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@ Introduction
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Biological networks

Different kinds of biological interactions

Families of networks

protein-protein interactions,
metabolic pathways,

o
(]
@ regulation network,
°
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Biological networks

Different kinds of biological interactions

Families of networks [

@ regulation network, = T~
° ..

Regulation example : SOS Network E. Coli

~> Let us focus on regulatory networks
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Biological networks

Different kinds of biological interactions

Families of networks

@ regulation network,

Regulation example : SOS Network E. Coli

~ Let us focus on regulatory networks ...

and look for influence network
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Regulation

Gene expression is regulated (inhibited or activated)

by region (i.e., brain vs liver)
by development stage (i.e. fetal vs. adult)

by dynamic response to environment

by gene status (i.e. mutant vs. wild)

Lactose Operon, %—,—w

Nobel price, Jacob,

\ O
Monod et Lwoff S o ©
(1965) o “ o o

I I 1
1 7 8
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Problem

Infer the interactions between genes from microarray data

; 9

9 ©

Microarray gene expression data, J
p genes, n experiments Which ones interact/co-express? ®
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Problem

Infer the interactions between genes from microarray data

Microarray gene expression data,
p genes, n experiments Which ones interact/co-express? J

@ combinatory: 2 T possible graphs

@ dimension problem: n < p reduced to n~ p
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Problem

Infer the interactions between genes from microarray data

Microarray gene expression data,
p genes, n experiments Which ones interact/co-express? J

@ combinatory: 2 T possible graphs

@ dimension problem: n < p reduced to n~ p

Here, we reduce p to a number of fixed genes of interest
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Our ideas to tackle these issues

~> Introduce prior taking the topology of the network into account for
better edge inference

Relying on biological constraints
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Our ideas to tackle these issues

~> Introduce prior taking the topology of the network into account for
better edge inference

Relying on biological constraints

@ few genes effectively interact (sparsity),
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Our ideas to tackle these issues

~> Introduce prior taking the topology of the network into account for
better edge inference

Relying on biological constraints

@ few genes effectively interact (sparsity),

@ networks are organized (latent structure or Missing variables).
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Outline

© Gaussian graphical models
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Gaussian graphical models

General settings

The Gaussian model

o Let X € RP be a random vector such as X ~ N (0,, X);

o let (X1,...,X") be an i.i.d. size—n sample (e.g., microarray
experiments);

o let X be a n x p matrix such as (X¥)T is the kth row of X;

o let K= (Kjj)(ijjep? := T ! be the concentration matrix.
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Gaussian graphical models

General settings

The Gaussian model

@ Let X € RP be a random vector such as X ~ N(0,, X);

o let (X1,...,X") be an i.i.d. size—n sample (e.g., microarray
experiments);

o let X be a n x p matrix such as (X¥)T is the kth row of X;

o let K = (Kjj)(ijyep? = T ! be the concentration matrix.

v

The graphical interpretation

Xi 1L XJ’Xfp\{,’J} = K,'J' =0<& edge (i,j) §7_f network,

since r,-J-|p\{,-J} = _K"j/'\/Kiinj.

~ K describes the graph of conditional dependencies.
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Gaussian graphical models

Example

Xi 2 1 -1
X=|(Xx], y=|1 15 -05
X3 -1 -05 15

1 —05 05
K=x1=(-05 1 0], G =

0.5 0 1 @ @

e Underlying graph G = (V,E), V ={1,...,p}
o The edge {i,j} isin E if Kj # 0

Inferring G < inferring the support of K.
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Inference of K

Estimate K from data

@ Maximum likelihood estimator:

KMLE  — arg max log det(K) — tr(KX,)
K

o M

v

Hypothesis on the structure of the support of K

@ Penalized Log-likelihood

@ Tree hypothesis

.
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GGMs and regression

Network inference as p independent regression problems

One may use p different linear regressions

X = (X\,-)Ta + €, where o = —Kj;/Kjj,
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GGMs and regression

Network inference as p independent regression problems

One may use p different linear regressions

X = (X\,-)Ta + €, where o = —Kj;/Kjj,

Meinshausen and Biilhman's approach (06)

Solve p independent Lasso problems (/;—norm enforces sparsity):
I 1 2
a = arg mm; ||X,- = X\;ozH2 +p ||04||g1 ,
(0%

where X; is the ith column of X, and X\,- is the full matrix with ith
column removed.
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GGMs and regression

Network inference as p independent regression problems

One may use p different linear regressions

X = (X\,-)Ta + €, where o = —Kj;/Kjj,

Meinshausen and Biilhman's approach (06)

Solve p independent Lasso problems (/;—norm enforces sparsity):
I 1 2
a = arg mm; ||X,- = X\;ozH2 +p ||04||g1 ,
(0%

where X; is the ith column of X, and X\,- is the full matrix with ith
column removed.

Major drawback: need of a symmetrization step to obtain a final estimate
of K.
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GGMs and Lasso

Solving p penalized regressions < maximize the penalized pseudo-likelihood

Consider the approximation P(X) = [7_; P(Xj|X\;).

The solution to

K = arg max log £(X; K) + p IKll,, ; (2)
K, K #Kii
with 5
LK) =D (Z log P(X/|X{; K,-)),
i=1 k=1

shares the same null-entries as the solution of the p independent penalized
regressions.

v
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GGMs and Lasso

Solving p penalized regressions < maximize the penalized pseudo-likelihood
Consider the approximation P(X) = [7_; P(Xj|X\;).

Proposition

The solution to

K = arg max log £(X; K) + p IKll,, ; (2)
K, K #Kii
with 5
LK) =D (Z log P(X/|X{; K,-)),
i=1 k=1

shares the same null-entries as the solution of the p independent penalized
regressions.

v

~ Those p terms are not independent, as K is not diagonal !
~ Still requires the post-symmetrization
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GGMs and penalized likelihood

The penalized likelihood of the Gaussian observations [Banerjee et al.,
2008]

Use a penalty term

n
5 (log det(K) — Tr(S,K)) — ol K]z,

where S, is the empirical covariance matrix.

Natural generalization

Use different penalty parameters for different coefficients

(log det(K) — Tr(S,K)) — [lpz(K) I,

NS

where pz(K) = (pz,z(Kij))i; is a penalty function depending on an
unknown underlying structure Z.

4
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GGMs and Tree structure

The graph is a tree
@ Chow-Liu algorithm (1968)
Input %,

Output FeL geL

Y L - arg max log(P(X; T))
T arbre —_———— 3)
gijyees 1(XX)+C

@ Estimation of mutual information 7(X;, X;)

@ Maximal Spanning Tree relative to weights Figure 1: Tree
/(Xf7)<.i)

y
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Outline

© GGM with missing variables
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Effect of the missing variables

@ Non measured variables
@ Experimental conditions

Figure 2: Covariance matrix. WGCNA data - 200 genes
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Effect of the missing variables

Missing variables

@ Missing variables involved in the process of interest but not measured

° gz({1,...,p,p—|—1,...,p—|—r},E), gm:({l,.--,p},Em)
@ Problem: inference of G,,, G

X2
Xo) _ | | /?\ o <)
Xy 3 Q ® marginalisation $
X3 @\ T Ty
Xs

o)

@ Apparition of cliques

O = Observed, H = Hidden
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Effect of the missing variables

®/?\® ®<®
@\ marginalization é}

—e 7
)
Koo KOH> <Zoo Z0H>
: K = z =
g <KHO K 2HO X HH
—_———

arétes de E

Gm : Km = Koo — KonKpKno Zm =Yoo

arétes de E,
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Consequences

e [Chandrasekaran et al., 2012] G, is not sparse

o @ s . ® .
S . T
® 0
@ ©
e 0 ® J
® e
(a) Full graph (b) Marginal graph

Consequences on interpretation + on quality of inference
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|dentifiability

General conditions in sparse plus low-rank model [Chandrasekaran

et al., 2012]

© Support of the low-rank matrix KOHKEIKHO not sparse

e a small number of hidden variables are connected to many observed
variables

@ Kp cannot have a low-rank structure

@ Typically Graph structures with a small number of central hidden
variables (hubs)
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|dentifiability

@ maximal cliques of a tree are of size two.

@ marginalizing a hidden variable produces a clique of size strictly more
than two

Tree Structure ldentifiability conditions [Choi et al., 2011]

© Every hidden variable has at least 3 children
@ No edge between two hidden variables

© No edge has weight 0 or oo (connected nodes are neither independent
nor completely dependent)
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Tree case

G (red/black) tree

2,
 plin,

©)
®
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Inference with sparsity penalty

Latent variable selection via convex optimization [Chandrasekaran

et al., 2012]

@ control the number of latent variables by penalizing the rank of the
matrix L

EM algorithm with Glasso [Lauritzen and Meinshausen, 2012]

Parameters: K = <K00 K0H> Y= <ZOO Z0H>

KHO KHH ZHO ZHH

E-step: EXH|XO;Kt[IC(XH7XO)] = EXH|XO;Kt[IOg det(Kt) — tI’(KtZ)]

M-step: K1 = arg max log det(K*) — tr(K'Ex,,|xo:x¢[X]) + A || Kbo|
K

graphical lasso
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Inference with tree assumption

Recursive Grouping [Choi et al., 2011]

@ building of a latent tree from data in the gaussian case

@ heuristic based on the so-called information distances

.

EM with Chow-Liu M step

o Idea of [Lauritzen and Meinshausen, 2012] replacing Glasso with
Chow-liu

@ Highly contrained structure

26 /52 Robin, Ambroise, Robin GGM Inference via latent tree aggregation



Outline

@ EM with aggregation of spanning trees
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Escaping the Tree constraint

Tree as a random variable [Schwaller and Robin, 2015]
mj = P({i,j} € Er).

The edges of T are drawn independently such that

P(Myoc [ w4 (4)

{ij}eEr

v

Missing variable structure

We further assume the existence of a full symmetric positive definite matrix
K — [ Ko Kon
Kno Ku

of which we want to infer the coefficients.

.
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Escaping the Tree constraint

Mixture of trees

(Xo, Xy) is a mixture of centered Gaussian distributions with respective
precision matrices Kr:

(X0, Xu) ~ Y p(T)N(Xo, Xu; 0, K71)
TeT

Conditionally to a Tree

| A

For every T € T we define the matrix K7 such that for
(L)ef{l,....,p,p+1,...;p+r}x{1l,....,p,p+1,....,p+r}

k.. | Ki if{ij} e Er
Ti=Y 0 otherwise

.

@ T and Xpy are both latent variables.
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Some conditional distributions

Joint conditional distribution of T and Xy given Xp

P(T, Xu|Xo) = P(T|Xo)P(Xu|Xo, T).
with

P(XulXo, T) = N(uHio,1: KHjo,T) (5)

@ and
P(T|Xo) o< P(T)P(Xol|T)
det(K7.m)2 n
o< | [ mi (2T’M)GXP(2“(KT,MZO)),

{iJ}€ET N (ﬂ)7 A Y

(6)
where Kty = K10 — KT7OH(KT7H)_1KT,HO. Terms (1) and (2)
can be expressed as products over the edges of T.
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EM algorithm

Maximizing the log-likelihood of the observed data log p(Xo; K) with
respect to the parameter K, alternating two steps:

E-step: Evaluation of all the conditional moments involved in the the
conditional expectation of the so-called complete likelihood
with the current value K" of the parameter, namely:

Ex,,, T1x0:x» [log p(Xo, Xu, T; K)]; (7)

M-step: Maximization of (7) with respect to K to update K" into
Kh+1,
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The conditional expectation of the complete likelihood writes

IE"T|X0;K’7 (]EXH‘XO»T log p(Xo, Xu, T; K))
= Erpxgincr (108 () + Exy xo, 7100 108 p(X0, Xia| T K] )

Thanks to the tree structure of the graphical model, we have a simple
form for the latter term:

EXHIXo,T;K" [|Og p(XO,XH’ T: K)] = Z Pij(K)
{ijteT
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Combined with p(T) o< []y; 7 mjj and with the conditional distribution
of T, p(T|Xo; K") o et Vi

Ex,, Tixo;k" 108 P(X0, Xu, T; K)

o > T ke ] | D2 logmi+ pii(K)

T {kt}eT {ij}eT

where the normalizing constant does depend on K" but not on K. Hence,
at the M-step we need to maximize wrt K

Sl TL ke | | Do pilK)| =D Ay pi(K) (8)

T {kL}eT {ij}eT i<j

where all Aj =3 7.1 et (H{k’g}eTv,’&) can be computed in
O((p + r)?) using the matrix tree theorem.
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Edge probability

Edge probability
We need to compute the probability for an edge to be part of the tree
given Xo

a =Pk I} € T[Xo)=1— > P(T|Xo). (9)
T:{k,/}¢ET

This probability can be computed for all edges at a time in O((p + r)3)
thanks to Matrix Tree Theorem )
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Model Selection

Maximum Log Likelihood

~

log p(Xo; K)

can be computed as

Ellog p(Xo, X1, T)|Xo; K] + H(Xu, T|Xo, K)

A,

BIC
a standard BIC criterion can be defined as

o~

BIC(r) = log p(Xo; K) — pen(r)

where

2 2

pen(r) = (p(p—i—l) +rp+ r> Iogn' (10)
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Model Selection (2)

ICL1(r) = log p(Xo; K) — H(T|Xo) — pen(r)

In situations where a reliable prediction of the hidden node Xy is of
interest,

~

ICLT x,,(r) = log p(Xo; K) — H(T, Xn|X0) — pen(r).
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Outline

© Experiments - simulations and flow cytometry data
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Simulated data

o Graphs of size p = 50: tree, Erdés (7 = 0.1), one Hub with Erdos

@ Samples of size n = 200

(a) Tree (b) Tree (marg.)
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Simulated data

(a) Erdoés (b) Erdds (marg.)
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Simulated data

(a) Erdds with Hub

Robin, Ambroise, Robin

(b) Erdds with Hub (marg.)

o = =
GGM Inference via latent tree aggregation



Real data

o Raf network (regulation of cellular proliferation)

@ Flow cytometry
e p=11, n=100

(a) Full graph

Robin, Ambroise, Robin

(b) Marginal graph
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Experiments

Compared methods

@ Chow-Liu

@ Recursive Grouping

@ Glasso (Meinshausen & Biihlmann approximation)
EM-Glasso

EM-Chow-Liu

EM-aggregation

Evaluation criterion
TP FP
— — _ FDR= ——
FN + TP’ FP + TP

power =

A,
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Results
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(a) Full graph estimation with
the Hub Erdos Data
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EM-trees

RS

100 e
7
‘
o R
PEETI 42
++ x *
‘ «
I
3
«

or 5

;

3

L
os0-

+

¥
0zs

4

*
0.00—4-

050 03 030 ors 100

(b) Conditional graph estimation
with the Hub Erdos Data
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Results
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Results

100~ 2

0.00-

00 02 04

(a) Full graph estimation with
the Erdos Data

A Chow-Liu
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(b) Conditional graph estimation
with the Erdos Data
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Model Selection for Erdos data

. B ICL Tree
| BIC
@ ICL Tree & hidden

-2800
1
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1 1
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T T T T
0 1 2 3

number of hidden nodes

Figure 11: Existence of missing nodes
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Flow cytometry
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Figure 12: cytometryPrecision-Recall curves for graph inference results on flow cy-
tometry data. Full graph (left) and Conditional graph (right)

Robin, Ambroise, Robin GGM Inference via latent tree aggregation




Model Selection for Flow cytometry

o m ICL Tree
= BIC
[ ] &= ICL Tree & hidden
3 |
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Figure 13: Existence of missing nodes
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Perspectives

Improving on the initialization

@ Hierarchical classification

Developing R package

Extension to

e Count data (non Gaussian) via Poisson Log-Normal
e Temporal data (Dependence between samples)

@ Covariates
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Initialisation

-45.70 -45.65 -45.60 -45.55

T T
0 5000 10000 15000

Figure 14: Vraisemblance des observations pour chaque triplet possible
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Initialisation

o

0

S
Qo

8% & FRIVLSD &%

Figure 15: Classification hiérarchique au max du BIC
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