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ABSTRACT

The reconstruction of causal graphical models through
constraint-based inference approaches, such as the PC al-
gorithm, is known to be consistent provided that a correct
list of conditional independencies is available. Yet, in prac-
tice, conditional independencies need to be ascertained from
statistical tests on the available observational data, and are
not robust to sampling noise from finite datasets. We propose
a more robust approach, which uncovers the most likely indi-
rect paths underlying structural independencies, based on the
sign and amplitude of conditional 3-point information terms.
The resulting 30f£2 algorithm iteratively “takes off” the
largest positive conditional 3-point information from the 2-
point (mutual) information between each pair of nodes. Then,
conditional independencies are derived by progressively col-
lecting the most significant indirect contributions to all pair-
wise mutual information. Identifying structural independen-
cies within such a maximum likelihood framework is found
to be more robust to sampling noise from finite observational
data on benchmark networks.

BACKGROUND

Two types of causal graph inference methods have been de-
veloped and applied to a variety of experimental datasets.
Bayesian inference approaches have the advantage of al-
lowing for quantitative comparisons between alternative net-
works using a score. However, as exact bayesian methods are
limited to small causal graphs due to the super-exponential
space of possible directed graphs to sample, they generally
require heuristic search strategies such as hill-climbing algo-
rithms[2].

By contrast, causal inference algorithms based on the iden-
tification of structural constraints run in polynomial time on
sparse graphs. These constraint-based inference approaches,
such as the PC algorithm[10], do not score and compare alter-
native causal graphs. Instead, they aim at ascertaining condi-
tional independencies between variables to directly infer the
markov equivalent class of all causal graphs compatible with
the data. Yet, this is usually done in arbitrary order of the
considered variables, which is prone to spurious conditional
independencies, and is not robust to sampling noise in finite
datasets.

NOVEL HYBRID INFERENCE METHOD

We have developed an information-theoretic approach that
combines constraint-based and bayesian frameworks to re-
liably learn graphical models despite of inherent sampling
noise in finite datasets. In a nutshell, it ascertains structural
independencies in causal graphs (i.e., I(x;y|{u;}) ~ 0 im-
plying no x-y link in the underlying network) based on a
bayesian ranking of their most contributing nodes, {u;}.

In practice, to decide whether a node z should be included
in the list of (already identified) contributors, {u;}, we
rely on the use of (conditional) 3-point information terms,
I(z;y; z{ui}) = I(x;y|{u;}) — I(x;y|z, {u;}), which can

be positive or negative[7], unlike (conditional) 2-point infor-
mation terms, I(x;y|{u;}), that are always positive. More
specifically, it can be shown[ ] that the (conditional) 3-point
information, I (z;y; z|{u;}), is related to the likelihood ratio,
Lo (zy; z[{ui}) /Lo (xy; |{u;}), that zyz form a v-structure
(v = & — z < y) versus a non v-structure (nv = x < z <
yorx < z — y), where {u;} are already identified con-
tributing nodes of the xy correlations,

Lo(wys 2l{ui}) /Lo (wys 2l{ui}) = e NIweltud)

Hence, significantly negative (conditional) 3-point informa-
tion, I(z;y;z|{u;}) <« —1/N, implies that a v-structure
is more likely than a non v-structure given the N observed
data points. Conversely, significantly positive (conditional)
3-point information, I(x;y; z[{u;}) > 1/N, implies that a
non v-structure model is more likely and that z should be in-
cluded in the set of nodes, {u;}, contributing to the x-y corre-
lations, i.e., {u;} < {u;} + 2, and possibly to the structural
independency, i.e., I(xz;y|{u;}) ~ 0.

By contrast, classical constraint-based approaches[10] as-
sess structural independencies in arbitrary order of the con-
tributing variables, {u;}, rendering them prone to spuri-
ous conditional independencies. Instead, our novel hy-
brid approach, 3o0f £2, progressively uncovers the best sup-
ported conditional independencies, by iteratively “taking
off” the most significant indirect contributions, the largest
positive contributions of conditional 3-point information,
I(x; y;ukl{u; }r—1), from every 2-point (mutual) informa-
tion, I(x;y), of the causal graph, as,

Iz yludn) = I(zy) — (2 ysur) — I(x;y; uslug)
— .. = I(CC; Y un‘{ui}n—l)

Identifying such structural independencies within a maxi-
mum likelihood framework proved to be much more robust
to sampling noise than classical inference methods and led to
excellent results on benchmark networks for large datasets,
compared to both Bayesian and constraint-based (PC) meth-
ods as well as other information-theoretic approaches, such
as Aracne[6].

COMPARISON TO STATE-OF-ART METHODS

We have tested the 30ff2 structural inference ap-
proach to reconstruct benchmark graphical models con-
taining 20 to 70 nodes and report here the results on
ALARM and INSURANCE datasets (see bnlearn database[Y]
www.bnlearn.com/), Fig. 1-2. The undirected skele-
tons learned by 30ff2 have been evaluated against other
methods in terms of Precision (or positive predictive value),
Prec =TP/(TP + FP), Recall or Sensitivity (or true posi-
tive rate), Rec = TP/(TP + FN), as well as F-score(3) for
increasing sample size N = 10 to 50, 000 data points, where
F-score(B8)= (1 + B?)Prec x Rec(3*Prec + Rec) are eval-
uated for 5 = 1/2 (favoring Precision) and 8 = 1 (treating
Precision and Recall on the same footing).



Alternative inference methods used are the PC algorithm[10]
(significance level « = 0.01) implemented in the pcalg
package[5], and Bayesian inference using the hill-climbing
heuristics (with 20 random restarts) and a Bayesian Dirich-
let equivalence score[4] implemented in the bnlearn pack-
age[9]. In addition, we also compare 30ff2 to Aracne[6],
an information-based inference approach, which iteratively
prunes links with the weakest mutual information based on
the Data Processing Inequality. We have used the Aracne im-
plementation of the minet R package[8], setting the thresh-
old parameter for the minimum difference in mutual informa-
tion to € = 0. For each sample size, 30f££2, Aracne and PC
have been tested on 50 replicates and the Bayesian inference
on 20 replicates. Figures 1 and 2 give the average results over
these multiple replicates.
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Figure 1. ALARM network (37 nodes, 46 links, 509 parameters, Average
degree 2.49, Maximum in-degree 4)

sample size (N)
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Figure 2. INSURANCE network (27 nodes, 52 links, 984 parameters, Aver-
age degree 3.85, Maximum in-degree 3)
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We have found that the 30f £2 approach reaches very good
precision levels at smaller sample sizes than Aracne or
bayesian methods and, unlike PC, keeps one of the high-
est Precision score up to large sample sizes (50,000). By
contrast, the Recall of 30££2 is lower than with Aracne
or bayesian methods at small sample size, although it be-
comes comparable or better than Aracne and Bayesian in-
ference methods at large sample size. Overall, taking into
account Precision and Recall simultaneously results most of-
ten in higher 30f££2 F-scores as compared to other meth-
ods. This is true in particular, at large sample size for F-
score(8 = 1) and at small sample size for F-score(8 = 1/2),

as expected for a properly balanced approach favoring Preci-
sion over Recall at small sample size when there is usually
not enough available data to recover all causal edges.

DISCUSSION, PERSPECTIVE

The 30ff2 algorithm exploits the best of constraint-based
and Bayesian inference methods to improve the identification
of structural constraints of causal graphs from finite datasets.
In particular, our approach is expected to run in polynomial
time on sparse causal network, like constraint-based algo-
rithms. Besides, the use of local bayesian scores to uncover
the best contributing nodes at each iteration enables to reli-
ably identify conditional independencies without cascading
accumulation of errors. Among the hybrid methods com-
bining contraint-based and Bayesian approaches, Claassen et
al.[3] have recently proposed to use bayesian scores to di-
rectly assess the reliability of conditional independencies by
summing the likelihoods over compatible graphs. By con-
trast, 30f£2 circumvents the need to score conditional in-
dependencies over a potentially intractable number of graphs
by using likelihood ratios while uncovering progressively the
best supported conditional independencies.
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