Metabolic network analysis and regulation

Lucas Marmiesse

INRA CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France

21 novembre 2014

Metabolism

A biochemical reaction

Metabolism

Example of a metabolic pathway : The Krebs cycle

Metabolism

Metabolism regulation

Metabolism regulation

Biological networks

Ralstonia solanacearum With Ludovic Cottret and Remi Peyraud

Reconstructed metabolic network.

Reconstructed virulence regulatory network.

Arabidopsis Thaliana defence response Supervisors : Susana Rivas and Philippe Besse

Constraint based method : Flux Balance Analysis (FBA)

Constraint based method : Flux Balance Analysis (FBA)

Constraint based method : Flux Balance Analysis (FBA)

Constraint based method : Flux Balance Analysis (FBA)

 Allows to calculate the fluxes (rates) of the reactions of the metabolic network at steady state.

 $\begin{array}{l} \mbox{Production} \\ \mbox{V1+V2} - \mbox{V3} = 0 \ \mbox{mmol/g/h} \\ \mbox{Consumption} \end{array}$

Constraint based method : Flux Balance Analysis (FBA)

Allows to calculate the fluxes (rates) of the reactions of the metabolic network at steady state.

R1:	A_ext → A		R1	R2	R3	R4	R5	R6	R7	R8	R9
R2:	$A \rightarrow B$	А	1	-1	-1						
R4 :	$B + E \rightarrow 2D$	В		1		-1		-2			
R5:	E_ext → E	С			1			1	-1		
R6: 87·	2B→C+F C→D	D				2			1	-1	
R8:	$D \rightarrow D_{ext}$	Е				-1	1				
R9:	$F \rightarrow F_{ext}$	F						1			-1

S

http://bio.freelogy.org/wiki/User:JeremyZucker

Constraint based method : Flux Balance Analysis (FBA)

						S							V v1	1
R1:	A_ext → A		R1	R2	R3	R4	R5	R6	R7	R8	R9		v1 v2	
R2:	A → B A → C	Α	1	-1	-1]	v3	1
R4:	B + E → 2D	В		1		-1		-2					v4	1
R5 :	$E_{ext} \rightarrow E$	с			1			1	-1				v5	1
R6: R7·	2B→C+F C→D	D				2			1	-1		X	v6	1
R8:	D → D_ext	E				-1	1						v7	1
R9:	F → F_ext	F						1			-1		v8	1
													v9	1

Constraint based method : Flux Balance Analysis (FBA)

 Allows to calculate the fluxes (rates) of the reactions of the metabolic network at steady state.

S.v = 0

 $\begin{array}{l} dA/dt = v1 - v2 - v3 = 0 \\ dB/dt = v2 - v4 - 2*v6 = 0 \\ dC/dt = v3 + v6 - v7 = 0 \\ \hline dD/dt = 2*v4 + v7 - v8 = 0 \\ dE/dt = -v4 + v5 = 0 \\ dF/dt = -v4 - v9 = 0 \end{array}$

Méthode basée sur des contraintes : Analyse d'équilibre des flux (FBA)

- ► Allows to calculate the fluxes (rates) of the reactions of the metabolic network at steady state.
- Based on the stoichiometry of the network and constraints on the input fluxes. linéaires).
- Resolves a system of linear equations with an objective function.

Orth et al. 2011

Constraint based methods phylogeny

Lewis et al. 2013

Metabolic network regulation

Metabolic network regulation

de Oliveira Dal'Molin et al. 2010

Metabolic network regulation

de Oliveira Dal'Molin et al. 2010

Regulatory network

Nature

- Composed of biological entities of different types that interact in different ways.
- ► Cause a specialisation (reversible or not) of the metabolism.

Analyses and simulations

▶ Many methods (de Jong *et al.* 2002, Karlebach *et al.* 2008).

Boolean model

- Each component has only two possible states.
- The value of each component is determined by a logical function.

Boolean model

- Each component has only two possible states.
- The value of each component is determined by a logical function.

Multi-state model

- Each component has a finite number of possible states.
- Each component has a list of rules to determine its state and a default value.

Multi-state model

- Each component has a finite number of possible states.
- Each component has a list of rules to determine its state and a default value.

Simulations

	Α			В			C	
Condition	on Value		Condition	Value	alue		ndition	Value
B=1	1		A=1	0		A=1	XOR B=1	1
Default	C		Default	1		A=1	AND B=1	2
						D	efault	0
		T0	T1	T2	Т	3	T4	
	А	0						
	В	1						
	С	0						

Simulations

4	A			В			C	
Condition	ı Value		Condition	Value	Value		ndition	Value
B=1	1		A=1	0		A=1	XOR B=1	1
Default	C)	Default	1		A=1	AND B=1	2
						D	efault	0
[T0	T1	T2	Т	3	T4	
(А	0	1					
	В	1	1					
	С	0	1					

Simulations

4	A			В			С	
Condition	Value		Condition	Value	Value		ndition	Value
B=1	1		A=1	0		A=1	XOR B=1	1
Default	C		Default	1		A=1	AND B=1	2
						D	efault	0
[T0	T1	T2	Т	3	T4]
(А	0	1	1				
	В	1	1	0				
	С	0	1	2				

Simulations

4	A			В			С	
Condition	on Value		Condition	Value	Value		ndition	Value
B=1	1		A=1	0		A=1	XOR B=1	1
Default	C		Default	1	A=1		AND B=1	2
						D	efault	0
[T0	T1	T2	Т	3	T4]
(А	0	1	1	()		
	В	1	1	0	()		
	С	0	1	2		1]

Simulations

4	A			В			С	
Condition	dition Value		Condition	Value	Value		ndition	Value
B=1	1		A=1	0		A=1	XOR B=1	1
Default	0)	Default	1		A=1	AND B=1	2
	I					D	efault	0
[Т0	T1	T2	Т	3	T4]
(А	0	1	1	()	0	
	В	1	1	0	()	1	
	С	0	1	2		1	0]

Qualitative values

Quantitative values

Constrain the FBA with regulatory network states

► Find a steady state of the regulatory network, constrain the reactions and perform a FBA analysis.

Regulatory network steady state R1 = 0 R2 = 1 R1 = 0C < R2 < C

Constrain the FBA with regulatory network states

- Find a steady state of the regulatory network, constrain the reactions and perform a FBA analysis.
- What network state to use ?

Regulatory network steady state R1 = 0 R2 = 1 R1 = 0C < R2 < C

Constrain the FBA with regulatory network states

- ► Find a steady state of the regulatory network, constrain the reactions and perform a FBA analysis.
- What network state to use ?

	Т0	T1	T2	T3	Τ4
А	0	1	1	0	0
В	1	1	0	0	1
С	0	1	2	1	0

► How to transform a qualitative state into a constraint ?

Qualitative state to constraint translation

Qualitative state to constraint translation

Qualitative state to constraint translation

What network state to use ?

	Т0	T1	T2	T3	T4
A	0	1	1	0	0
В	1	1	0	0	1
С	0	1	2	1	0

What network state to use ?

	T0	T1	T2	T3	T4
Α	0	1	1	0	0
В	1	1	0	0	1
С	0	1	2	1	0

What network state to use ?

	Т0	T1	T2	T3	T4
Α	0	1	1	0	0
В	1	1	0	0	1
С	0	1	2	1	0

 $\begin{array}{ll} 0 < C < 0 \\ 0 < C < 5 \\ 5 < C < + inf \\ 0 < C < 5 \end{array} < => 5/4 < C < + inf \\ \end{array}$

Dynamic analysis

 Metabolite concentrations allow to go back from FBA results to a regulatory network state.

Logical regulatory network

Dynamic analysis

 Metabolite concentrations allow to go back from FBA results to a regulatory network state.

Dynamic analysis

 Metabolite concentrations allow to go back from FBA results to a regulatory network state.

Dynamic analysis

 Metabolite concentrations allow to go back from FBA results to a regulatory network state.

What tools are available for these analyses ?

File formats

- Metabolic network : Systems Biology Markup Language (SBML). (Hucka *et al.* 2003)
- Regulatory network : SBML qualitative extension. (Chaouiya et al. 2013)

Software

- ► FBA : Cobra toolbox, surrey FBA, optFlux ...
- ► Boolean regulatory network : Boolnet.
- ► Multi-state regulatory network : GINsim, The Cell Collective.

FlexFlux

Java software

- Allows analysis of both metabolic and regulatory networks.
- ► Supports SBML and SBML-qual file formats.
- Features steady state and dynamic analysis of the regulatory network.
- ► Features multiple FBA based functions.
- Documentation and examples available at http://lipm-bioinfo.toulouse.inra.fr/flexflux/

800	FlexFlux		
	Choose your analysis :	FBA	Run
Descrip Flexflux Compu	otion : «FBA [options] tes an FBA given a metabolic Required arguments -cond -s	FBA Test DR Pareto CompFVA ERA Reac TwoReacs	 ttion and constraints. Choose file Choose file
	Optional arguments		
	-senFile		Choose file
	-pre	6	
	-lib	0.0	
	-states		Choose file
	-out		Choose file
	-sol	CPL	EX 💌
	-int		Choose file
	-plot		
	-ext		
	-h		

800	FlexFlux							
	Choose your analysis : FBA	Run						
Description : FlexfluxFBA [options] Computes an FBA given a metabolic network, an objective function and constraints.								
	Required arguments							
	-cond	Choose file						
	-s	Choose file						
	Optional arguments							
	-senFile	Choose file						
	-рге	6						
	-lib	0.0						
	-states	Choose file						
	-out	Choose file						
	-sol	CPLEX 🔻						
	-int	Choose file						
	-plot							
	-ext							
	-h							

😕 🗐 🔲 FBA results								
obj : 0.873922								
Search for an entity :								
Entity name	Value 🔻	٦						
R_ATPS4r	45.51401	•						
R_CYTBD	43.598985							
R_NADH16	38.53461							
R_EX_h2o_e	29.175827							
R_EX_co2_e	22.809833							
R_02t	21.799493							
R_EX_h_e	17.530865							
R_GAPD	16.023526							
R_ENO	14.71614							
R_GLCpts	10.0							
R_PDH	9.282533							
R_ATPM	8.39							
R_PFK	7.477382							
R_FBA	7.477382							
R_TPI	7.477382							
R_ICDHyr	6.00725							
R_ACONTa	6.00725							
R_ACONTb	6.00725							
R_CS	6.00725							
R_FUM	5.064376							
R_SUCDi	5.064376							
R_AKGDH	5.064376							
R_MDH	5.064376							
R_PGL	4.959985							
R_G6PDH2r	4.959985	•						

	Stead	y state	analys	is resul	ts						
Search for an entity :											
Attractor of size 1											
Entity n	1 🔺	2	3	4	5	6	7	8			
KCS16_p	0	0	0	0	0	0	0	0	•		
HCD1	0	0	0	0	1	1	1	1			
KCS3_m	0	0	0	0	0	0	0	0			
KCS5_m	0	0	0	0	0	0	0	0	=		
CER4	0	0	0	0	1	1	1	1			
KCS1_p	0	0	0	0	0	0	1	1			
MIEL4_p3	0	0	0	0	0	0	0	0			
sPLA2_a	0	0	0	0	0	0	0	0			
MIEL4_m	0	0	0	0	0	0	0	0			
MIEL3_m	0	0	0	0	0	0	0	0			
KCS4_p	0	0	0	0	0	0	0	0			
МҮВЗ1_р	0	0	0	0	0	0	0	0			
MIEL2_p	0	0	0	0	0	0	0	0			
SBT52_p2	0	0	0	0	0	0	0	0			
HCD1_p	0	0	0	0	0	0	1	1			
MYB30	0	1	1	1	1	1	1	1			
KCS11_p	0	0	0	0	0	0	0	0			
MYB30	0	0	1	1	1	1	1	1			
sPLA2_a	0	0	0	0	0	0	0	0			
MIEL4_p1	0	0	0	0	0	0	0	0			
CER4_p	0	0	0	0	0	0	1	1			
R_VLCFA	0	0	0	0	0	0	0	1			
MIEL3_p	0	0	0	0	0	0	0	0			
KCS10_p	0	0	0	0	0	0	1	1			
R_VLCFA	0	0	0	0	0	0	0	0	•		

Conclusion

- Metabolic network analyses are very insightful to understand cell phenotype.
- Metabolism regulation must be included to get a full picture of cell behaviour.
- These two types of networks can be very large and are of a different nature.
- ► FBA and logical regulatory network modelling provide interesting answers.

