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» Bayesian paradigm
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Bontemps If (Pg)geco is a statistical model, a Bayesian puts a prior

] distribution W on 6. Given a risk function L, an estimator of
and
Framework g(e)

gW = argmin/ L(g(0),0)W(do|X)
19 €]

is built on the basis of the posterior distribution given the data

dPa(X) dW(6)
W(dO1X) = 13, ) W)



L Smooth parametric models

Il Consider (Py)gco a smooth statistical model, with © a domain

Sl in R¥ and the log-likelihood
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ly(X) = log (dPs(X))

Background
and

Framework be C2 for § € ©. The Fisher Information matrix is defined as
Iy = Ey [lp(X)if (X)] .

Suppose the model to be identifiable, X ~ Py = Py, and Iy, to
be invertible. With high probability the Maximum Likelihood
Estimator OMLE exists and the log-likelihood admits a quadratic
development at the neighborhood of 6:

1

£90+h = fao + hTI@o (é\MLE — 90) 5

hT lg,h + op,, (1).
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Suppose X ~ Py and g(Pp) is a quantity of interest,
m Is W(dg(Py)|X) concentrated near g(Pp)?
m Is W(dg(Py)|X) approximately Gaussian?
What if Py is outside the model?



L Theiid. parametric Bernstein-von Mises Theorem
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m A parametric model (Py)oco, © C R¥, identifiable, q.m.d.
at 6g in the interior of ©, with invertible Fisher
Beelrauid Information lg,;

and

R B Xpp=X1,..., X, i.id. following Py = Py,
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m W(d0) a prior on ©, with density w continuous and
positive at fg;
Then the MLE MLE exists with probability going to 1, it
converges in distribution towards N (00, %/9_01), and

— 0 as n— co.

E HW(dQ[XL,,) - N (éMLE, 1/9—1>
n > Jltv




Comments

1,-1
’FIQO

et W (d0|X1.,) is approximately N <§MLE
é\MLE

);

(Bayesian) credibility intervals and (frequentist) confidence
Background intervals are asymptotically the same.

and
Framework

regression

is approximately A/ (00, %19—01>:
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e W (d0|X.,) is approximately N(
regression é\MLE

);

(Bayesian) credibility intervals and (frequentist) confidence
Background intervals are asymptotically the same.

and
Framework

: : 1,-1).
S is approximately N (00, = )
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Motivation from Information Theory:

inf sup D(PY; Q") = supinf/ D(PJ; Q") W(d0).
Q" gco w @ Je

The infimum on the right side is achieved by the Bayes mixture
M\’}V(Xl:n) = f@ Pg(Xl;,,) W(d@), and

W(d8)|X;.
D (Pg; Mjy) = Epy [Iog( | 1'”)]

W(d0)



Previous semiparametric and nonparametric results
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m Many results about the posterior convergence rates in
Background . . .
and various nonparametric settings;

Framework

m Some semiparametric Bernstein-von Mises theorems: Kim
and Lee (2004), Kim (2006), Shen (2002), Castillo (2009),
Rivoirard and Rousseau (2009);

m Nonparametric Bernstein-von Mises theorems in increasing
dimension settings: Ghosal (1999), Ghosal (2000),
Boucheron and Gassiat (2009), Clarke and Ghosal (2010).
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vector
Y=F+e
Background where € ~ N (O’ 0’2In) and FO c R".
la:?:mework u A (miSSpeCified) model P@ = N(¢970r2,ln)y Where q) is a
n X kn matrix whose columns ¢y, ..., ¢y, are linearly

independent regressors. k, grows with n.
Let (¢) be the linear span of the regressors, and
Y = &(d7d) b7 the matrix of the orthogonal
projection on (¢).
m A prior distribution W(dF) on (¢), induced by the
distribution W(d@) = w(#)d6 on R*" by the map F = 0.
m The MLE is Y<¢>> = ¢9y =Y. Let F<¢> == ¢90 = ZF().
Then
Yioy ~ N (Figpo3)



» Example: The Gaussian sequence model
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1 .
where &, j > 1 are i.i.d. N(0,1).

m This is linked to the white noise model.
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m We project on the first k, coordinates, so
Flg = (aj('))li/'ékn and the MLE Y4 = (Y))1<j<k,-
0 is supposed to be in a Sobolev class: for some 5 > 0,

21 |2 < oo

e’




b Example: Regression of a C* function
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o e Let a > 0, and g be the integer part of a. We define a

it seminorm on C“[0, 1]
Bor ps
Background ‘f(ao)(x) — f'(Olo)(X/)
Framenork [flla = sup =
ramewor| x£x! |X _ X/|a a@Q
Consider a design (X,.(”))n>1 1<i<n MOt necessarily uniform. We

observe the vector (f(x\”
Here Fo = (f(x-(")

i) 1<ic, and 0, = 0 is constant.

Regressors: fix an integer ¢ > «, and let K = k, + 1 — q. Let

(Bj)1<j<k, be the B-splines of order g on the regular partition
. . _ (n)

of [0,1] into K subintervals. Then ¢; = (B;(x;" ))1§i§n

1 <j < k.

) +€i);<;<, and want to retrieve f.

for
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il For 0 € R, let fy = 37, 0;5;.
Approximation property of the B-splines

For any a > 0, there exist C, > 0 such that, if f € C*[0,1],

there exists #° € R¥ verifying
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and

Framework
I = foelloe < Caky “lIfla-



b Example: Regression of a C* function
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LGRSl For 0 € RM, let fy = 11, 0;B;.

ST Approximation property of the B-splines

Eerai For any a > 0, there exist C, > 0 such that, if f € C*[0,1],
there exists #° € R¥ verifying
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I = fpo<lloe < Caky [ flla-

A norm ||f||, = /£ 37, [f(x)[? is associated to the design

(x,-("))n>1 1<i<n- The design is supposed to be sufficiently
regular, so that there exist positive constants C; and C, such

that, as n increases, whatever 6 € Rn,

n
Clk—\|0||2 9T¢T¢9<c2 ||9|\2



L With an isotropic Gaussian prior
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Let W = N (0,72%). Assume that o, = o(T,),
|Foll = o(72/an) and k, = o(T#/o%). Then

Nonparametric
results

E|W(dFIY) =N (Yig), 03T |, = 0 as n — oc.



L With an isotropic Gaussian prior
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Let W = N (0,72%). Assume that o, = o(T,),
|Foll = o(72/an) and k, = o(T#/o%). Then

Nonparametric
results

E|W(dFIY) =N (Yig), 03T |, = 0 as n — oc.

Example: Regression of a bounded function f, with constant
noise o2. The Bernstein-von Mises theorem holds as soon as
nt/* = o(ry,).



:- Application to the Gaussian Sequence Model
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e Suppose that E " 1(69)? is bounded. Let W = N (0,77 /x,)
with n=/* = o(7n). Then, whatever k, < n,

— 0 as n — oo.
TV

Nonparametric
results

1
3 H W(dF|Y) = A (v<¢>, ;/kn>

Let 3 > 0, and suppose further that >7°, |a°]2 28 < co. Let

k, be of order nt/(1+25),
Then the convergence rate of F towards o® is n=P/(1+28) . for

every A\, — 00,

E (W (IIF = ]| > A,n=#/0+29)] v)]| > 0.



L With a smooth prior
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0 h
sup i Cohly -
|oh2<02My [ bgl2<o2m, W(0o + &)
Nonparametric
results kn In kn = O(Mn)
det(CDTCD)
max [ 0, In e = o(M,)
on"w(6o)
Then

E H W(dF|Y) = N (Y(g),05%) HTV —5 0 as n — 0.



:~ Application to C“ functions
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ST Assume that f is bounded. Let W = N (0,72lx,) be the prior
>ontemps .. . . .
on the spline coefficients, with the sequence T, verifying
2
falnn _ o(72) and Xalnn ki N — o(r#). Then

n

E |W(do]Y) — N (v, 0%(®T ) ) HTV 0.

Let o« > 0, and suppose further that f is C* and k, is of order
nt/(1420)  Then the conditions reduce to niwa Inn = o(th
and, if this holds, the posterior concentrates at the minimax
rate n=/(1429) relative to || - ||, for every A, — oo,

E W (llfy—flla> Ann—a/(ma)] Y)| = o.
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Corollary

Let p > 1 fixed, and G be a RP x R"-matrix. Suppose that the
conditions of either Theorem 1 or Theorem 2 are verified. Then

Semiparametric

s E | w(d(6F)|Y) =N (6Y4),02656T) HTV — 0 as n — oo.

Further, the distribution of GY(y is N' (GF(s), 02GTGT ).

Bias GFO — GF<¢>7



Smooth functionals: conditions
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: a>0, let

Br(a) = sup sup HDI2—‘+thG(h7 h)H
he (6):|H2<0320< <1

and _ .
TF=02GFXGLr.

Semiparametric
results
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Br(a) = sup sup HDI2—‘+thG(h7 h)H
he(9):1h|<o2a 0<t<1

and

27 ~T
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Suppose that F,:w$> is nonsingular, and that there exists a
sequence (M,),>1 such that k, = o(M,) and

BF,, (Mn) = o <’ r;iz» H_1> '

Suppose further that the conditions of either Theorem 1 or
Theorem 2 (with the same sequence M,) are verified.



'f Smooth functionals: the Bernstein-von Mises
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] — 0
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. " b (G(F) - G(Y(y))
sup
lez ,/bTFF<¢>b
el where 7 is the collection of all intervals in R, and for any

results
leZ, v()y=P(Zel)ifZ~N(0,1).
Under the same conditions,

el

Y) —¢(/)

b (G(Ye)) — G(Fie)))
P Il — (1 0.
% ( s ) )7



:- The Gaussian Sequence Model: #? norm of o°
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s Let 3 > 1/2 and suppose that 3>, |a§-’|2j2ﬁ < oo. Let
W = N (0,721y,) with n=** = o(r,). Then, for any choice of
kn such that k, = o(y/n) and \/n = o(k,z,ﬁ),

W (ﬁ(IIFllz—Y<¢>I2) c ,’ Y) _W)H 0

E |:5UpleI 2]

Semiparametric
results

2_ 2
and \/E(||Y<¢2>|:LO|I||F<"’>|| ) ﬂ>/\/'(O, 1). Further,

\f F 2_ O[O 2
(| <§|>|£0|| 1°) _ o(1).

In particular the choice k, = \/n/In n is adaptive in 3.
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