Statistics and learning

Monte Carlo Markov Chains (methods)

Emmanuel Rachelson and Matthieu Vignes

ISAE SupAero

22nd March 2013

Why, what ?

▶ An old experiment that conceived the idea of Monte Carlo methods is that of "Buffon's needle": you throw a l-length needle on a flat surface made of parallel lines with spacing D (> l). Under ideal conditions, P(needle crosses one of the lines) = $\frac{2l}{\pi D}$. → Estimation of π thanks to a large number of thrown needles:

$$\pi = \lim_{n \to \infty} \frac{2l}{P_n D},$$

where P_n is the proportion of crosses in n such throws.

Why, what ?

▶ An old experiment that conceived the idea of Monte Carlo methods is that of "Buffon's needle": you throw a l-length needle on a flat surface made of parallel lines with spacing D (> l). Under ideal conditions, P(needle crosses one of the lines) = $\frac{2l}{\pi D}$. → Estimation of π thanks to a large number of thrown needles:

$$\pi = \lim_{n \to \infty} \frac{2l}{P_n D},$$

where P_n is the proportion of crosses in n such throws.

► Basic concept here is that of **simulating random processes** in order to help **evaluate some quantities of interest**.

Why, what ?

▶ An old experiment that conceived the idea of Monte Carlo methods is that of "Buffon's needle": you throw a l-length needle on a flat surface made of parallel lines with spacing D (> l). Under ideal conditions, P(needle crosses one of the lines) = $\frac{2l}{\pi D}$. → Estimation of π thanks to a large number of thrown needles:

$$\pi = \lim_{n \to \infty} \frac{2l}{P_n D},$$

where P_n is the proportion of crosses in n such throws.

- Basic concept here is that of simulating random processes in order to help evaluate some quantities of interest.
- ► First intensive use during WW II in order to make a good use of computing facilities (ENIAC): neutron random diffusion for atomic bomb design and the estimation of eigenvalues in the Schrödinger equation. Intensively developed by (statistical) physicists.

2013

Why, what ?

▶ An old experiment that conceived the idea of Monte Carlo methods is that of "Buffon's needle": you throw a l-length needle on a flat surface made of parallel lines with spacing D (> l). Under ideal conditions, P(needle crosses one of the lines) = $\frac{2l}{\pi D}$. → Estimation of π thanks to a large number of thrown needles:

$$\pi = \lim_{n \to \infty} \frac{2l}{P_n D},$$

where P_n is the proportion of crosses in n such throws.

- ▶ Basic concept here is that of **simulating random processes** in order to help **evaluate some quantities of interest**.
- ► First intensive use during WW II in order to make a good use of computing facilities (ENIAC): neutron random diffusion for atomic bomb design and the estimation of eigenvalues in the Schrödinger equation. Intensively developed by (statistical) physicists.
- ightharpoonup main interest when no closed form of solutions is tractable.

Typical problems

1. Integral computation

$$I = \int h(x)f(x)dx,$$

can be assimilated to a $E_f[h]$ if f is a density distribution. To be written $\int h(x) \frac{f(x)}{g(x)} g(x) dx = E_g[hf/g]$, if f was not a density distribution and $\operatorname{Supp}(f) \subset \operatorname{Supp}(g)$.

Typical problems

1. Integral computation

$$I = \int h(x)f(x)dx,$$

can be assimilated to a $E_f[h]$ if f is a density distribution. To be written $\int h(x) \frac{f(x)}{g(x)} g(x) dx = E_g[hf/g]$, if f was not a density distribution and $\operatorname{Supp}(f) \subset \operatorname{Supp}(g)$.

2. Optimisation

$$\max_{x \ in \mathcal{X}} f(x)$$
 or $\operatorname{argmax}_{x \ in X} f(x)$

 $(\min can replace max)$

3 / 19

► Essential part in many scientific problems: computation of

$$I = \int_D f(x)dx.$$

► Essential part in many scientific problems: computation of

$$I = \int_D f(x)dx.$$

▶ If we can draw iid random samples from D, we can compute $\hat{I_n} = \sum_j (f(x^{(j)}))/n$ and LLN says: $\lim_n \hat{I_n} = I$ with probability 1 and CLT give convergence rate:

$$\sqrt{n}(\hat{I}_n - I) \to \mathcal{N}(O, \sigma^2),$$

where $\sigma^2 = \text{var}(g(x))$.

► Essential part in many scientific problems: computation of

$$I = \int_D f(x)dx.$$

▶ If we can draw iid random samples from D, we can compute $\hat{I_n} = \sum_j (f(x^{(j)}))/n$ and LLN says: $\lim_n \hat{I_n} = I$ with probability 1 and CLT give convergence rate:

$$\sqrt{n}(\hat{I}_n - I) \to \mathcal{N}(O, \sigma^2),$$

where $\sigma^2 = \text{var}(g(x))$.

▶ In dimension 1, Riemann's approximation give a $\mathcal{O}(1/n)$ error rate. But deterministc methods fail when dimensionality increases.

► Essential part in many scientific problems: computation of

$$I = \int_D f(x)dx.$$

▶ If we can draw iid random samples from D, we can compute $\hat{I_n} = \sum_j (f(x^{(j)}))/n$ and LLN says: $\lim_n \hat{I_n} = I$ with probability 1 and CLT give convergence rate:

$$\sqrt{n}(\hat{I}_n - I) \to \mathcal{N}(O, \sigma^2),$$

where $\sigma^2 = \text{var}(g(x))$.

- ▶ In dimension 1, Riemann's approximation give a $\mathcal{O}(1/n)$ error rate. But deterministc methods fail when dimensionality increases.
- ▶ However, no free lunch theorem: in high-dimensional D, (i) $\sigma^2 \approx$ how uniform g is can be quite large and (ii) issue to produce uniformly distributed sample in D.

4 / 19

► Essential part in many scientific problems: computation of

$$I = \int_D f(x)dx.$$

▶ If we can draw iid random samples from D, we can compute $\hat{I_n} = \sum_j (f(x^{(j)}))/n$ and LLN says: $\lim_n \hat{I_n} = I$ with probability 1 and CLT give convergence rate:

$$\sqrt{n}(\hat{I}_n - I) \to \mathcal{N}(O, \sigma^2),$$

where $\sigma^2 = \text{var}(g(x))$.

- ▶ In dimension 1, Riemann's approximation give a $\mathcal{O}(1/n)$ error rate. But deterministc methods fail when dimensionality increases.
- ▶ However, no free lunch theorem: in high-dimensional D, (i) $\sigma^2 \approx$ how uniform g is can be quite large and (ii) issue to produce uniformly distributed sample in D.
- ▶ Again, **importance sampling** theoretically solves this but the choice of sample distribution is a challenge.

a classical Monte Carlo approach

If we try to evaluate $I=\int f(x)g(x)dx,$ where g is a density function: $I=E_{g}[f]$ and then:

a classical Monte Carlo approach

If we try to evaluate $I=\int f(x)g(x)dx$, where g is a density function: $I=E_g[f]$ and then:

classical Monte Carlo method

$$\hat{I}_n = 1/n \sum_{i=1}^n f(x_i)$$
, where $x_i \sim \mathcal{L}(f)$.

a classical Monte Carlo approach

If we try to evaluate $I=\int f(x)g(x)dx$, where g is a density function: $I=E_g[f]$ and then:

classical Monte Carlo method

$$\hat{I}_n = 1/n \sum_{i=1}^n f(x_i)$$
, where $x_i \sim \mathcal{L}(f)$.

Justified by LLN & CLT if $\int f^2 g < \infty$.

no density at first

If f is not a density (or not a "good" one), then for any density g whose support contains the support of f: $I=\int h(x)\frac{f(x)}{g(x)}g(x)dx=E_g[hf/g].$ Similarly:

no density at first

If f is not a density (or not a "good" one), then for any density g whose support contains the support of f: $I=\int h(x)\frac{f(x)}{g(x)}g(x)dx=E_g[hf/g].$ Similarly:

importance sampling Monte Carlo method

$$\hat{I}_n = 1/n \sum_{i=1}^n h(y_i) f(y_i) / g(y_i)$$
, where $y_i \sim \mathcal{L}(g)$.

no density at first

If f is not a density (or not a "good" one), then for any density g whose support contains the support of f: $I=\int h(x)\frac{f(x)}{g(x)}g(x)dx=E_g[hf/g].$ Similarly:

importance sampling Monte Carlo method

$$\hat{I}_n = 1/n \sum_{i=1}^n h(y_i) f(y_i) / g(y_i)$$
, where $y_i \sim \mathcal{L}(g)$.

Same justification but $\int h^2 f^2/g < \infty$. This is equivalent to $\mathrm{Var}_g(I_n) = \mathrm{Var}_g(1/n \sum_{i=1}^n h(Y_i) f(Y_i)/g(Y_i)); \ g$ must have an heavier tail than that of f. **Choice of** g ?

no density at first

If f is not a density (or not a "good" one), then for any density g whose support contains the support of f: $I=\int h(x)\frac{f(x)}{g(x)}g(x)dx=E_g[hf/g].$ Similarly:

importance sampling Monte Carlo method

$$\hat{I}_n = 1/n \sum_{i=1}^n h(y_i) f(y_i) / g(y_i)$$
, where $y_i \sim \mathcal{L}(g)$.

Same justification but $\int h^2 f^2/g < \infty$. This is equivalent to $\mathrm{Var}_g(I_n) = \mathrm{Var}_g(1/n \sum_{i=1}^n h(Y_i) f(Y_i)/g(Y_i)); \ g$ must have an heavier tail than that of f. **Choice of** g?

Theorem (Rubinstein)

The density g^* which minimises $Var(\hat{I}_n)$ (for all n) is

$$g^*(x) = \frac{|h(x)|f(x)}{\int |h(y)|f(y)dy}.$$

 \blacktriangleright was this optimal g^* really useful ? Remember the denominator (if h>0) ?

- ▶ was this optimal g^* really useful ? Remember the denominator (if h>0) ?
- ▶ In practice, we choose g such that $Var(\hat{I}_n) < \infty$ and $|h|f/g \simeq C$.

- \blacktriangleright was this optimal g^* really useful ? Remember the denominator (if h>0) ?
- ▶ In practice, we choose g such that $Var(\hat{I}_n) < \infty$ and $|h|f/g \simeq C$.
- ▶ If g is known up to a constant, the estimator $1/n\sum_{i=1}^n h(y_i)f(y_i)/g(y_i)/\sum_{i=1}^n f(y_i)/g(y_i)$ can replace I_n .

- ▶ was this optimal g^* really useful ? Remember the denominator (if h>0) ?
- ▶ In practice, we choose g such that $Var(\hat{I}_n) < \infty$ and $|h|f/g \simeq C$.
- ▶ If g is known up to a constant, the estimator $1/n\sum_{i=1}^n h(y_i)f(y_i)/g(y_i)/\sum_{i=1}^n f(y_i)/g(y_i)$ can replace I_n .
- ▶ BUT the optimality of g cannot give any clue on the variance of this estimator...

▶ Goal: $\max_{x \in \mathcal{X}} f(x)$ or $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$.

- ▶ Goal: $\max_{x \in \mathcal{X}} f(x)$ or $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$.
- ▶ Very simple part 1: if \mathcal{X} is bounded, take $(x_i) \sim \mathcal{U}(\mathcal{X})$ and estimate the \max by $\max_{i=1...n} f(x_i)$. If \mathcal{X} is not bounded, use an adequate variable transformation.

- ▶ Goal: $\max_{x \in \mathcal{X}} f(x)$ or $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$.
- ▶ Very simple part 1: if \mathcal{X} is bounded, take $(x_i) \sim \mathcal{U}(\mathcal{X})$ and estimate the \max by $\max_{i=1...n} f(x_i)$. If \mathcal{X} is not bounded, use an adequate variable transformation.
- ▶ Very simple part 2: if $f \geq 0$, estimate $\mathop{\mathrm{argmax}}_{x \in \mathcal{X}} f(x)$ boils down to estimating the mode of the distribution with density $f/\int f$. Recipe becomes: take $(x_i) \sim \mathcal{L}(f/\int f)$, the estimator is the mode of the histogram of the x_i 's. If $f \ngeq 0$, then work with $g(x) = \exp\left[f(x)\right]$ or $g(x) = \frac{\exp\left[f(x)\right]}{1 + \exp\left[f(x)\right]}$.

- ▶ Goal: $\max_{x \in \mathcal{X}} f(x)$ or $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$.
- ▶ Very simple part 1: if \mathcal{X} is bounded, take $(x_i) \sim \mathcal{U}(\mathcal{X})$ and estimate the \max by $\max_{i=1...n} f(x_i)$. If \mathcal{X} is not bounded, use an adequate variable transformation.
- ▶ Very simple part 2: if $f \geq 0$, estimate $rgmax_{x \in \mathcal{X}} f(x)$ boils down to estimating the mode of the distribution with density $f/\int f$. Recipe becomes: take $(x_i) \sim \mathcal{L}(f/\int f)$, the estimator is the mode of the histogram of the x_i 's. If $f \ngeq 0$, then work with $g(x) = \exp\left[f(x)\right]$ or $g(x) = \frac{\exp\left[f(x)\right]}{1+\exp\left[f(x)\right]}$.
- ► In the latter case, the problem is the computation of the normalisation constant !

- ▶ Goal: $\max_{x \in \mathcal{X}} f(x)$ or $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$.
- ▶ Very simple part 1: if \mathcal{X} is bounded, take $(x_i) \sim \mathcal{U}(\mathcal{X})$ and estimate the \max by $\max_{i=1...n} f(x_i)$. If \mathcal{X} is not bounded, use an adequate variable transformation.
- ▶ Very simple part 2: if $f \geq 0$, estimate $rgmax_{x \in \mathcal{X}} f(x)$ boils down to estimating the mode of the distribution with density $f/\int f$. Recipe becomes: take $(x_i) \sim \mathcal{L}(f/\int f)$, the estimator is the mode of the histogram of the x_i 's. If $f \ngeq 0$, then work with $g(x) = \exp\left[f(x)\right]$ or $g(x) = \frac{\exp\left[f(x)\right]}{1+\exp\left[f(x)\right]}$.
- ► In the latter case, the problem is the computation of the normalisation constant !

- ▶ Goal: $\max_{x \in \mathcal{X}} f(x)$ or $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$.
- ▶ Very simple part 1: if \mathcal{X} is bounded, take $(x_i) \sim \mathcal{U}(\mathcal{X})$ and estimate the \max by $\max_{i=1...n} f(x_i)$. If \mathcal{X} is not bounded, use an adequate variable transformation.
- ▶ Very simple part 2: if $f \geq 0$, estimate $rgmax_{x \in \mathcal{X}} f(x)$ boils down to estimating the mode of the distribution with density $f/\int f$. Recipe becomes: take $(x_i) \sim \mathcal{L}(f/\int f)$, the estimator is the mode of the histogram of the x_i 's. If $f \ngeq 0$, then work with $g(x) = \exp\left[f(x)\right]$ or $g(x) = \frac{\exp\left[f(x)\right]}{1+\exp\left[f(x)\right]}$.
- ► In the latter case, the problem is the computation of the normalisation constant !
- ▶ 1. Newton-Raphson like methods: MCNR (MC approximation of score integrals and Hessian matrices) or StochasticApproximationNR.

- ▶ Goal: $\max_{x \in \mathcal{X}} f(x)$ or $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$.
- ▶ Very simple part 1: if \mathcal{X} is bounded, take $(x_i) \sim \mathcal{U}(\mathcal{X})$ and estimate the \max by $\max_{i=1...n} f(x_i)$. If \mathcal{X} is not bounded, use an adequate variable transformation.
- ▶ Very simple part 2: if $f \geq 0$, estimate $rgmax_{x \in \mathcal{X}} f(x)$ boils down to estimating the mode of the distribution with density $f/\int f$. Recipe becomes: take $(x_i) \sim \mathcal{L}(f/\int f)$, the estimator is the mode of the histogram of the x_i 's. If $f \ngeq 0$, then work with $g(x) = \exp\left[f(x)\right]$ or $g(x) = \frac{\exp\left[f(x)\right]}{1+\exp\left[f(x)\right]}$.
- ► In the latter case, the problem is the computation of the normalisation constant!
- ▶ 1. Newton-Raphson like methods: MCNR (MC approximation of score integrals and Hessian matrices) or StochasticApproximationNR.
 - 2. EM-like approximations: MCEM or StochasticApproximationMC.

Numerical methods have lower computational cost in low dimension (integration) / would account for f regularity, whilst MC methods won't: no hypothesis on f nor on \mathcal{X} (optimisation).

- Numerical methods have lower computational cost in low dimension (integration) / would account for f regularity, whilst MC methods won't: no hypothesis on f nor on \mathcal{X} (optimisation).
- ► Advantage of MC methods 1 (integration): important support areas are given priority (whether the function varies a lot or its actual norm is great),

- Numerical methods have lower computational cost in low dimension (integration) / would account for f regularity, whilst MC methods won't: no hypothesis on f nor on \mathcal{X} (optimisation).
- ► Advantage of MC methods 1 (integration): important support areas are given priority (whether the function varies a lot or its actual norm is great),
- ► advantage of MC methods 2 (optimisation): local minima can be escaped and

- Numerical methods have lower computational cost in low dimension (integration) / would account for f regularity, whilst MC methods won't: no hypothesis on f nor on \mathcal{X} (optimisation).
- ► Advantage of MC methods 1 (integration): important support areas are given priority (whether the function varies a lot or its actual norm is great),
- ► advantage of MC methods 2 (optimisation): local minima can be escaped and
- ▶ advantage of MC methods 3: a straithforward extension to statistical inference (see next slide).

- Numerical methods have lower computational cost in low dimension (integration) / would account for f regularity, whilst MC methods won't: no hypothesis on f nor on \mathcal{X} (optimisation).
- ► Advantage of MC methods 1 (integration): important support areas are given priority (whether the function varies a lot or its actual norm is great),
- ► advantage of MC methods 2 (optimisation): local minima can be escaped and
- ▶ advantage of MC methods 3: a straithforward extension to statistical inference (see next slide).
- ► → ideally, a method which efficiently combines the 2 points of view sounds much cleverer...

Monte Carlo and statistical inference

Integration

- ► Expectation computation
- Estimator precision estimation
- ► Bayesian analysis
- Mixture modelling or missing data treatment

Integration

- ► Expectation computation
- Estimator precision estimation
- ▶ Bayesian analysis
- Mixture modelling or missing data treatment

Optimisation

- ► Optimisation of some criterion,
- ► MLE,
- ► same last 2 points.

Bayesian framework

Let $x = (x_i)_{i=1...n}$ a sample with density known up to parameter $\theta \in \Theta$.

- Let $x = (x_i)_{i=1...n}$ a sample with density known up to parameter $\theta \in \Theta$.
- ▶ The **Bayesian approach** treats θ as a rv with (prior) density $\pi(\theta)$.

- Let $x = (x_i)_{i=1...n}$ a sample with density known up to parameter $\theta \in \Theta$.
- ▶ The **Bayesian approach** treats θ as a rv with (prior) density $\pi(\theta)$.
- ▶ We denote by $f(x|\theta)$ the density of x conditional to θ .

- ▶ Let $x = (x_i)_{i=1...n}$ a sample with density known up to parameter $\theta \in \Theta$.
- ▶ The **Bayesian approach** treats θ as a rv with (prior) density $\pi(\theta)$.
- ▶ We denote by $f(x|\theta)$ the density of x conditional to θ .
- ▶ Bayes rule states that the posterior law is $\pi(\theta|x) = \frac{\pi(\theta)f(x|\theta)}{\int \pi(\theta)f(x|\theta)d\theta}$ (note that often, the normalising constant is not tractable).

- Let $x = (x_i)_{i=1...n}$ a sample with density known up to parameter $\theta \in \Theta$.
- ▶ The **Bayesian approach** treats θ as a rv with (prior) density $\pi(\theta)$.
- ▶ We denote by $f(x|\theta)$ the density of x conditional to θ .
- ▶ Bayes rule states that the posterior law is $\pi(\theta|x) = \frac{\pi(\theta)f(x|\theta)}{\int \pi(\theta)f(x|\theta)d\theta}$ (note that often, the normalising constant is not tractable).
- Main interests: (i) prior π permits to include prior knwoledge on parameter and (ii) natural in some applications/modelling (Markov chains, mixture modelling, breakpoint detection . . .)

in a nutshell

1. Choose a cost function $L(\theta,T(X))$ e.g. (i) $\mathbb{1}_{\theta}(T(X)\Rightarrow T^*(x)=\mathrm{argmax}_{\theta}\pi(\theta|x)\text{: optimisation problem or (ii)} \\ \parallel T(X)-\theta\parallel^2\Rightarrow T^*(x)=\int\theta\pi(\theta|x)d\theta,$

in a nutshell

- 1. Choose a cost function $L(\theta,T(X))$ e.g. (i) $\mathbb{1}_{\theta}(T(X)\Rightarrow T^*(x)=\mathrm{argmax}_{\theta}\pi(\theta|x)\text{: optimisation problem or (ii)} \\ \parallel T(X)-\theta\parallel^2\Rightarrow T^*(x)=\int\theta\pi(\theta|x)d\theta,$
- 2. Derive the average risk: $R(T) = \int_{\mathcal{X}} (\int_{\Theta} L(\theta, T(X) f(x|\theta) \pi(\theta) d\theta) dx$,

in a nutshell

- 1. Choose a cost function $L(\theta,T(X))$ e.g. (i) $\mathbb{1}_{\theta}(T(X)\Rightarrow T^*(x)=\mathrm{argmax}_{\theta}\pi(\theta|x)\text{: optimisation problem or (ii)} \\ \parallel T(X)-\theta\parallel^2\Rightarrow T^*(x)=\int\theta\pi(\theta|x)d\theta,$
- 2. Derive the average risk: $R(T)=\int_{\mathcal{X}}(\int_{\Theta}L(\theta,T(X)f(x|\theta)\pi(\theta)d\theta)dx$,
- 3. Find the Bayesian estimator $T^* = \operatorname{argmin}_T R(T)$,

in a nutshell

- 1. Choose a cost function $L(\theta,T(X))$ e.g. (i) $\mathbb{1}_{\theta}(T(X)\Rightarrow T^*(x)=\mathrm{argmax}_{\theta}\pi(\theta|x)\text{: optimisation problem or (ii)} \\ \parallel T(X)-\theta\parallel^2\Rightarrow T^*(x)=\int\theta\pi(\theta|x)d\theta,$
- 2. Derive the average risk: $R(T)=\int_{\mathcal{X}}(\int_{\Theta}L(\theta,T(X)f(x|\theta)\pi(\theta)d\theta)dx$,
- 3. Find the Bayesian estimator $T^* = \operatorname{argmin}_T R(T)$,
- 4. The generalised Bayesian estimator is $T^*(x) = \operatorname{argmin}_T \int_{\Theta} L(\theta, T(X) f(x|\theta) \pi(\theta) d\theta \text{ almost everywhere}.$

12 / 19

MCMC methods

Why? How?

Why?

Monte Carlo Markov Chain methods are used when the distribution under study cannot be simulated directly by usual techniques and/or when its density is known up to a constant.

MCMC methods

Why? How?

Why?

Monte Carlo Markov Chain methods are used when the distribution under study cannot be simulated directly by usual techniques and/or when its density is known up to a constant.

How?

An MCMC methods simulates a Markov chain $(X_i)_{i\geq 0}$ with transition kernel P. The Markov chain converges in a sense to be precised towards the distribution of interest π (**ergodicity** property)

Ergodic theorem

for homogeneous Markov chains

Theorem

Under certain conditions (recurrence and existence of an invariant distribution of example), whatever the initial distribution μ_0 for X_0 , the distribution μ_i is s.t.

$$\lim_{i o\infty}\parallel\mu_i-\pi\parallel=0$$
 and

$$1/n \sum_{i=0}^{n-1} h(X_k) \to E_{\pi}[h(X)] = \int h(x)\pi(x)dx$$
 a.s.

Ergodic theorem

for homogeneous Markov chains

Theorem

Under certain conditions (recurrence and existence of an invariant distribution of example), whatever the initial distribution μ_0 for X_0 , the distribution μ_i is s.t.

$$\lim_{i\to\infty} \parallel \mu_i - \pi \parallel = 0$$
 and

$$1/n \sum_{k=0}^{n-1} h(X_k) \to E_{\pi}[h(X)] = \int h(x)\pi(x)dx$$
 a.s.

Remarks

- $ightharpoonup (X_i)$'s are not independent but the ergodic theorem replace the LLN.
- ► Ergodic theorems exist under milder conditions and for inhomogeneous chains.

MCMC algorithms

Just like accept/reject methods or importance sampling, MCMC methods make use of an instrumental law.

This instrumental law can be caracterised by a transition kernel q(|) or by a conditional distribution.

MCMC algorithms

Just like accept/reject methods or importance sampling, MCMC methods make use of an instrumental law.

This instrumental law can be caracterised by a transition kernel q(|) or by a conditional distribution.

- ► Simulation and integration: Metropolis-Hastings algorithm or Gibbs sampling.
- ► Optimisation: simulated annealing.

Metropolis-Hastings algorithm

- ▶ Initialisation: x_0 .
- ▶ for each step $k \ge 0$:
 - 1. Simulate a value y_k from $Y_k \sim q(.|x_k)$,
 - 2. Simulate a value u_k from $U_k \sim \mathcal{U}([0,1])$,
 - 3. Update

$$x_{k+1} = \begin{cases} y_k & \text{if } u_k \le \rho(x_k, y_k) \\ x_k & \text{otherwise,} \end{cases}$$

where
$$\rho(x,y) = \min\left(1, \frac{\pi(y)q(x|y)}{\pi(x)q(y|x)}\right)$$
.

Metropolis-Hastings algorithm

- ▶ Initialisation: x_0 .
- ▶ for each step $k \ge 0$:
 - 1. Simulate a value y_k from $Y_k \sim q(.|x_k)$,
 - 2. Simulate a value u_k from $U_k \sim \mathcal{U}([0,1])$,
 - 3. Update

$$x_{k+1} = \begin{cases} y_k & \text{if } u_k \le \rho(x_k, y_k) \\ x_k & \text{otherwise,} \end{cases}$$

where
$$\rho(x,y) = \min\left(1, \frac{\pi(y)q(x|y)}{\pi(x)q(y|x)}\right)$$
.

Note that only $\pi(y)/\pi(x)$ and q(y|x)/q(x|y) ratios are needed, so no need to compute normalising constants !

Note also that while favourable move are always accepted, unfavourable move can be accepted (with a probability which decreases with the level of degradation).

2013

Simulated annealing

 $\label{eq:Goal:minimise} \mbox{Goal: minimise a real-valued function } f.$

Simulated annealing

Goal: minimise a real-valued function f.

Idea: Apply a Metropolis-Hastings algorithm to simulate the distribution $\pi(x) \propto \exp(-f(x))$ and then estimate its mode(s).

Simulated annealing

Goal: minimise a real-valued function f.

Idea: Apply a Metropolis-Hastings algorithm to simulate the distribution $\pi(x) \propto \exp(-f(x))$ and then estimate its mode(s).

Clever practical modification: the objective function is changed over the iteration:

$$\pi(x) \propto \exp\left(-f(x)/T_k\right),$$

where (T_k) is a non-increasing sequence of *temperatures*.

In practice, the temperature is high in the first iterations to explore and avoid local minima and it then starts decreasing more or less rapidly towards 0.

Simulated annealing algorithm

- ▶ Initialisation: x_0 .
- ▶ for each step $k \ge 0$:
 - 1. Simulate a value y_k from $Y_k \sim q(.|x_k)$,
 - 2. Simulate a value u_k from $U_k \sim \mathcal{U}([0,1])$,
 - 3. Update

$$x_{k+1} = \begin{cases} y_k & \text{if } u_k \le \rho(x_k, y_k) \\ x_k & \text{otherwise,} \end{cases}$$

where
$$\rho(x,y) = \min\left(1, \frac{e^{-f(y)/T_k}q(x|y)}{e^{-f(x)/T_k}q(y|x)}\right)$$
.

4. Decrease temperature $T_k \to T_{k+1}$.

This is over!

Was that clear enough? Too quick?

Some simple applications might help...