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Abstract. In environmental management problems, decision should ide-
ally rely on knowledge of the whole system. However, due to limited
budget, in practice only a small part of the system is sampled and the
complete system state is reconstructed from the sampled observations. In
this article we consider the situation where the biological system under
study is structured and can be modeled as a graphical model. Optimal
sampling in such models still raises some methodological questions, like
adaptive sampling, or the measure of the quality of a sample in terms of
quality of reconstruction. Here, we present a way to formalise these two
questions. The sample is chosen as the one which maximises the expected
utility of information brought by the observations minus the sample cost.
The utily is derived from the notion of Maximum a Posteriori. This prob-
lem is known to be NP-hard. We present how to modelit as a Markov

decision process in order to build approximate solution methods based
on Reinforcement Learning.

1 Introduction

In many environmental management problems, decision should ideally rely on
knowledge of the whole state of the system. For instance, for weeds management
in an agricultural area, occurence maps of the different species is helpful for
controling their spread. In most cases constructing such maps is difficult because
it is too expensive to explore the whole area to map. Another example is the
control of an epidemics on a social network. Usually, observations are available
only for a sample of the population. A good sample must reach a trade-off
between quality of the reconstruction of the whole system and sample cost.
In this paper we present preliminary work on the question of optimal sampling
in a structured system. This question is classically studied in statistics [4], [2]
and computer science [1], [3] communities. Still some issues remain open, like
the quantification of the information brought by the sampled observations when
the objective is the reconstruction of the whole system, or the modeling and
resolution of optimal adaptive sampling. In adaptive sampling, the set of sampled
sites is not chosen once and for all. Sample is sequential and observations from



previous sample steps are taken into account to select the next sites to explore.
We consider here the situation where the system can be modeled as a graphical
model. First, we present a formalisation of the problem of optimal sequential
sampling based on the Maximum A Posteriori criterion to measure the quality
of a sample. Then we propose a modelisation of the problem as a Markov decision

process [6]. This will enable us to build approximate solution methods based on
Reinforcement Learning [7].

2 Optimal adaptive sampling in graphical models

Let us consider a non directed graphical model (or Markov random field) on
a set X = (X1, . . . , Xn) of discrete random variables taking values in Ωn =
{1, . . . , K}n. The model is defined by a graph G = (V, E) where V = {1, . . . , n}
and E ∈ V 2, and by a set of potential functions Ψc, defined on the cliques of
G and parametrised by θ1. Then the joint distribution of X can be factorised
as P(X = x | θ) ∝

∏

c∈C
Ψc(xc, θ), where C is the set of cliques of V and

xc =
(

xi

)

i∈c
.

Our goal is to reconstruct the vector X on a specified subset R ⊆ V . We can
acquire observations only on a subset O ⊆ V such that R ∪ O = V . The in-
tersection between O and R can be non empty. The problem is to select a set
of sites A ⊆ O, named a sample, where X will be observed in order to build a
“good”reconstruction of XR. The sample choice procedure will also take sam-
pling costs into account. An example of sampling for weeds occurrence map
reconstruction is illustrated on Figure 1.

Fig. 1. Sampling for weeds occurence map reconstruction. False negative are possible,
since a weed can be missed. Left: discretisation of the field. Right: the associated graph-
ical model is that of a hidden Markov random field, Ω = {0, 1}8, XR = {X1, . . . , X4},
XO = {X4, . . . , X8}

.

Adaptive policy In adaptive sampling, the sample A is chosen sequentially.
The sampling procedure is divided into H + 1 steps. Ah is the sample (set of
sites) explored at step h and XAh (resp. xAh) are the random variables (resp. ob-
servations) corresponding to the sample output at step h. The choice of sample

1 We don’t focus on the estimation of θ and consider that it is known.



Ah depends on the previous samples and samples outputs. An adaptive sampling
policy δ = (δ0, . . . , δH) can then be defined by an initial sample A0 and func-
tions δh specifiying the sample at step h, depending on the results of the previous
steps: δ0 = A0, δ1((A

0, xA0)) = A1 . . . δH((A0, xA0), . . . , (AH−1, xAH−1)) = AH .
An history is a trajectory of the policy δ : (A0, xA0), . . . , (AH , xAH ). If A = ∪hAh

and xA = ∪hxh, an history will also be denoted (A, xA). (Here we assumed that
a site can be visited only once.) The set of all histories of a policy δ is τδ. In the
following we will consider the set ∆L of adaptive policies such that at each step
the sample size is less than or equal to L.

Reconstruction When a sample A and a sample output xA are available, we
can use a criterion classically used in Image Analysis for deriving an estimator
x∗

R of xR, named Maximum A Posteriori :

x∗
R = arg max

xR∈Ω|R|
P(xR | (A, xA), θ)

More precisly, the reconstruction x∗
R is the most likely configuration of XR given

the whole history (A, xA).

Sample cost The modeling of a cost function is a question as its own. Here we
illustrate this notion with a simple one where sample costs are additive. For a
given history (A, xA), with A = {A0, . . . , AH}, the cost of A is

c(A) =

H
∑

h=0

(

∑

a∈Ah

ca

)

, with ca ∈ R
+

Quality of a sampling policy The quality of a policy δ is measured from
the quality of the estimators x∗

R that can be obtained from δ. This quality is
measured by the value of the criterion optimised to get x∗

R. More precisely we
first define the quality of an history (A, xA):

U
(

(A, xA)
)

= max
xR∈Ω|R|

[

P(xR | (A0, xA0), . . . , (AH , xAH ), θ)

]

(1)

The quality of a sampling policy δ is then defined as the expectation over all
possible histories of the quality of an history minus the cost of the history :

Q(δ) =
∑

(A,xA)∈τδ

P
(

xA0 , . . . , xAH | θ
)[

U
(

(A, xA)
)

− αc(A)
]

The constant α allows to homogenize the scales of restoration quality and cost.
Finally the problem of optimal adaptive sampling amounts to finding the policy
of highest quality : δ∗ = argmaxδ∈∆L

Q(δ).
Exact optimization of the optimal sampling policy is intractable in practice [5].
We must turn to approximate solution methods. In the next section we present
a modeling of the optimal sampling problem as a Markov Decision Process. This
will enable us to consider powerfull approximate methods from the family of
Reinforcement Learning.



3 Markov Decision Process Model

3.1 Markov Decision Processes and Reinforcement Learning

Markov Decision Processes (MDP) [6] provide a mathematical framework and
efficient optimisation algorithms for sequential decision under uncertainty. In this
section, we show how the problem of Optimal Adaptive Sampling in Graphical
Models (OASGM) can be modelled as the resolution of a MDP which state
and action spaces sizes are exponential in the size of the original problem. This
exponential space representation cannot be avoided since MDP are known to
be solvable in polynomial time in their representation, while graphical models
optimal sampling problems are known to be NP-hard to solve, even in their non-
adaptive version [5].
Explicit representation of the problem (and its solution policy) can be avoided,
thanks to the use of Reinforcement Learning (RL) algorithms [7]. The RL family
provides simulation-based MDP solution algorithms, which (i) do not require
an explicit representation of the MDP transition and reward models, (ii) do
not compute “a priori” the (exponentially large) optimal policy of the MDP
but compute “on-line” the action to execute in the current state. So, the MDP
encoding of the OASGM problem which we provide here will not be used to
compute tabular representations of transition and reward functions, but rather
be used for simulating state transitions and rewards within RL algorithms.
A finite-horizon Markov Decision Process is a 5-tuple < S, D, T, p, r >, where

– S is a finite set of systems states.
– D is a finite set of available decisions (or actions).
– T = {0, . . . , Te} is a finite set of decision steps, termed horizon.
– pt

d(s
′|s) are transition functions. pt

d(s
′|s) indicates the probability that state

s′ results when decision d is implemented at time t ∈ {0, . . . , Te − 1}, when
the system is in state s.

– rt(s, d) are reward functions. Reward rt(s, d) ∈ R is obtained when the
system is in state s at time t and decision d is applied, for all s, t. Note that
rewards can be positive or negative (modeling costs).

A decision policy (or policy) δ = {δ0, . . . , δTe−1} is a set of decision functions
δt : S → D. Once a decision policy is fixed, the MDP dynamics becomes that
of a finite Markov chain over S. The value function V δ : S × T → R of a policy
δ is defined as the expectation of the sum of future rewards obtained, from the
current state and time step, when following the Markov chain defined by δ.

∀s ∈ s, t ∈ T, V δ(s, t) = Eδ

[

∑

t′=t...Te

rt′ | s

]

Solving a MDP amounts to finding an optimal policy δ∗ which value is max-
imum in every states and decision steps (V δ∗

(s, t) ≥ V δ(s, t), ∀δ, s, t).
The backwards induction algorithm [6] can be applied to compute δ∗. Alternately,
RL algorithms [7] (such as Q-learning) can be applied to compute optimal ac-
tions (provided that sufficient computational effort is allocated) on-line in states
actually encountered.



3.2 MDP encoding of the OASGM problem

In this section, we provide a MDP encoding of the OASGM problem.

State space The curent state at time t , st ∈ S, summarises the current infor-
mation about variables indexed in O. This information is obtained from the se-
quence of past samples and outputs and thus st ≃ {(A0, xA0), . . . , (At−1, xAt−1)}.
It may be convenient to model st as a |O|× t matrix s, where si,j = k > 0 if and
only the ith variable of O was observed in state k ∈ {1, . . .K} during the jth

sample step. If this variable was not observed during this sample step, si,j = 0.
An example state for t = 1, K = 2 and O = {1, 2, 3} is : s1 = (0, 1, 2)′. During
the first sampling step we observed variable X2 (value 1), variable X3 (value 2)
and X1 was not observed. Note that s0 is the empty matrix.
With this encoding, the total number of possible states of the system is expo-
nential in the OASGM representation size (upper-bounded by H × (K + 1)|O|),
as mentioned above.

Action space A decision dt ∈ D will simply be the sample action At chosen
at time step t. As such, it can be modelled, for example, as a length |O| vector,
with at most L entries equal to 1 (the remaining ones being equal to 0). With
this encoding, the total number of actions is at most |

{

At | At ⊆ O, |A| ≤ L
}

|.

Horizon Decision steps in the MDP correspond to decision steps in the OASGM
problem. Thus, T = {0, . . . , H + 1}. After decision dH has been implemented in
state sH at decision step H , a final state sH+1 will be reached.

Transition functions Note that in the MDP representation, the state st can
be identified to

(

(A0, xA0), . . . , (At−1, xAt−1)
)

, for t = {0, . . . , H}. So, it is easy
to check that :

∀t ∈ {0, . . . , H} pt
dt

(

st+1 | st
)

= P
(

xAt | (A0, xA0), . . . , (At−1, xAt−1), At, θ
)

.

These transition probabilities can be computed online (for fixed st and dt),
but only at high computational cost, since their computation is equivalent to
marginal probabilities computation in a graphical model. However, the dynam-
ics of the model can be efficiently simulated, by simulating values of the variables
in R and values of the sample output xAt , from past sample outputs and current
sample At.

Reward functions We set r0(s0) = 0 and for all t ∈ {1, . . . , H}, rewards
represent sampling costs. For state st, we have :

rt(st, dt) = rt(st) = −αc(At−1)

After decision dH has been applied at decision step H , a final state sH+1 =
(

(A0, xA0), . . . , (AH , xAH )
)

is reached, in which the reward rH+1(sH+1) is the
quality of the reconstruction X∗

R minus the cost of action AH :

rH+1(sH+1) = U
(

(A1, xA1), . . . , (AH , xAH )
)

− αc(AH),



where U is defined by equation (1).
The optimal policy for the above-defined MDP is a set of functions associating
samples to lists of past observation outputs. It thus has the same structure as a
OASGM sampling policy. More than that, we can show the following proposition:

Proposition 1 (OASGM-MDP optimal policies equivalence). An opti-

mal policy for the MDP model of a OASGM is optimal for the initial OASGM.

4 Conclusion

In this article, we have presented the problem of adaptive sampling in graphical
models and its modeling as a Markov decision process. The size of the state
space is exponential in the size of the set O of sites which can be sampled and
exact computation of the value function is intractable. Next, we will exploit
Reinforcement Learning methods and simulation techniques in graphical models
to develop approximate sampling methods. It is worth noting that the problem
we have described could also be modeled as a (structured) Partially Observed

MDP (POMDP), eventhough it is a strict subclass (no evolution of the system
and no action which modifies the system). The corresponding POMDP will be of
exponential complexity, so that existing algorithms would be difficult to apply.
For this reasons, the MDP approach seems more suited to us.
A straightforward application of adaptive sampling in graphical models is that of
spatial sampling in Hidden Markov Random Fields. In this case, the set R is the
set of sites of the hidden image, O is the set of observation nodes and V = R∪O.
Based on the framework presented here, we aim at modeling and solving more
general sampling problems, with any graph structure and any choice of the sets
O and R.
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