @2, ... eigenelements of the standardized
empirical covariance matri%(z

(A3) mianSk’j#l ‘)\j — )\l‘ Z ”U(k?), minjgk )\j Z ’U(]C)
for somel > v(k) > 0.

(A.4) Co(log p/n)*/? > s andu(k) > 3Cy(log p/n)/>.
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Efficiency of principal components -2

Under the above Assumptions (A.2)-(A.4) and under evenis wi
probability A(n, p) we have forall- < kandallj =1,...,p

~ D
’)‘r — )‘r‘ S ?2 + C’O(logp/n)l/Q,

11 — M| < Co(logp/n)'/?

D 1/2

~ 22 + Cy(logp/n)"

b, — 1, [la <5 ,
v(k)

Co(log p/n)1/2
v(k)

10r =, []2 <3
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Efficiency of principal components - 3

Assume (A.1) and (A.2). There then exist constavits M> < oo,
such that for alh, p, k satisfying (A.3) and (A.4), alf € {1,...,p},

kn=1/2\/logp

l o ~
=) (PpXy)] > o] — M,
1=1

v(k)t/2
I o 2 2 2 kn~'/2/logp
|g Z(kai)j - Uj‘ <E ((Pkwi)j) + M v(k)3/2

1=1

hold with probability A(n, p).

If X, satisfies &-dimensional factor modeP . W, = 0, The results
state that forn andp large (P, X;), behaves "in average" similar to the
specific variables; .
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Augmented model: properties

the restricted elgenvalues conditions is satisfied witim Ipxlg)bablllty
Define®; := (i1, ..., &k, Xi1, - - - Xip) T, whereX;; = (P, P;),.

mn 1/2 O
(A5) D1/2 > My sym®?
Assume (A.1) and (A.2). There then exists a constank oo such

that for alln,p, k, S, k+ S < (k + p)/2, satisfying (A.3)-(A.5), and
Co — 1, 3

. 6" LY, @i®; 8]/
k+ S, k+S,co) = TN
ws(k+ Sk + S c0)i= _min o 197 1]2

> ( D1 B 8(]43 + S)C()Mgk2n_1/2\/ lng )1/2
~ \ Do+ Con=1/2/logp  v(k)D:1 — kv(k)Y/2n=1/2\/logp ) ,

holds with probabilityA(n, p).
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Bounds for the Dantzig selector

€5 ™ N(Oa 0_2)
Compute the Dantzig selector with

k
p= Agy/oelktp) 4 kL ,UE(,;“):; o] 8P A < /2, M, is a positive
constant.

Assume (A.1)-(A.3)

If M5 is sufficiently large, then for ath, p, k, k+ 5 < (k+p)/2,
satisfying (A.4), (A.5) as well as(k + S, ¢y) > 0 the following
inequalities hold with probability at least(n, p) — (p + k) =4 /2

k —-1/2 / 1/2
Z ‘&r — 047"| < S(k —|2_ S)P 14 k(DO il Cor,]:n_1/2 /_}Sgp) )
r=1 R (Dl — Ml v(k)1/2gp>1/2

Epﬁ\ﬁ Bil < 8k + 5) =P
Jj— Mil = n—1/2 /o y
j=1 KJZ(Dl — fwl u U(k)1/l2 gp)1/2

wherek = lﬂ(k + S, 1)- Séminaire BIA — 12 Octobre 2012 — p. 22/29
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