Coverage-based explanations for classifiers

Martin Cooper Leila Amgoud

IRIT, CNRS, University of Toulouse III, Toulouse

ARDM Workshop — June 2022

Outline

- New definition of prime-implicant explanations in the presence of constraints
- Complexity is a real issue for neural network classifiers, so we can use the dataset or a sample rather than an exhaustive search over the whole of feature space. Dataset-based explanations provide a trade-off between efficiency and consistency
- We now have a catalogue of different types of explanations with different complexities and different formal guarantees

Prime-implicant abductive explanations

A *classifier* is a function $\kappa : \mathbb{F} \to \mathcal{K}$, where \mathbb{F} is feature-space and \mathcal{K} a set of classes.

Examples:

- Should we accept a student on a Master course?
- Should we prescribe this medecine for a patient?
- Should the bank grant a loan to a customer?
- Who should be president/prime minister?

Explaning decisions: $\kappa, \mathbf{v}, \mathbf{c}, \mathbf{C} \longrightarrow \mathbf{E}$

Find a set of features which explains the decision $\kappa(\mathbf{v}) = c$, knowing that feature vectors are subject to the constraints C.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

There are often constraints between features:

- physical constraints
- functional dependencies
- constraints learnt from analysis of data

Example

- years of work < age</p>
- pregnant \rightarrow woman
- $\bullet\,$ social security number $\rightarrow\,$ surname
- $\bullet\,$ Computer Science degree $\rightarrow\,$ has studied Programming
- California always votes Democratic

・ 同 ト ・ ヨ ト ・ ヨ ト

Abductive explanations under constraints

A feature vector \mathbf{v} can be viewed as a set of literals. An explanation can be viewed as a set of literals/a set of features/a predicate.

Definition

A weak abductive explanation (*weak AXp*) E of $\kappa(\mathbf{v})=c$ is a subset of \mathbf{v} which is sufficient to guarantee the same decision. Viewing E as a predicate,

$$\forall x \in \mathbb{F} \ (\ E(x) \wedge \mathcal{C}(x) \rightarrow \kappa(x) = c \)$$

An *AXp* is a subset-minimal weak AXp.

Example (pregnant woman)

$$\kappa(x_1, x_2) = x_1 \land x_2 \quad \mathbf{v} = (1, 1) \quad \mathcal{C}: x_2 \to x_1$$

There are 2 weak AXp's: $\{x_2\}, \{x_1, x_2\}$
and 1 AXp: $\{x_2\}$.

Abductive explanations under constraints

A feature vector \mathbf{v} can be viewed as a set of literals. An explanation can be viewed as a set of literals/a set of features/a predicate.

Definition

A weak abductive explanation (*weak AXp*) E of $\kappa(\mathbf{v})=c$ is a subset of \mathbf{v} which is sufficient to guarantee the same decision. Viewing E as a predicate,

$$orall x \in \mathbb{F}$$
 ($E(x) \wedge \mathcal{C}(x) o \kappa(x) = c$)

An *AXp* is a subset-minimal weak AXp.

Example (Master degree \rightarrow Bachelor degree)

 $\kappa(x_1, x_2) = x_1$ $\mathbf{v} = (1, 1)$ $\mathcal{C}: x_2 \to x_1$ There are 3 weak AXp's: $\{x_1\}, \{x_2\}, \{x_1, x_2\}$ and 2 AXp's: $\{x_1\}, \{x_2\}$.

Applying constraints in the definition of prime implicant

Example (pregnant woman)

 $\kappa(x_1, x_2) = x_1 \land x_2 \quad \mathbf{v} = (1, 1) \quad \mathcal{C}: x_2 \to x_1$ There are 2 weak AXp's: $\{x_2\}, \{x_1, x_2\}$ and 1 AXp: $\{x_2\}$.

Applying constraints allows us to reduce the size of an AXp.

Example (Master degree \rightarrow Bachelor degree)

 $\kappa(x_1, x_2) = x_1$ $\mathbf{v} = (1, 1)$ $C: x_2 \to x_1$ There are 3 weak AXp's: $\{x_1\}, \{x_2\}, \{x_1, x_2\}$ and 2 AXp's: $\{x_1\}, \{x_2\}.$

The AXp $\{x_2\}$ is redundant. We can eliminate this redundancy by also applying constraints in the definition of prime implicant.

Prime-implicant explanations under constraints

 E_1 subsumes E_2 if $E_2 \wedge C \rightarrow E_1$ (where C are the constraints). Alternative definition: Define the *coverage* of E to be

$$cov(E) = \{x \mid E(x) \land C(x) \land (\kappa(x) = c)\}.$$

Then E_1 subsumes E_2 if $cov(E_2) \subseteq cov(E_1)$.

 E_1 strictly subsumes E_2 if E_1 subsumes E_2 but E_2 does not subsume E_1 .

Definition

A coverage-based prime-implicant explanation (*CPI-Xp*) is a weak AXp not strictly subsumed by any other weak AXp.

Example (Master degree \rightarrow Bachelor degree)

 $\kappa(x_1, x_2) = x_1$ $\mathbf{v} = (1, 1)$ $\mathcal{C}: x_2 \to x_1$ The only CPI-Xp is $\{x_1\}$, since $x_2 \to x_1$ but $x_1 \not\to x_2$.

イロト イポト イヨト イヨト

Example

A student is accepted on a CS Masters course if $\kappa = 1$, where

$$\kappa = (CS \lor M \lor EE) \land (X \ge 60 \lor W \ge 1) \land (P \lor A)$$

where CS, M, EE indicates whether they have a degree in CS, Maths, EEng; X is the final exam mark, W is years of work experience; P, A indicate whether they have taken classes in Programming, Algorithmics.

Constraints C:

•
$$CS \rightarrow (P \wedge A)$$

•
$$(X \ge 60 \land P \land A) \rightarrow (CS \lor M \lor EE)$$

・ロト ・四ト ・ヨト ・ヨト

Definition

An abductive explanation (*AXp*) is a subset-minimal set of features that are sufficient to explain the decision $\kappa(v) = c$.

Example

The AXp's of $\kappa(1, 0, 0, 65, 0, 1, 1) = 1$ are $\{CS, X\}, \{X, P, A\}$

Definition

An abductive explanation (*AXp*) is a subset-minimal set of features that are sufficient to explain the decision $\kappa(v) = c$.

Example

The AXp's of $\kappa(1, 0, 0, 65, 0, 1, 1) = 1$ are $\{CS, X\}, \{X, P, A\}$

Definition

A coverage-based prime-implicant explanation (*CPI-Xp*) is a weak AXp not strictly subsumed by any other weak AXp.

Example

The only CPI-Xp of $\kappa(1, 0, 0, \frac{65}{0}, 0, 1, 1) = 1$ is $\{X, P, A\}$

イロン イロン イヨン イヨン

Complexity of testing/finding AXp's/CPI-Xp's

	Complexity	Complexity	
Explanation	of testing	of finding one	
АХр	co-NP-complete	FP ^{NP}	
CPI-Xp	Π_2^P -complete	$FP^{\Sigma^{P}_2}$	

We assume a white box, i.e. κ is an arbitrary but *known* function. FP^{\mathcal{L}} is the class of function problems that can be solved by a polynomial number of calls to an oracle for the language \mathcal{L} .

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Optimal abductive explanations

There are two criteria for choosing an optimal AXp/CPI-Xp:

- smallest explanation
- maximum coverage

Explanation	Complexity of testing	Complexity of finding one
smallest AXp max-coverage AXp	Π ₂ ^P -complete #P-hard	FP ^Σ 2 ^P FP ^{NP#P}
smallest CPI-Xp	Π_2^P -hard	$FP^{\Sigma^{P}_3}$

▲圖> ▲ ヨ> ▲ ヨ>

Dataset-based explanations

M. Cooper, L. Amgoud Coverage-based explanations for classifiers

Dataset-based explanations

If κ is a *black-box function*, then testing whether *E* is an AXp requires exhaustive search which is prohibitively expensive. \Rightarrow dataset-based explanations

Let \mathcal{T} be the dataset. It can be the actual training data or a random sample of feature space (possibly of points close to **v**). We may filter the training data so that we only keep points where the training data agrees with the model κ . For technical reasons, we assume $\mathbf{v} \in \mathcal{T}$ and that all vectors in \mathcal{T} satisfy the constraints \mathcal{C} .

Definition

Definitions of the dataset versions of AXp and CPI-Xp (*d*-AXp, *d*-*CPI*-Xp) are obtained by replacing the constraints C by T i.e. assuming (wrongly) that the only possible feature vectors are those in the dataset.

Complexity of testing/finding d-AXp's/d-CPI-Xp's

Explanation	Complexity	Complexity
	ortesting	
d-AXp	<i>O</i> (<i>mn</i> ²)	O(mn ²)
smallest d-AXp	co-NP-complete	FP ^{NP}
max-coverage d-AXp	co-NP-complete	FP ^{NP}
d-CPI-Xp	<i>O</i> (<i>m</i> ² <i>n</i>)	O(m ² n ²)
smallest d-CPI-Xp	co-NP-complete	FP ^{NP}

where $m = |\mathcal{T}|$ and *n* is the number of features.

M. Cooper, L. Amgoud Coverage-based explanations for classifiers

▲御 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国 …

Properties of explanations

M. Cooper, L. Amgoud Coverage-based explanations for classifiers

Definition

 $\mathbb{F}[\mathcal{C}]$ denotes the set of feature vectors *x* that satisfy \mathcal{C} .

Let $\mathbf{E}(\mathbf{v})$ be the set of explanations of $\kappa(\mathbf{v}) = c$. We can define the following properties of \mathbf{E} .

- (Consistency) For any v ∈ 𝔽[𝔅], each E ∈ 𝔼(v) satisfies the constraints 𝔅.
- (Coherence) For all $v, v' \in \mathbb{F}[\mathcal{C}]$ s.t. $\kappa(v) \neq \kappa(v')$, $\forall E \in \mathbf{E}(v), \forall E' \in \mathbf{E}(v'), \nexists v'' \in \mathbb{F}[\mathcal{C}]$ s.t. $(E \cup E')(v'')$.
- (Irreducibility) For any $v \in \mathbb{F}[C]$, $\forall E \in \mathbf{E}(v)$, $\forall \ell \in E$, $\exists v' \in \mathbb{F}[C]$ such that $\kappa(v') \neq \kappa(v)$ and $(E \setminus \{\ell\})(v')$.
- (Irredundance) For any $v \in \mathbb{F}[\mathcal{C}], \forall E, E' \in \mathbf{E}(v), E \not\approx E'$, where $E \approx E'$ if they subsume each other.

イロト イポト イヨト イヨト

Properties satisfied by each explanation

	АХр	CPI-Xp	d-AXp	d-CPI-Xp
Consistency	•	•	•	•
Coherence	•	•		
Irreducibility	•		•	•
Irredundance				

• means the property is satisfied

Examples

Example (of incoherence of dataset-based explanations)

- A mouse is a mammal because it milks its young
- An eagle is not a mammal because it lays eggs
- but a platypus (∉ dataset) milks its young and lays eggs!

Example (of reducibility of CPI-Xp's)

In the student example, if we have the constraint $CS \leftrightarrow P \land A$ then the explanations $\{CS, X\}$, $\{X, P, A\}$ and $\{CS, X, P, A\}$ are all equivalent (they have the same coverage) **but** $\{CS, X, P, A\}$ is reducible (i.e. not subset-minimal).

Example (of redundance of AXp's (and CPI-Xp's))

In the same student example, $\{CS, X\}$, $\{X, P, A\}$ are equivalent, hence listing them both is redundant.

ヘロン 人間 とくほ とくほう

Definition

A preferred coverage-based PI-explanation (*pCPI-Xp*) is a **representative** of an equivalence class of CPI-Xp's which is **minimal** for inclusion.

	АХр	CPI-Xp	pCPI-Xp	d-AXp	d-CPI-Xp
Consistency	•	•	•	•	•
Coherence	•	•	•		
Irreducibility	•		•	•	•
Irredundance			•		

Complexities for testing and finding pCPI-Xp and CPI-Xp's coincide.

◆□ > ◆□ > ◆豆 > ◆豆 > →

Conclusion

- New definition of prime-implicant explanations in the presence of constraints, **but** this increases complexity.
- Complexity is a real issue for black-box classifiers, so we can search over a dataset rather than exhaustively over the whole of feature space, **but** this can lead to incoherent pairs of explanations.
- We have a catalogue of different types of explanations with different complexities and different formal guarantees.
- Dataset-based explanations provide a trade-off between efficiency and coherence.
- pCPI-Xp's satisfy all the desired properties but are expensive to find.

・ 同 ト ・ ヨ ト ・ ヨ ト