Maladie de Parkinson
Une entité cliniquement définie, une
seule entité étiologique ?



OUTLINE

Parkinson’s Disease

Rational of Genome-Wide Association Study
Association testing for a Disease

Specific issues of GWAS

GWAS of Parkinson

Missing Heritability & the question of a single
disease entity

MeMoDeeP project



What is Parkinson’s Disease?
Described by James Parkinson in 1817

Maladie neuro-dégénérative (perte progressive
d'une population spécifigue de neurones : les
neurones a dopamine de la substance noire du

cerveau)
Ces neurones sont impliqués dans le controle des

mouvements



Neurodegeneration: A major health care burden

In a pop of 50 M about 1.5 M will be directly affected by
neurodegenerative disease and, as the population ages,
this number will increase

* Alzheimer’s afflicts 1% at age 60; 20% at age 80y
* Parkinson’s afflicts 1% over age 60; 10% over 80y

— Slight Male predominance

— Typical onset between 50 and 75 years
— Average age at onset : 62 years

— 10% have onset before 40 years

— May be less prevalent in China and other Asian countries
and in Afro-Americans



Famous personalities




Caused by the loss of dopamine brain cells (neurons)
PD affects the region of the brain that controls movement

PARKINSON’sS DISEASE

i Dopamine cell death

i ..:.::::..ﬁ.\iomml -> Iesser dopamine
Aai; “‘““ -> impairment of movement
§—> in body parts

‘Mn’-

Symptoms begin when ~ 50%-80% of dopamine neurons
have died -> Movement disorder & worsens over time

*No permanent cure: Medication (L-Dopa) & surgery
manage its symptoms
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Major Clinical features

Slow, monotonous, ||
slurred speech

Reduced
Y arm
swinging
' A\
*Tremor S ——
of extremities
. . . and head
*Rigidity

*Bradykinesia: slowed movement

*Dyskinesia : involuntary
movement (head, neck or upper
extremities)

* Postural instability

Major symptoms: Motor
Heterogeneous (Dominant-tremor & non-dominant- tremor patients)

& Non-Motor symptoms



PD: Heterogeneous clinical symptoms

Major symptoms: Motor
Heterogeneous (Dominant-tremor & non-dominant- tremor patients)

& Non-Motor symptoms
Olfactory dysfunction, Cognitive impairment, Depression,
sleep disorders, Constipation,..

Objective biomarkers are lacking & access to DNA/RNA
profiles from damaged CNS-specific tissues in a large
number of patients is, up to now, relatively limited



Unraveling the genotype-phenotype relationship in PD:
Important challenge towards the dissection of its complex
etiology

Limitation of GWAS: Build on large but retro-prospective samples
of PD patients with often typical and sparse clinical measures

=» Beyond empirical stratification of patients

Mathematical and statistical models based on prospective

of recently diagnosed patients (longitudinal data)
High-dimensionality & mixture of data & genomic

-> MeMoDeeP project



PD : Clinical Diagnosis

No standard diaghostic test - > Diagnosis is made clinically
- Examination & neurological test

- Exclusion of other disorders,...

- Imaging of the head (CT, MRI) may help



Etiology of PD

1. Environmental factors (caffeine, toxins, pesticides,..)?
 (Caffeine, Tobacco : decreased risk of PD
e Pesticide & increased risk of PD : Rural > Urban ?

Smoking & Decreased PD Risk

= A meta-analysis of 44 studies (6,814 cases,
11,791 controls) has revealed a highly ———s
consistent reduction. = ':f‘,.

= Current smokers are 60% less likely to
develop PD than non-smokers.

= Ex-smokers are 40% less likely to develop
PD than non-smokers

= Potential mechanisms
— third variable?
— T dopamine
— Inhibition of MAO,

Relative Risk = Probability Exposed
Probability Unexposed

Hernan (2002). Annals of Neurology, 52, 276-284.




Etiology of PD: Genetic factors ?

Traditionally, PD has been considered a non-genetic disorder

 Heritability ~30%

* Sibling Relative Risk ~5; Parent RR ~2
* Most PD cases (85%) : no affected relatives (censoring?)

N

M |solated
MW Familial-1st-degree relative affected

M Familial-Multiple Affected

A
Rare PD forms (1%)

Families with multiple affected
members in several generations
*1997-2004

Linkage mapping -> Identified
Dominant mutations: SNCA, LRRK?2, ..
Recessive mutations : Parkin, PINK1,..
Overall > 12 genes; some Pop-specific
freq.; allelic heterogeneity




Simple Diseases Complex Diseases

* Generally rare * Common (1-5%)

* Simple pattern of * Cluster in families but no
inheritance (D/R) simple pattern of inheritance

 Monogenic disorder - Adult onset of the disease
(single/few genes; i.e., (Age is a strong risk factor:
genetic heterogeneity is censored family data )
low) * Multiple risk factors

e Environment: Low (Environment, Genetic)
influence Examples: diabetes, asthma,

cardiovascular disease, cancers,
Alzheimer’s disease, Parkinson’s

disease, and many more..

Examples: Cystic Fibrosis,
Huntington



*Rational of GWAS

Complex Diseases
2 major theories: very controversial |

 Common Disease — Common Variant (CD/CV)

— Alleles that existed prior to the global dispersal of
humans or those subject to positive selection represent
a significant proportion of the susceptibility alleles for
common disease

 Common Disease — Rare Variant (CD/RV)

— Most mutations underlying common disease have
occurred after the divergence of populations

— Expect heterogeneity in genes of common diseases



I1l.
Rational of Genome Wide Association
Study of Complex Traits

CD/CV hypothesis
The Future of Genetic Studies of On the allelic
Complex Human Diseases spectrum of human
disease

MNeil Risch and Kathleen Merikangas

David E. Reich and Eric S. Lander

Science, 1996 Trends in Genetics, 2001



Complex traits under CD/CV hypothesis

Susceptibility alleles confer moderate risk and occur
at relatively high rates in the population (Minor
Allele Frequency >1%)

Because they are frequent in the population the
magnitude of their attributable risk (% of people
affected due to them) may be large

-> making them of public health importance

Reich & Lander, 2001



Complex traits under CD/CV hypothesis

* Tests of linkage for genes of modest effects are of
low power

=» The identification of the genetic basis of complex
human diseases « can best be accomplish by
combining power of the human genome project
with association studies»

SNPs (Single Nucleotide Polymorphism) have facilitated this
type of study: - easy to measure, stable in population



Association Study of Disease

Case-Control Design
Single-locus test

sssss (Nn=1,000)
people with heart disease

C o T

-
r C a9°, Ne
controls
51% B

controls (Nn=1,000)
people without heart disease

Question: are the alleles or genotypes at a genetic marker
associated with disease status?



Case and control Selection

Case and control samples may be :
*Matched for known risk factors (age, gender, ..)
*Chosen to increase magnitude of contrast
Case samples may be selected to be enriched for
predisposing variants(s)
- Family history
- Early age of onset
- Increased severity of disease
Control samples may be selected to be “very healthy” or
“super controls”
- Individuals who have normal glucose at age 70
- Control selection just as important (and tricky) as
for any case-control study



Measures of association

Absolute (Population Attributable Risk) or Relative
(Odds Ratio) differences between groups being
compared

Measure: Usual application:
PAR - Primary prevention impact

% of affected subjects due to the risk factor

OR - Search for causes

% affected among subjects exposed to the risk factor
% affected among subjects not exposed to the risk factor




Single-locus Testing for Association with Disease

e Usual statistical machinery get estimates of measures of
association and to test for association for each of the SNPs

One typical approach: additive genetic model, logistic
regression

logit (E(Yi)) = Iog(lfdli;ease Y=a+ S +y, X +...
disease
*P .2 = Rate of cases in the case-control sample
*a = baseline
*S,=0,1, 2: num of minor alleles
X = Covariates
*B3, v = regression coeff regression of genetic marker, covariates

exp(B) estimate of SNP OR eTest of association: =0 (1 df)



Types of association

* Positive/Negative
Spurious association: due to chance, bias or confounding

* Direct/Indirect:
Linkage Disequilibrium (allelic correlations) genetic
marker and disease-risk variant

e Causal/Non causal ?



Ex: Association directe vs indirecte: Maladie d’Alzheimer & APOE

Signification statistique de 'association de différents SNPs autour de APOE
(<100kb) [Martin et al., AJHG, 2000]

20 APOE Puissance:
APOE

$ b 1. Max quand M=APOE
] f“;‘" 2. Diminue avec la distance
“ A Intron M-APOE (<50kb)
" 3. Variation non-linéaire avec

la distance : dépend de la
10 + SNP988

force du DLentre M &
8 APOE
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¢ / p=0.0008
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Human Genomics brings breakthroughs in common diseases

1) Human genome 2) Haplotypic maps 3) High density DNA

variant arrays
sequence
i Internatlonal

illumina’

72001-04

4) Genome Wide
Assomatuon Studles

Fatruay 1007 4oin0. 1038 setiredSe s

12th of February 2007

genome-wnde association study
ldentlfles novel risk |OCI for type 2 dlabetes
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Human Genome Project — a 13 year effort (1)
Human genome 3 billion bases

* Only < 2% of the human genome encodes proteins

~20,000 protein-coding genes

- Size of genes : ~3,000 bases on average
High variability (up to 2.5 million bases; largest= dystrophin)

 Other than protein coding genes

— Noncoding RNAs (rRNA, tRNA, miRNAs,..)
— Structural sequences



HGP — a 13 year effort (2)

* Humans share 99.9% of sequence identity
* The other 0.1% are mostly SNPs

10 million SNPs
— SNPs occur every ~1,000 bases (1kb)

— SNPs can cause silent, harmless, harmful or latent
changes

— Most SNPs not in coding regions (99% not in genes)

http://www.genome.gov/10001665



Build Map of Haplotype Blocks

=» Regions of high LD interspersed by regions of low LD
- The high LD regions can form haplotype blocks

Haplotype block partition results for the three populations

Population Blocks Average size, kb Requires SNPs*
African-American 235,663 8.8 570,886
European-American 109,913 20.7 275,960
Han Chinese 89,994 25.2 220,809

*Minimum number of SNPs required to distinguish common haplotype
patterns with frequencies (MAF) > 5%

Adapted from Hinds et al., Science 2005



Has had major impact on:

* Understanding of human pop history as reflected in
genetic diversity and similarity

* Design and analysis of genetic association studies
— 10 M common SNPs (MAF>1%)
— tag SNPs allow for identification of a person’s haplotype
— Estimated 300,000-600,000 tag SNPs in genome

— High-throughput genotyping of tag SNPs (Affymetrix,
lllumina chips)

=>» Whole-Genome Association testing of tag SNPs



GWAS : Design and Analysis Strategies
additional challenges

Affected Individuals Unaffected Individuals

Agnostic screen e
/l\ =

-> M>>>N g\
)

SNPs analyzed
and compared
statistically



More DATA #(?) More INFORMATION

For a given Complex trait
* Most genotypes are NOISE

* Many potential sources of systematic errors that
might lead to false positive results

 More Tests require greater Significance at any one
Trade-off type | error vs Type Il error (1-power)

* Large Ns required
ncrease sensitivity to confounding & biases

* High-throughput genotyping quality control issues
particularly important



Interpreting Genetic Association

e @

Statistical Confounding
false positive? by population
stratification?

The variant is in
linkage disequilibrium
with a disease-causing
variant (or variants)

*Family Wise Rate *Combine data with HapMap
Bonferroni « genome- *PC Analyses:

wide » significant P= 5x108 - Identify & exclude « outliers »
*Replication study design - Adjust for pop stratification
*Meta-analysis

Fine-Mapping: Step-wise regression
-> Independent assoc signals



Confounding by Ancestry (Population Stratification)

Cases / Controls selection is critical, as always

* Confounding by ancestry: Distortion of the
relationship between the genetic risk factor & the
outcome of interest due to ancestry that is related
to both the frequency of the genetic risk factor
and phenotype of the subject

~ Ancestry\

’
4 |

Genetic Risk Factor ———>  Case/Control Status



Ex: Distribution of the allele frequency of lactase gene
in Europe | )

Allele frequencies vary
widely across Europe



Correct/Adjust for Population stratification

e Use PCA analysis in WGA data combined with
HapMap (EU, AS, AF)

- > identify outliers end exclude them from downstream
analyses

* Check empirical distribution of single-locus
association test :

A = emp median of y2 / (theor median value, y? 1df)

if skewed, i.e., A >>1
-Genomic control: alter each single-locus test, 2/ A

-Adjust for hidden pop stratification: Main PCs included as
covariates in the logistic regression



Plot of first 2 principal components from FR-GWAS data
combined with HapMap data.

Human Molecwlar Genetics, 2001, Vol. 20, No. 3

0o

Ethnicity of HapMap:
Africa (green),
Japan (brown), | T .
Chinese (yellow) o

Europe (red)

Study samples identified to be non-European or not clustering with
European samples (outliers) are colored in blue and the remaining
samples assumed to be of European origin are colored in black.



Sample size N required to achieve 80% power at a
significance level P<10°
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Figur= 1 | Effects of allele frequency on sample-size requirements. The numloers of cases
and controls that are required in an association study 1o detect di=sease vanants with allelic odds
ratios of 1.2 (rech, 1.3 (blus), 1.5 velow) and 2 (black) are showan., BRNumbers shown are for a
statistical power of 20% at a significance level of & <105, assuming a multiplicative model for the
effects of alleles and paerfect correlative linkage disequlibriom betrvesen aleles of test markers and
diseases variants.

Allelic OR=1.2; 1.3; and 2
Complete LD (r?=1)



Multiple independent Samples

« Winner’s Curse »: the odds ratios (genetic effects) of the
most significant SNPs in a GWAS are biased : higher than
the true odds ratios

 REPLICATION: = Unbiased estimates of ORs

- Requires independent samples from the same population
as the original study (Discovery sample)

- Replication should be in the same direction and be
consistent with the same genetic model

Replication limited to the top K most associated SNPs
(identified in the discovery stage) -> preserves power

Significance in replication studies : P<5x10®



Meta-Analysis

Meta-analysis involves combining the results of
several studies to obtain an overall conclusion

Meta-analysis of GWAS can discover more
associated SNPs than the individual studies

— Greater sample size -> more power

Results of meta-analysis also need replication

— Meta-analysis retains any biases present in the
individual studies
2 main methods: Fixed effects & Random

effects meta-analysis (assumption on homogeneity
of ORs)



Multilocus GWAS Models

Risk prediction
* Polygenic Risk Scores
K indpt SNPs associated can be combined
PRS = 3,5, + B,S, +.. +B,S,
3; estimated from previous independent sample

* Mixed linear models
Limited to the k loci (h%5ya0c ) OF NOt (h210ie-Ganome)



1.
GWAS of Parkinson’s Disease



Individual GWAS of PD: discovery samples & results

SNCA
+ 2 new
PARK16
BST1

SNCA
MAPT
LRRK2

SNCA

MAPT
SNCA; HLA BST1
2011, Do (23andMe) i/ll\f:'l'
3426 PD / 29624 Cont
us

SNCA
SNCA; MAPT; LRRK2; MAPT
HLA; GBA + 2 new loci BST1

=» Shared genetic factors between multifactorial forms of PD and

- Monogenic forms of PD (SNCA, LRRK2) but heterogeneity in risk
variants

- Other neurological disorders (taupathies : MAPT; Gaucher: GBA )
=>» Few “knew” risk variants detected: Individual GWAS lack power



Transition to Meta-Analyses:
International Parkinson Disease Genetic Genomics Consortium

-Combine statistical data (OR, SD, direction
of effects)

-Discovery Phase: 5,333 PD/12,019 Controls
-Replication phase: 7,053 PD/9,007 Controls
Complemented with imputations

+ Follow-up study using 23andMe data

* 17 loci genome-wide significant (Lancet, 2012)

- 6 previously reported (SNCA; MAPT; HLA-DRB5, BST1, GAK,
LRRK2) and PARK16 (Japanese pop)

- new loci

* PAR (Attributable Risk) = 60%



REPORT

GCTA: A Tool for Genome-wide Complex Trait Analysis
Jian Yang,'* 5. Hong Lee! Michael E. Goddard, > and Peter M. Visscher!

Using genome-wide complex trait analysis to
quantify ‘missing heritability’ in Parkinson’s
disease

Margaux F. Keller'2, Mohamad Saad®4, Jose Bras®, Francesco Betiella”, Mayia Nicolaou?®,
Javier Simon-Sanchez®, Florian Mittag®, Finja Blchel?, Manu Sharma®'®, J. Raphael Gibbs'5,
Claudia Schulie®'?, Valentina Moskvina'2, Alexandra Durr’®1475.7%  peter Holmans'12,
Laural. Kilarski'-12, Rita Guermreiro’, Dena G. Hernandez1.5, Alexis Brice13.1415.18 Pguli Ylikotila1?,
Hreinn Stefansson”, Kari Majamaa'®, Huw R. Morris1.12, Nigel Williams™-12, Thomas Gasser®10,
Peter Heutink”, Nicholas W. Wood®#, John Hardy®, Maria Martinez®*, Andrew B. Singleton’ and
Michael A. Nalls'* for the International Parkinson’s Disease Genomics Consortium (IPDGC) and
The Wellcome Trust Case Control Consortium 2 (WTCCC2)"



GCTA analysis — Heritability estimates
The 17 GWA loci account for ~10% of the detectable

heritability -> more to be found

All PD samples All PD samples
and GWAS SNPs only and SNPs
i .
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Further Extending PD data:
PD Mega-Meta-GWA -- Discovery Phase

Markers
—
Cases [Controls Cases | Controls
QcC
Ash Jewish 268 178 446 TBD TBD 11572500 7241832 1.006  1.028
IPDGC-DC 604 4916 5520 TBD TBD 11572501 6698963 1.061  1.057
IPDGC-FR 985 1984 2969 58.80%  67.00% 11572501 7641834 0.854  0.889
IPDGC-GE 667 937 1604 60.20%  52.00% 11210634 7486133 1.025 1.032
IPDGC-NE 744 2019 2763 63.60%  43.82% 11217965 7576956 1.061  1.056
IPDGC-NIA 937 1896 2833 39.50%  47.20% 11247278 7620408 1.035 1.028
IPDGC-UK 1705 5200 6905 56.70%  50.50% 11272513 7686314 1.034  1.013
HIHG 574 619 1193 63.07%  34.57% 11914767 7613933 0.998  0.997
NGRC 1956 1982 3938 67.74%  38.70% 11914767 8163392 1.013  1.007
PGPD 828 852 1680 59.90%  39.79% 11914767 7249203 1.009  1.011
23&Me 4127 62037 66164  60.58%  59.48% 7840733 7729624 1.212  1.027
13395 82620 96015

Nalls et al., Nat Genet, 2014



Mega-Meta-Analysis: RESULTS
1. Discovery phase : 30 genome-wide significant risk loci
identified (12 novel)
2. Replication Phase (7000 PD/7000 cont): =228 independent
risk loci
GBA, GAK/DGKQ, SNCA & HLA each contain> 1 independent risk allele
Manhattan plot:
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Genetic Architecture of PD
Continuum of variants of different effects strengths
and allele frequencies

SNCA, LRRK2,
PARK2, PINK1, DJ1,
FBXO7, PLA2G6,

ATP13A2, VPS35
SNCA, LRRK2, MAPT,

PARK16, BST1, HLA-DRBS,
GAK, ACMSD, STK39, LAMPS3,
SYT11, HIPIR, FGF20, STX1B,

STBD1, GPNMB, SIPA1L2,

INPP5F, LOC283174, GCH1,
VPS13C, DDRGK1, MCCC1,
SCARB2, CCDC62, STX1B,

RIT2, DDRGK1

RISK

GBA
LRRK2

REALLY RARE RARE COMMON

VARIANT FREQUENCY

Red: Genes explaining Monogenic forms of PD; Bold: Genes involved in other
neurological disorders; Blue: Novel genes identified in the Mega-Meta-Analyses



Insights from GWAS of PD

*Mendelian vs Complex disease:
Continuum with substantial within-gene allelic heterogeneity

|ldentification of novel candidate loci & new biological
knowledge about genes and PD that was otherwise absent a
decade ago

*However, enthusiasm should be tempered
How do the associated variants influence disease risk?



How do the associated variants influence PD risk?

* Most of these SNPs (GWAS-SNPs) have weak effect; the
likelihood to develop PD only increased by factor 1.2-2.0

* The association signal can span multiple genes.
* Indirect association = Functional variant not identified

-> GWAS-SNPs explain little of genomic heritability
-> Not useful to predict an individual risk to develop PD



IV.
Missing Heritability & assumption of a Single Etiological
Disease entity in GWAS

Differentiating specific subphenotypes can help to define
more accurately the PD spectrum and the prediction of
disease risk/progression



PD is associated with non-motor symptoms

-Olfactory dysfunction, Cognitive impairment, Depression, sleep
disorders, Constipation,..

Some non-motor symptoms may precede the motor dysfunction by a
decade

¥ Pre-motor/prodromal period Parkinson’s disease diagnosis
Early Advanced/late
Complications
Psychosis
2
E Fluctuations
S Dyskinesia Motor
:5 Dysphagia
g Postural instability
a . 3
Bradykinesia Freezing of gait
Rigidity Falls
Tremor
EDS Pain Urinary symptoms bidnsmotor
Hyposmia Fatigue Orthostatic hypotension
Constipation RBD Depression MClI Dementia
I I I 1 I >
-20 -10 0 10 20

Time (years)



Unraveling the genotype-phenotype relationship in PD:
Important challenge towards the dissection of its complex
etiology

Limitation of GWAS: Build on large but retro-prospective samples
of PD patients with often typical and sparse clinical measures

=» Beyond empirical stratification of patients

Mathematical & statistical models based on prospective of

recently diagnosed patients (longitudinal data)
High-dimensionality & mixture of data & genomic

-> MeMoDeeP project



Brain Regions Affected by Parkinson’s Disease
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MeMoDeeP Project
Mathematical & statistical models on longitudinal data

1- Unsupervised clustering methods

Disentangle the different underlying basic-components
(i.e., clusters, subphenotypes) for the joint analysis of a
mixture (binary, quantitative, categorical and longitudinal)
of outcomes.

2. Linear mixed models (MLM)

Assess the meaning of the identified subsets

An inherent limitation of unsupervised learning procedures
is that they may identify disease subtypes that may not
involve specific biological processes or genetic
architectures.



1- Unsupervised clustering methods

Challenging the issue of integrating large-scaled data types

into a single framework and within the context of

(1) small sample size compared to the large number of
measured features;

(2) noise in each data source;

(3) redundancy of information provided by different data

types/sources. Concatenating different data sources may result
in a loss of information. Also, data-dimension reduction, as pre-
filtering features (e.g. select the genes “most” differentially
expressed) can certainly alleviate the large-scaled problem; but it
can also lead to biased analyses.

Overall, current multilevel integration data approaches
have yet to address these challenges and need to be
evaluated.



1- Unsupervised clustering methods

To our knowledge, no study has yet investigated such
current unsupervised clustering approaches in the context
of integrating a large-scaled level source of data as whole-
genome DNA (several millions of SNPs) and with the
objective of identifying etiologically heterogeneous
components of a disease spectrum.

MeMoDeeP : We aim to evaluate the feasibility and
properties of multiple kernel-based clustering methods



2- Mixed Linear Models

Univariate & Bivariate MLM analyses:
- Estimates of genetic variance & covariance to estimates
- To infer if the identified subphenotypes are genetically the

same or not.

Traits that are seemingly correlated at the observational (phenotypic)
level might not be so at the genetic level and vice-versa, because of
confounding environmental (but not genetic) effects that push
phenotypes in the same or in opposite directions.

Understanding the genetic relationship between traits allows
conceiving strategies for the analysis; for instance two genetically
“identical” traits can be joined together, whereas joining two distinct
traits may result in spurious noise.



Resources: DIG-PD prospective cohort of PD

500 consecutive PD patients recruited at 4 sites in France
(Paris, Toulouse, Nantes and Clermont-Ferrand) & followed
annually for up to 6 years.

- recruitment : March 2009 - March 2016

Inclusion criteria: aged of > 18 years, with a diagnosis of
PD since 5 years or less

By now: 416 patients; 981 variables collected /patient at
different visits; 1698 visits



Resources: DIG-PD prospective cohort of PD

At baseline:

Demographic characteristics of the patients were recorded
(age, sex, ethnicity, sociocultural level, age at PD diagnosis, familial
history of PD or other neurodegenerative diseases, medical and
treatment history)

Questionnaire : to assess patient exposure to

environmental factors (pesticides, tobacco, caffeine, alcohol,..)
At baseline and at each year of follow-up:

Clinical examination (height, weight, and blood pressure) &
clinical evaluation (variety of questionnaires to assess PD
severity and progression of motor and non-motor
symptoms, drug adverse events, treatment history and
change over time)



1- Unsupervised clustering methods

Joint analyses of longitudinal variables

Issues: number of longitudinal variables; number of genetic
variants; accounting for subject’s effect

Model developed by Marie Courbariaux (PostDoc,
Christophe Amboise, CNRS, Evry)

Limited to <10,000 SNPs
So far, applied to the joint clustering of 4 longitudinal data
Quadratic relation with time (age / visit)



Vraisemblance du modele : 1 variable longitudinale

Modéle de mélange a poids\ logistiques

2
(Yv,f',j|Zi — k) — Xy 0.k + ‘xv,l,ktf',j + ‘xv,2,kt;',j + Ov,k€v,ij,» €v,ij ’"‘; N (O. ]-) :
i

ew&k—l—wf{rG;
P(Z = k)= K aon G
@ v : variable clinique, 7 : patient, j : numéro de visite
@ t;; : temps depuis le diagnostic
@ G, : données génétiques
@ /; : classe du patient /

@ &, 0 et w : paramétres (a estimer).

Références : Samé et al. (2011); Montuelle et al. (2014); Schulam and
Saria (2015); Courbariaux et al. (2017);...



Hypotheses du modele : Régression Yv ~ temps
(YviilZi=k)=ayox+ay1ktij+ a:v,grktfj + 0y kEvijy Evij ~ N(0,1)
[ Effet sujet ignoré
Ecart a I’hypothese d’indépendance des obs
-> Parametres de |la régression: estimations biaisées

-> Inférence sur relation Y ~ X : biaisée (T Taux Faux positifs)

-> Biais dans l'inférence des clusters?



1.B Unsupervised clustering methods for longitudinal
variables accounting for subject’s effect:?

Latent class mixed models for longitudinal data (Proust-
Lima & Jacgmin-Gadda, INSERM Bordeaux)

Issues: number of longitudinal variables; number of genetic
variants; accounting for subject’s effect



