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Monte Carlo computation
Why, what ?

I An old experiment that conceived the idea of Monte Carlo methods is
that of “Buffon’s needle”: you throw a l-length needle on a flat
surface made of parallel lines with spacing D (> l). Under ideal
conditions, P(needle crosses one of the lines) = 2l

πD . → Estimation of
π thanks to a large number of thrown needles :

π = lim
n→∞

2l

PnD
,

where Pn is the proportion of crosses in n such throws.

I Basic concept here is that of simulating random processes in order
to help evaluate some quantities of interest.

I First intensive use during WW II in order to make a good use of
computing facilities (ENIAC): neutron random diffusion for atomic
bomb design and the estimation of eigenvalues in the Schrödinger
equation. Intensively developped by (statistical) physicists.

I main interest when no closed form of solutions is tractable.
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Typical problems

1. Integral computation

I =
∫
h(x)f(x)dx,

can be assimilated to a Ef [h] if f is a density distribution. To be written∫
h(x)f(x)

g(x)g(x)dx = Eg[hf/g], if f was not a density distribution and

Supp(f) ⊂ Supp(g).

2. Optimisation

maxx inX f(x) or argmaxx inXf(x)

(min can replace max)
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Need of Monte Carlo techniques: integration
I Essential part in many scientific problems: computation of

I =

∫
D
f(x)dx.

I If we can draw iid random samples from D, we can compute
În =

∑
j(f(x(j)))/n and LLN says: limn În = I with probability 1

and CLT give convergence rate:
√
n(În − I)→ N (O, σ2),

where σ2 = var(g(x)).
I In dimension 1, Riemann’s approximation give a O(1/n) error rate.

But deterministc methods fail when dimensionality increases.
I However, no free lunch theorem: in high-dimensional D, (i) σ2 ≈ how

uniform g is can be quite large and (ii) issue to produce uniformly
distributed sample in D.

I Again, importance sampling theoretically solves this but the choice
of sample distribution is a challenge.
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În =

∑
j(f(x(j)))/n and LLN says: limn În = I with probability 1
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Integration
a classical Monte Carlo approach

If we try to evaluate I =
∫
f(x)g(x)dx, where g is a density function:

I = Eg[f ] and then:

classical Monte Carlo method

În = 1/n
∑n

i=1 f(xi), where xi ∼ L(f).

Justified by LLN & CLT if
∫
f2g <∞.
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Integration
no density at first

If f is not a density (or not a “good” one), then for any density g whose

support contains the support of f : I =
∫
h(x)f(x)

g(x)g(x)dx = Eg[hf/g].
Similarly:

importance sampling Monte Carlo method

În = 1/n
∑n

i=1 h(yi)f(yi)/g(yi), where yi ∼ L(g).

Same justification but
∫
h2f2/g <∞. This is equivalent to

Varg(In) = Varg(1/n
∑n

i=1 h(Yi)f(Yi)/g(Yi)); g must have an heavier tail
than that of f . Choice of g ?

Theorem (Rubinstein)

The density g∗ which minimises Var(În) (for all n) is

g∗(x) =
|h(x)|f(x)∫
|h(y)|f(y)dy

.
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Monte Carlo integration

I was this optimal g∗ really useful ? Remember the denominator (if
h > 0) ?

I In practice, we choose g such that Var(În) <∞ and |h|f/g ' C.

I If g is known up to a constant, the estimator
1/n

∑n
i=1 h(yi)f(yi)/g(yi)/

∑n
i=1 f(yi)/g(yi) can replace In.

I BUT the optimality of g cannot give any clue on the variance of this
estimator...
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Monte Carlo for optimisation

I Goal: maxx∈X f(x) or argmaxx∈X f(x).

I Very simple part 1: if X is bounded, take (xi) ∼ U(X ) and estimate
the max by maxi=1...n f(xi). If X is not bounded, use an adequate
variable transformation.

I Very simple part 2: if f ≥ 0, estimate argmaxx∈X f(x) boils down to
estimating the mode of the distribution with density f/

∫
f . Recipe

becomes: take (xi) ∼ L(f/
∫
f), the estimator is the mode of the

histogram of the xi’s. If f � 0, then work with g(x) = exp [f(x)] or

g(x) = exp [f(x)]
1+exp [f(x)] .

I In the latter case, the problem is the computation of the
normalisation constant !

I 1. Newton-Raphson like methods: MCNR (MC approximation of score
integrals and Hessian matrices) or StochasticApproximationNR.
2. EM-like approximations: MCEM or StochasticApproximationMC.
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Monte Carlo vs numerical methods

I Numerical methods have lower computational cost in low dimension
(integration) / would account for f regularity, whilst MC methods
won’t: no hypothesis on f nor on X (optimisation).

I Advantage of MC methods 1 (integration): important support areas
are given priority (whether the function varies a lot or its actual norm
is great),

I advantage of MC methods 2 (optimisation): local minima can be
escaped and

I advantage of MC methods 3: a straithforward extension to statistical
inference (see next slide).

I → ideally, a method which efficiently combines the 2 points of view
sounds much cleverer...
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Monte Carlo and statistical inference

Integration

I Expectation computation

I Estimator precision estimation

I Bayesian analysis

I Mixture modelling or missing data treatment

Optimisation

I Optimisation of some criterion,

I MLE,

I same last 2 points.
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Monte Carle and statistical inference
Bayesian framework

I Let x = (xi)i=1...n a sample with density known up to parameter
θ ∈ Θ.

I The Bayesian approach treats θ as a rv with (prior) density π(θ).

I We denote by f(x|θ) the density of x conditional to θ.

I Bayes rule states that the posterior law is π(θ|x) = π(θ)f(x|θ)∫
π(θ)f(x|θ)dθ

(note that often, the normalising constant is not tractable).

I Main interests: (i) prior π permits to include prior knwoledge on
parameter and (ii) natural in some applications/modelling (Markov
chains, mixture modelling, breakpoint detection . . . )
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A Bayesian estimator T (X) for θ
in a nutshell

1. Choose a cost function L(θ, T (X)) e.g. (i)
1θ(T (X)⇒ T ∗(x) = argmaxθπ(θ|x): optimisation problem or (ii)
‖ T (X)− θ ‖2⇒ T ∗(x) =

∫
θπ(θ|x)dθ,

2. Derive the average risk: R(T ) =
∫
X (
∫

Θ L(θ, T (X)f(x|θ)π(θ)dθ)dx,

3. Find the Bayesian estimator T ∗ = argminTR(T ),

4. The generalised Bayesian estimator is
T ∗(x) = argminT

∫
Θ L(θ, T (X)f(x|θ)π(θ)dθ almost everywhere.

E. Rachelson & M. Vignes (ISAE) SAD 2013 12 / 19



A Bayesian estimator T (X) for θ
in a nutshell

1. Choose a cost function L(θ, T (X)) e.g. (i)
1θ(T (X)⇒ T ∗(x) = argmaxθπ(θ|x): optimisation problem or (ii)
‖ T (X)− θ ‖2⇒ T ∗(x) =

∫
θπ(θ|x)dθ,

2. Derive the average risk: R(T ) =
∫
X (
∫

Θ L(θ, T (X)f(x|θ)π(θ)dθ)dx,

3. Find the Bayesian estimator T ∗ = argminTR(T ),

4. The generalised Bayesian estimator is
T ∗(x) = argminT

∫
Θ L(θ, T (X)f(x|θ)π(θ)dθ almost everywhere.

E. Rachelson & M. Vignes (ISAE) SAD 2013 12 / 19



A Bayesian estimator T (X) for θ
in a nutshell

1. Choose a cost function L(θ, T (X)) e.g. (i)
1θ(T (X)⇒ T ∗(x) = argmaxθπ(θ|x): optimisation problem or (ii)
‖ T (X)− θ ‖2⇒ T ∗(x) =

∫
θπ(θ|x)dθ,

2. Derive the average risk: R(T ) =
∫
X (
∫

Θ L(θ, T (X)f(x|θ)π(θ)dθ)dx,

3. Find the Bayesian estimator T ∗ = argminTR(T ),

4. The generalised Bayesian estimator is
T ∗(x) = argminT

∫
Θ L(θ, T (X)f(x|θ)π(θ)dθ almost everywhere.

E. Rachelson & M. Vignes (ISAE) SAD 2013 12 / 19



A Bayesian estimator T (X) for θ
in a nutshell

1. Choose a cost function L(θ, T (X)) e.g. (i)
1θ(T (X)⇒ T ∗(x) = argmaxθπ(θ|x): optimisation problem or (ii)
‖ T (X)− θ ‖2⇒ T ∗(x) =

∫
θπ(θ|x)dθ,

2. Derive the average risk: R(T ) =
∫
X (
∫

Θ L(θ, T (X)f(x|θ)π(θ)dθ)dx,

3. Find the Bayesian estimator T ∗ = argminTR(T ),

4. The generalised Bayesian estimator is
T ∗(x) = argminT

∫
Θ L(θ, T (X)f(x|θ)π(θ)dθ almost everywhere.

E. Rachelson & M. Vignes (ISAE) SAD 2013 12 / 19



MCMC methods
Why ? How ?

Why ?

Monte Carlo Markov Chain methods are used when the distribution under
study cannot be simulated directly by usual techniques and/or when its
density is known up to a constant.

How ?

An MCMC methods simulates a Markov chain (Xi)i≥0 with transition
kernel P . The Markov chain converges in a sense to be precised towards
the distribution of interest π (ergodicity property)

E. Rachelson & M. Vignes (ISAE) SAD 2013 13 / 19



MCMC methods
Why ? How ?

Why ?

Monte Carlo Markov Chain methods are used when the distribution under
study cannot be simulated directly by usual techniques and/or when its
density is known up to a constant.

How ?

An MCMC methods simulates a Markov chain (Xi)i≥0 with transition
kernel P . The Markov chain converges in a sense to be precised towards
the distribution of interest π (ergodicity property)

E. Rachelson & M. Vignes (ISAE) SAD 2013 13 / 19



Ergodic theorem
for homogeneous Markov chains

Theorem

Under certain conditions (recurrence and existence of an invariant
distribution ofr example), whatever the initial distribution µ0 for X0, the
distribution µi is s.t.

lim
i→∞

‖ µi − π ‖= 0 and

1/n

n−1∑
i=0

h(Xk)→ Eπ[h(X)] =

∫
h(x)π(x)dx a.s.

Remarks

I (Xi)’s are not independent but the ergodic theorem replace the LLN.

I Ergodic theorems exist under milder conditions and for
inhomogeneous chains.
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MCMC algorithms

Just like accept/reject methods or importance sampling, MCMC methods
make use of an instrumental law.
This instrumental law can be caracterised by a transition kernel q(|) or by
a conditional distribution.

I Simulation and integration: Metropolis-Hastings algorithm or Gibbs
sampling.

I Optimisation: simulated annealing.
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Metropolis-Hastings algorithm

I Initialisation: x0.
I for each step k ≥ 0:

1. Simulate a value yk from Yk ∼ q(.|xk),
2. Simulate a value uk from Uk ∼ U([0, 1]),
3. Update

xk+1 =

{
yk if uk ≤ ρ(xk, yk)

xk otherwise,

where ρ(x, y) = min
(

1, π(y)q(x|y)π(x)q(y|x)

)
.

Note that only π(y)/π(x) and q(y|x)/q(x|y) ratios are needed, so no need
to compute normalising constants !
Note also that while favourable move are always accepted, unfavourable
move can be accepted (with a probability which decreases with the level of
degradation).
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Simulated annealing

Goal: minimise a real-valued function f .

Idea: Apply a Metropolis-Hastings algorithm to simulate the distribution
π(x) ∝ exp(−f(x)) and then estimate its mode(s).

Clever practical modification: the objective function is changed over the
iteration:

π(x) ∝ exp (−f(x)/Tk) ,

where (Tk) is a non-increasing sequence of temperatures.
In practice, the temperature is high in the first iterations to explore and
avoid local minima and it then starts decreasing more or less rapidly
towards 0.
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Simulated annealing algorithm

I Initialisation: x0.
I for each step k ≥ 0:

1. Simulate a value yk from Yk ∼ q(.|xk),
2. Simulate a value uk from Uk ∼ U([0, 1]),
3. Update

xk+1 =

{
yk if uk ≤ ρ(xk, yk)

xk otherwise,

where ρ(x, y) = min
(

1, e
−f(y)/Tkq(x|y)
e−f(x)/Tkq(y|x)

)
.

4. Decrease temperature Tk → Tk+1.
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This is over !
or almost

Was that clear enough ? Too quick ?

Some simple applications might help...
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