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3What are metagenomic data?

Heterogeneous types
I Abundance data: sparse n × p-matrices with

count data of samples in rows and
descriptors (species, OTUs, KEGG groups,
k-mer, ...) in columns.

I Phylogenetic tree: one tree with p leaves
built from the sequences collected in the n
samples.

I Co-occurence graph: a p nodes graph.
I . . .
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4TARA Oceans expedition

The 2009-2013 expedition
I Co-directed by Étienne Bourgois and Éric

Karsenti.
I 7,012 datasets collected from 35,000

samples of plankton and water (11,535
Gb of data).

I Study of plankton: bacteria, protists,
metazoans and viruses representing
more than 90% of the biomass in the
ocean.



5TARA Oceans expedition

Science (May 2015) - Studies on:
I eukaryotic plankton diversity

[de Vargas et al., 2015],
I ocean viral communities

[Brum et al., 2015],
I global plankton interactome

[Lima-Mendez et al., 2015],
I global ocean microbiome

[Sunagawa et al., 2015],
I . . . .

→ datasets from different types and different
sources analyzed separately.



6Background of this talk

Objectives
I Until now: many papers using many methods. No integrated analysis

performed.

I What do the datasets reveal if integrated in a single analysis?

I Our purpose: develop a generic method to integrate phylogenetic,
taxonomic and functional community composition to environmental
factors.
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9Integrating ’omics data using kernels

Desired mathematical properties for the similarity
Function K : G × G → R st: K (xi , xj) = K (xj , xi) and ∀m ∈ N, ∀x1, ..., xm ∈ G,
∀α1, ..., αm ∈ R,

∑m
i,j=1 αiαjK (xi , xj) ≥ 0

In this case:

∃(H, 〈., .〉), φ : G → H st: K (xi , xj) = 〈φ(xi), φ(xj)〉

K can be viewed as a dot product for G.
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10From multiple kernels to an integrated kernel

How to combine M kernels?
I naive approach: K ∗ = 1

M

∑M
m K m

I supervised framework: K ∗ =
∑M

m βmK m with βm ≥ 0 and
∑

m βm = 1
with βm chosen so as to minimize the prediction error
[Gönen and Alpaydin, 2011]

I unsupervised framework but input space is Rd [Zhuang et al., 2011]
K ∗ =

∑M
m βmK m with βm ≥ 0 and

∑
m βm = 1 with βm chosen so as to

I minimize the distortion between all training data∑
ij K ∗(xi , xj)‖xi − xj‖2;

I AND minimize the approximation of the original data by the kernel

embedding
∑

i

∥∥∥xi −
∑

j K ∗(xi , xj)xj

∥∥∥2
.

:
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11From multiple kernels to an integrated kernel

Our proposal
I 2 UMKL frameworks which do not require data to have values in Rd .

I maximizing the average similarity between kernels (STATIS)
I minimizing the distorsion with the topology of the data



12From multiple kernels to an integrated kernel

Maximizing the average similarity between kernels (STATIS)
I STATIS: exploratory tools for multi-block datasets.

I first step: compute a similarity matrix between kernels.

=
〈K m,K m′

〉F
‖K m‖F‖K m′‖F

.

I second step:

arg max
β

M∑
m=1

〈
K ∗(β),

K m

‖K m‖

〉
= arg max

β

M∑
m,m′=1

βmβm′Cmm′ .
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13From multiple kernels to an integrated kernel

A kernel preserving the original topology of the data
I From an idea similar to that of [Lin et al., 2010], find a kernel such that

the local geometry of the data in the feature space is similar to that of
the original data.

K m −→ Gm
k︸ ︷︷ ︸

k−nearest neighbors graph

−→ Am
k︸ ︷︷ ︸

adjacency matrix

⇒W =
∑

m I{Am
k >0} or W =

∑
m Am

k

I

arg min
β

n∑
i,j=1

Wij

∥∥∥∥∥
M∑

m=1

βm ()

∥∥∥∥∥
2

.
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14From multiple kernels to an integrated kernel

A kernel preserving the original topology of the data
I Sparse version with ‖β‖1 =

∑
m βm = 1⇒ standard QP problem with

linear constrains (ex: package quadprog in R).

I Non sparse version with ‖β‖2 = 1⇒ QPQC problem (hard to solve).
Solved using Alternating Direction Method of Multipliers (ADMM
[Boyd et al., 2011]).
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16K-PCA [Schölkopf et al., 1998]

Standard Principal Component Analysis (PCA)
I Projection of high dimensional dataset in a small dimensional space
I Designed so as to keep most of the data variability
I Axes interpretable from a variable and from an observation point of view

(axes are linear combinations of the original variables)

Kernel Principal Component Analysis (K-PCA)
I PCA in the feature space (corresponds to a non linear projection of the

original data in the original space)
I No representation for the variables
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17K-PCA [Schölkopf et al., 1998]

How to interprete the axes ?
I few attempts in the literature to help understand the relations of KPCA

with the original measures.
I [Reverter et al., 2014] add a representation of the variables to the plot:

visualizing their influence over the results from derivative computations
(datasets take values in Rd ).

Our proposal
I generic approach that assesses the influence of variables.
I randomize a dataset variable and build a new kernel K̃ ∗.
I compute the Crone and Crosby distance [Crone and Crosby, 1995]

between the K ∗ and K̃ ∗ K-PCA sub-spaces.
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19TARA Oceans datasets

[Sunagawa et al., 2015]

Datasets used
I environmental dataset: 22 numeric features (temperature, salinity, . . . ).

I bacteria phylogenomic tree: computed from ∼ 35,000 OTUs.
I bacteria functional composition: ∼ 63,000 eggNOG gene families.
I eukaryotic plankton composition split into 4 groups: pico (0.8− 5µm),

nano (5− 20µm), micro (20− 180µm) and meso (180− 2000µm).
I virus composition: ∼ 867 virus clusters based on shared gene content.
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19TARA Oceans datasets

[Brum et al., 2015]

Datasets used
I environmental dataset: 22 numeric features (temperature, salinity, . . . ).
I bacteria phylogenomic tree: computed from ∼ 35,000 OTUs.
I bacteria functional composition: ∼ 63,000 eggNOG gene families.
I eukaryotic plankton composition split into 4 groups: pico (0.8− 5µm),

nano (5− 20µm), micro (20− 180µm) and meso (180− 2000µm).
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20TARA Oceans datasets

Common samples
I 48 samples,
I 2 depth layers: surface (SRF) and

deep chlorophyll maximum
(DCM),

I 31 different sampling stations.



21Integrating TARA Oceans datasets

M TARA Oceans datasets
(xm

i )i=1,...,N,m=1,...,M measured on the same
ocean samples (1, . . . ,N) which take values
in an arbitrary space (Xm)m:

I phychem: environmental dataset,
I pro.phylo: prokaryote phylogenomic

tree,
I pro.NOGs: prokaryote functional

composition,
I euk.pina: eukaryote pico-nano-plankton

composition,
I . . .
I vir.VCs: virus composition.



21Integrating TARA Oceans datasets

phychem (environmental dataset): standard
euclidean distance, given by K (xi , xj) = xT

i xj .



21Integrating TARA Oceans datasets

pro.phylo (prokarote phylogenomic tree): the
weighted Unifrac distance, given by

dwUF (A,B) =

∑
e le|pe − qe|∑

e pe + qe
,

le: length of branch e.
pe: the fraction of community A below branch
e.
qe: the fraction of community B below branch
e.



21Integrating TARA Oceans datasets

All composition based datasets: pro.NOGs
(bacteria functional composition), eukaryote
composition (euk.pina, euk.nano, euk.micro,
euk.meso) and vir.VCs (virus composition)
calculated using the Bray-Curtis dissimilarity,

dBC(A,B) =

∑
g |nA

g − nB
g |∑

g nA
g + nB

g
,

nA
g : gene g abundances summarized at

eggNOG gene families level in community A.
nB

g : same for community B.
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21Integrating TARA Oceans datasets

Combinaison of the M kernels to obtain K ∗,
a kernel preserving topology with L2-norm
constraint.



21Integrating TARA Oceans datasets

Apply KPCA (could have been clustering,
linear model, . . . , in the feature space).



22Proof of concept on [Sunagawa et al., 2015]

I samples are separated by their depth layer of origin, i.e., SRF, DCM or
MES, with stronger differences for MES samples.
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24Integrating all Tara Oceans data sets

Similarities between kernels (STATIS)

I High similarities between prokaryote phylogenomic tree (pro.phylo) and
prokaryote functional composition (pro.NOGs).

I High similarities between pico-nano-plankton (euk.pina) and other
datasets: piconanoplankton communities are more homogeneous
across the world’s ocean ([de Vargas et al., 2015]).
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25Integrating all Tara Oceans data sets

Similarities between kernels (STATIS)
I Low similarities between meso-plankton (euk.meso) and other datasets:

strong geographical structure of mesoplanktonic communities
([de Vargas et al., 2015]).

I Strongest similarities between environmental variables and small
organisms than largest ones ([de Vargas et al., 2015] and
[Sunagawa et al., 2015]).
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27Integrating all Tara Oceans data sets

I Large size organisms are the most important: Rhizaria and Alveolata
phyla.

I SO and SPO epipelagic waters mainly differ in terms of Rhizarians
abundances

I both of them differ from the other studied waters in terms of alveolata
abundances.
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28Conclusions & Perspectives

What did we do?
I Integrate taxonomic, functional and community composition with

environmental factors
I Use a K-PCA to visualize the datasets in an integrated way and

improved its interpretability by assessing the influence of input variables
in a generic way.

I Learn the kernels weights using MKL algorithms in order to understand
their respective importance/contribution

⇒ Give access to a fast insight of the different datasets within a single
analysis

Availability [Mariette and Villa-Vialaneix, 2017]
I Available in the R package mixKernel, released on CRAN.
I Fully compatible with the mixOmics package, coming with a tutorial

describing the approach.
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Thanks for your attention!
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