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Bayesian paradigm

If (Pθ)θ∈Θ is a statistical model, a Bayesian puts a prior
distribution W on θ. Given a risk function L, an estimator of
g(θ)

ĝW = arg min
δ

∫
Θ
L(g(θ), δ)W (dθ|X)

is built on the basis of the posterior distribution given the data

W (dθ|X) =
dPθ(X) dW (θ)∫

Θ dPν(X) dW (ν)
.
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Smooth parametric models

Consider (Pθ)θ∈Θ a smooth statistical model, with Θ a domain
in Rk and the log-likelihood

`θ(X) = log (dPθ(X))

be C2 for θ ∈ Θ. The Fisher Information matrix is defined as

Iθ = Eθ
[

˙̀
θ(X) ˙̀T

θ (X)
]
.

Suppose the model to be identifiable, X ∼ P0 = Pθ0 , and Iθ0 to
be invertible. With high probability the Maximum Likelihood
Estimator θ̂MLE exists and the log-likelihood admits a quadratic
development at the neighborhood of θ0:

`θ0+h = `θ0 + hT Iθ0

(
θ̂MLE − θ0

)
− 1

2h
T Iθ0h + oPθ0

(1).
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Frequentist properties of Bayesian methods

Suppose X ∼ P0 and g(P0) is a quantity of interest,
Is W (dg(Pθ)|X) concentrated near g(P0)?
Is W (dg(Pθ)|X) approximately Gaussian?

What if P0 is outside the model?
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The i.i.d. parametric Bernstein-von Mises Theorem

A parametric model (Pθ)θ∈Θ, Θ ⊂ Rk , identifiable, q.m.d.
at θ0 in the interior of Θ, with invertible Fisher
Information Iθ0 ;
X1:n = X1, . . . ,Xn i.i.d. following P0 = Pθ0 ;
W (dθ) a prior on Θ, with density w continuous and
positive at θ0;

Then the MLE θ̂MLE exists with probability going to 1, it
converges in distribution towards N

(
θ0,

1
n I
−1
θ0

)
, and

E
∥∥∥∥W (dθ|X1:n)−N

(
θ̂MLE ,

1
n I
−1
θ0

)∥∥∥∥
TV
→ 0 as n→∞.
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Comments

W (dθ|X1:n) is approximately N
(
θ̂MLE , 1

n I
−1
θ0

)
;

θ̂MLE is approximately N
(
θ0,

1
n I
−1
θ0

)
:

(Bayesian) credibility intervals and (frequentist) confidence
intervals are asymptotically the same.

Motivation from Information Theory:

inf
Qn

sup
θ∈Θ

D(Pn
θ ;Qn) = sup

W
inf
Qn

∫
Θ
D(Pn

θ ;Qn)W (dθ).

The infimum on the right side is achieved by the Bayes mixture
Mn

W (x1:n) =
∫

Θ Pn
θ (x1:n)W (dθ), and

D (Pn
θ ;Mn

W ) = EPn
θ

[
log W (dθ|X1:n)

W (dθ)

]
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Previous semiparametric and nonparametric results

Many results about the posterior convergence rates in
various nonparametric settings;
Some semiparametric Bernstein-von Mises theorems: Kim
and Lee (2004), Kim (2006), Shen (2002), Castillo (2009),
Rivoirard and Rousseau (2009);
Nonparametric Bernstein-von Mises theorems in increasing
dimension settings: Ghosal (1999), Ghosal (2000),
Boucheron and Gassiat (2009), Clarke and Ghosal (2010).



B.-v.M.
theorems for

regression

Dominique
Bontemps

Background
and
Framework

Nonparametric
results

Semiparametric
results

The Regression model with Gaussian noise

The observation Y = (Y1, . . . ,Yn) is a Gaussian random
vector

Y = F0 + ε

where ε ∼ N
(
0, σ2In

)
and F0 ∈ Rn.

A (misspecified) model Pθ = N (Φθ, σ2
nIn), where Φ is a

n × kn matrix whose columns φ1, . . . , φkn are linearly
independent regressors. kn grows with n.
Let 〈φ〉 be the linear span of the regressors, and
Σ = Φ(ΦT Φ)−1ΦT the matrix of the orthogonal
projection on 〈φ〉.
A prior distribution W (dF ) on 〈φ〉, induced by the
distribution W̃ (dθ) = w(θ)dθ on Rkn by the map F = Φθ.
The MLE is Y〈φ〉 = ΦθY = ΣY . Let F〈φ〉 = Φθ0 = ΣF0.
Then

Y〈φ〉 ∼ N
(
F〈φ〉, σ2

nΣ
)
.
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Example: The Gaussian sequence model

Yj = α0
j +

1√
nξj , j ≥ 1

where ξj , j ≥ 1 are i.i.d. N (0, 1).
This is linked to the white noise model.
We project on the first kn coordinates, so
F〈φ〉 = (α0

j )1≤j≤kn and the MLE Y〈φ〉 = (Yj)1≤j≤kn .
α0 is supposed to be in a Sobolev class: for some β > 0,∑∞

j=1 |α0
j |2j2β <∞.
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Example: Regression of a Cα function

Let α > 0, and α0 be the integer part of α. We define a
seminorm on Cα[0, 1]

‖f ‖α = sup
x 6=x ′

∣∣∣f (α0)(x)− f (α0)(x ′)
∣∣∣

|x − x ′|α−α0
.

Consider a design
(
x (n)

i
)

n≥1,1≤i≤n, not necessarily uniform. We
observe the vector

(
f
(
x (n)

i
)

+ εi
)

1≤i≤n, and want to retrieve f .
Here F0 =

(
f
(
x (n)

i
))

1≤i≤n and σn = σ is constant.
Regressors: fix an integer q ≥ α, and let K = kn + 1− q. Let
(Bj)1≤j≤kn be the B-splines of order q on the regular partition
of [0, 1] into K subintervals. Then φj =

(
Bj
(
x (n)

i
))

1≤i≤n for
1 ≤ j ≤ kn.
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Example: Regression of a Cα function

For θ ∈ Rkn , let fθ =
∑kn

j=1 θjBj .
Approximation property of the B-splines
For any α > 0, there exist Cα > 0 such that, if f ∈ Cα[0, 1],
there exists θ∞ ∈ Rkn verifying

‖f − fθ∞‖∞ ≤ Cαk−αn ‖f ‖α.

A norm ‖f ‖n =
√

1
n
∑n

i=1 |f (xi )|2 is associated to the design(
x (n)

i
)

n≥1,1≤i≤n. The design is supposed to be sufficiently
regular, so that there exist positive constants C1 and C2 such
that, as n increases, whatever θ ∈ Rkn ,

C1
n
kn
‖θ‖2 ≤ θT ΦT Φθ ≤ C2

n
kn
‖θ‖2.
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With an isotropic Gaussian prior

Theorem
Let W = N

(
0, τ2

n Σ
)
. Assume that σn = o(τn),

‖F0‖ = o(τ2
n/σn) and kn = o(τ4

n/σ
4
n). Then

E
∥∥∥W (dF |Y )−N

(
Y〈φ〉, σ2

nΣ
)∥∥∥

TV
→ 0 as n→∞.

Example: Regression of a bounded function f , with constant
noise σ2. The Bernstein-von Mises theorem holds as soon as
n1/4 = o(τn).
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Application to the Gaussian Sequence Model

Proposition
Suppose that

∑kn
j=1(θ0

j )2 is bounded. Let W = N
(
0, τ2

n Ikn

)
with n−1/4 = o(τn). Then, whatever kn ≤ n,

E
∥∥∥∥W (dF |Y )−N

(
Y〈φ〉,

1
n Ikn

)∥∥∥∥
TV
→ 0 as n→∞.

Let β > 0, and suppose further that
∑∞

j=1 |α0
j |2j2β <∞. Let

kn be of order n1/(1+2β).
Then the convergence rate of F towards α0 is n−β/(1+2β): for
every λn →∞,

E
[
W
(
‖F − α0‖ ≥ λnn−β/(1+2β)

∣∣∣Y )]→ 0.
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With a smooth prior

Theorem
Suppose that there exists a sequence (Mn)n≥1 such that

1 sup
‖Φh‖2≤σ2

nMn,‖Φg‖2≤σ2
nMn

w(θ0 + h)

w(θ0 + g)
→ 1 as n→∞.

2 kn ln kn = o(Mn)

3 max

0, ln

√
det(ΦT Φ)

σknn w(θ0)

 = o(Mn)

Then

E
∥∥∥W (dF |Y )−N

(
Y〈φ〉, σ2

nΣ
)∥∥∥

TV
→ 0 as n→∞.
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Application to Cα functions

Proposition
Assume that f is bounded. Let W̃ = N

(
0, τ2

n Ikn

)
be the prior

on the spline coefficients, with the sequence τn verifying
k2

n ln n
n = o(τ2

n ) and k3
n ln n

n = o(τ4
n ). Then

E
∥∥∥W̃ (dθ|Y )−N

(
θY , σ

2(ΦT Φ)−1
)∥∥∥

TV
→ 0.

Let α > 0, and suppose further that f is Cα and kn is of order
n1/(1+2α). Then the conditions reduce to n

2−2α
1+2α ln n = o(τ4

n )
and, if this holds, the posterior concentrates at the minimax
rate n−α/(1+2α) relative to ‖ · ‖n: for every λn →∞,

E
[
W̃
(
‖fθ − f ‖n ≥ λnn−α/(1+2α)

∣∣∣Y )]→ 0.
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Linear functionals

Consider the estimation a linear functional GF0 of F0.

Corollary
Let p ≥ 1 fixed, and G be a Rp × Rn-matrix. Suppose that the
conditions of either Theorem 1 or Theorem 2 are verified. Then

E
∥∥∥W (d(GF )|Y )−N

(
GY〈φ〉, σ2

nGΣGT
)∥∥∥

TV
→ 0 as n→∞.

Further, the distribution of GY〈φ〉 is N
(
GF〈φ〉, σ2

nGΣGT
)
.

Bias GF0 − GF〈φ〉?
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Smooth functionals: conditions

Let p ≥ 1 fixed, and G : Rn 7→ Rp be C2. For any F ∈ 〈φ〉 and
a > 0, let

BF (a) = sup
h∈〈φ〉:‖h‖2≤σ2

na
sup

0≤t≤1

∥∥∥D2
F+thG(h, h)

∥∥∥
and

ΓF = σ2
nĠF ΣĠT

F .

Suppose that ΓF〈φ〉 is nonsingular, and that there exists a
sequence (Mn)n≥1 such that kn = o(Mn) and

B2
F〈φ〉(Mn) = o

(∥∥∥Γ−1
F〈φ〉

∥∥∥−1
)
.

Suppose further that the conditions of either Theorem 1 or
Theorem 2 (with the same sequence Mn) are verified.
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Smooth functionals: the Bernstein-von Mises
theorem

Theorem
Then, for any b ∈ Rp,

E

sup
I∈I

∣∣∣∣∣∣W
 bT

(
G(F )− G(Y〈φ〉)

)
√
bT ΓF〈φ〉b

∈ I

∣∣∣∣∣∣Y
− ψ(I)

∣∣∣∣∣∣
→ 0

where I is the collection of all intervals in R, and for any
I ∈ I, ψ(I) = P(Z ∈ I) if Z ∼ N (0, 1).
Under the same conditions,

sup
I∈I

∣∣∣∣∣∣P
bT

(
G(Y〈φ〉)− G(F〈φ〉)

)
√
bT ΓF〈φ〉b

∈ I

− ψ(I)

∣∣∣∣∣∣→ 0.
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The Gaussian Sequence Model: `2 norm of α0

Proposition
Let β > 1/2 and suppose that

∑∞
j=1 |α0

j |2j2β <∞. Let
W = N

(
0, τ2

n Ikn

)
with n−1/4 = o(τn). Then, for any choice of

kn such that kn = o(
√
n) and

√
n = o(k2β

n ),

E
[
supI∈I

∣∣∣∣W ( √
n(‖F‖2−‖Y〈φ〉‖2)

2‖α0‖ ∈ I
∣∣∣∣Y)− ψ(I)

∣∣∣∣]→ 0

and
√

n(‖Y〈φ〉‖2−‖F〈φ〉‖2)
2‖α0‖

(d)−→ N (0, 1). Further,
√

n(‖F〈φ〉‖2−‖α0‖2)
2‖α0‖ = o(1).

In particular the choice kn =
√
n/ ln n is adaptive in β.
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