
Statistics and learning
Neural Networks

Emmanuel Rachelson and Matthieu Vignes

ISAE SupAero

14th March 2013

E. Rachelson & M. Vignes (ISAE) SAD 2013 1 / 13



Context

I branch of IA, which was motivated by a simulation of natural
behaviours to model processes generating observed data sets.

I See: Ant colony algorithms, genetic algorithms, simulated annealing
. . .

I Artifical neurons were first introduced by W. McCulloch (a
neurophysiologist) and W. Pitts (a logician). An artificial neural
network was formally described in 1948 by Alan Turing. In 1959,
Rosenblatt piled two layers (input and output) to form a network in
order to simulate the retinal functioning for pattern recognition.

I Computational developments had to wait until the 90s.

I Neural network theory benefited the study of the functioning of the
brain and provided the basis to create artifical intelligence.

E. Rachelson & M. Vignes (ISAE) SAD 2013 2 / 13



Context

I branch of IA, which was motivated by a simulation of natural
behaviours to model processes generating observed data sets.

I See: Ant colony algorithms, genetic algorithms, simulated annealing
. . .

I Artifical neurons were first introduced by W. McCulloch (a
neurophysiologist) and W. Pitts (a logician). An artificial neural
network was formally described in 1948 by Alan Turing. In 1959,
Rosenblatt piled two layers (input and output) to form a network in
order to simulate the retinal functioning for pattern recognition.

I Computational developments had to wait until the 90s.

I Neural network theory benefited the study of the functioning of the
brain and provided the basis to create artifical intelligence.

E. Rachelson & M. Vignes (ISAE) SAD 2013 2 / 13



Context

I branch of IA, which was motivated by a simulation of natural
behaviours to model processes generating observed data sets.

I See: Ant colony algorithms, genetic algorithms, simulated annealing
. . .

I Artifical neurons were first introduced by W. McCulloch (a
neurophysiologist) and W. Pitts (a logician). An artificial neural
network was formally described in 1948 by Alan Turing. In 1959,
Rosenblatt piled two layers (input and output) to form a network in
order to simulate the retinal functioning for pattern recognition.

I Computational developments had to wait until the 90s.

I Neural network theory benefited the study of the functioning of the
brain and provided the basis to create artifical intelligence.

E. Rachelson & M. Vignes (ISAE) SAD 2013 2 / 13



Context

I branch of IA, which was motivated by a simulation of natural
behaviours to model processes generating observed data sets.

I See: Ant colony algorithms, genetic algorithms, simulated annealing
. . .

I Artifical neurons were first introduced by W. McCulloch (a
neurophysiologist) and W. Pitts (a logician). An artificial neural
network was formally described in 1948 by Alan Turing. In 1959,
Rosenblatt piled two layers (input and output) to form a network in
order to simulate the retinal functioning for pattern recognition.

I Computational developments had to wait until the 90s.

I Neural network theory benefited the study of the functioning of the
brain and provided the basis to create artifical intelligence.

E. Rachelson & M. Vignes (ISAE) SAD 2013 2 / 13



Context

I branch of IA, which was motivated by a simulation of natural
behaviours to model processes generating observed data sets.

I See: Ant colony algorithms, genetic algorithms, simulated annealing
. . .

I Artifical neurons were first introduced by W. McCulloch (a
neurophysiologist) and W. Pitts (a logician). An artificial neural
network was formally described in 1948 by Alan Turing. In 1959,
Rosenblatt piled two layers (input and output) to form a network in
order to simulate the retinal functioning for pattern recognition.

I Computational developments had to wait until the 90s.

I Neural network theory benefited the study of the functioning of the
brain and provided the basis to create artifical intelligence.

E. Rachelson & M. Vignes (ISAE) SAD 2013 2 / 13



Neural networks
I (Artificial) neural networks are (more or less complex) assemblies of

elementary components: artificial neurons (see next slide).

I Differ in organisation (architecture) complexity (size, feedbacks),
neuron types but also the objectives: (un)supervised learning,
optimisation, dynamical system representation.

I AI tasks concerned with neural networks: (i) function approximation
(regression, time series pred. and model.), (ii) classification (pattern
and sequence recognition, novelty detection and sequential decision
making) and (iii) data processing (filtering, clustering, blind signal
separation, compression).

I Application: system identification and control (vehicle or process
control), game-playing with decision making (chess),
pattern/sequence recognition (radar systems, face identification,
object recognition, spam filters, speech or handwriting recognition),
medical diagnosis, financial applications, data mining (knowledge
discovery in databases), visualisation.

E. Rachelson & M. Vignes (ISAE) SAD 2013 3 / 13



Neural networks
I (Artificial) neural networks are (more or less complex) assemblies of

elementary components: artificial neurons (see next slide).
I Differ in organisation (architecture) complexity (size, feedbacks),

neuron types but also the objectives: (un)supervised learning,
optimisation, dynamical system representation.

I AI tasks concerned with neural networks: (i) function approximation
(regression, time series pred. and model.), (ii) classification (pattern
and sequence recognition, novelty detection and sequential decision
making) and (iii) data processing (filtering, clustering, blind signal
separation, compression).

I Application: system identification and control (vehicle or process
control), game-playing with decision making (chess),
pattern/sequence recognition (radar systems, face identification,
object recognition, spam filters, speech or handwriting recognition),
medical diagnosis, financial applications, data mining (knowledge
discovery in databases), visualisation.

E. Rachelson & M. Vignes (ISAE) SAD 2013 3 / 13



Neural networks
I (Artificial) neural networks are (more or less complex) assemblies of

elementary components: artificial neurons (see next slide).
I Differ in organisation (architecture) complexity (size, feedbacks),

neuron types but also the objectives: (un)supervised learning,
optimisation, dynamical system representation.

I AI tasks concerned with neural networks: (i) function approximation
(regression, time series pred. and model.), (ii) classification (pattern
and sequence recognition, novelty detection and sequential decision
making) and (iii) data processing (filtering, clustering, blind signal
separation, compression).

I Application: system identification and control (vehicle or process
control), game-playing with decision making (chess),
pattern/sequence recognition (radar systems, face identification,
object recognition, spam filters, speech or handwriting recognition),
medical diagnosis, financial applications, data mining (knowledge
discovery in databases), visualisation.

E. Rachelson & M. Vignes (ISAE) SAD 2013 3 / 13



Neural networks
I (Artificial) neural networks are (more or less complex) assemblies of

elementary components: artificial neurons (see next slide).
I Differ in organisation (architecture) complexity (size, feedbacks),

neuron types but also the objectives: (un)supervised learning,
optimisation, dynamical system representation.

I AI tasks concerned with neural networks: (i) function approximation
(regression, time series pred. and model.), (ii) classification (pattern
and sequence recognition, novelty detection and sequential decision
making) and (iii) data processing (filtering, clustering, blind signal
separation, compression).

I Application: system identification and control (vehicle or process
control), game-playing with decision making (chess),
pattern/sequence recognition (radar systems, face identification,
object recognition, spam filters, speech or handwriting recognition),
medical diagnosis, financial applications, data mining (knowledge
discovery in databases), visualisation.

E. Rachelson & M. Vignes (ISAE) SAD 2013 3 / 13



Biological vs artifical neuron

I Components for a (simplified) biological neuron:

I synapses: connecting points to other neurons and nerf or muscle fibres,
I dendrites: inputs for the neuron,
I axon: output point of the neuron towards other neurons or towards

fibres and
I nucleus: activates the output as a function of input stimuli

I Similarly, each artifical neuron is defined by an internal state s ∈ S,
input signals x1 . . . xp and an activation function:

s = h(x1 . . . xp) = f

α0 +

p∑
j=1

αjxj


I In brief, the activation function makes a transformation of a weighted

linear combination of the inputs.

E. Rachelson & M. Vignes (ISAE) SAD 2013 4 / 13



Biological vs artifical neuron

I Components for a (simplified) biological neuron:
I synapses: connecting points to other neurons and nerf or muscle fibres,

I dendrites: inputs for the neuron,
I axon: output point of the neuron towards other neurons or towards

fibres and
I nucleus: activates the output as a function of input stimuli

I Similarly, each artifical neuron is defined by an internal state s ∈ S,
input signals x1 . . . xp and an activation function:

s = h(x1 . . . xp) = f

α0 +

p∑
j=1

αjxj


I In brief, the activation function makes a transformation of a weighted

linear combination of the inputs.

E. Rachelson & M. Vignes (ISAE) SAD 2013 4 / 13



Biological vs artifical neuron

I Components for a (simplified) biological neuron:
I synapses: connecting points to other neurons and nerf or muscle fibres,
I dendrites: inputs for the neuron,

I axon: output point of the neuron towards other neurons or towards
fibres and

I nucleus: activates the output as a function of input stimuli
I Similarly, each artifical neuron is defined by an internal state s ∈ S,

input signals x1 . . . xp and an activation function:

s = h(x1 . . . xp) = f

α0 +

p∑
j=1

αjxj


I In brief, the activation function makes a transformation of a weighted

linear combination of the inputs.

E. Rachelson & M. Vignes (ISAE) SAD 2013 4 / 13



Biological vs artifical neuron

I Components for a (simplified) biological neuron:
I synapses: connecting points to other neurons and nerf or muscle fibres,
I dendrites: inputs for the neuron,
I axon: output point of the neuron towards other neurons or towards

fibres and

I nucleus: activates the output as a function of input stimuli
I Similarly, each artifical neuron is defined by an internal state s ∈ S,

input signals x1 . . . xp and an activation function:

s = h(x1 . . . xp) = f

α0 +

p∑
j=1

αjxj


I In brief, the activation function makes a transformation of a weighted

linear combination of the inputs.

E. Rachelson & M. Vignes (ISAE) SAD 2013 4 / 13



Biological vs artifical neuron

I Components for a (simplified) biological neuron:
I synapses: connecting points to other neurons and nerf or muscle fibres,
I dendrites: inputs for the neuron,
I axon: output point of the neuron towards other neurons or towards

fibres and
I nucleus: activates the output as a function of input stimuli

I Similarly, each artifical neuron is defined by an internal state s ∈ S,
input signals x1 . . . xp and an activation function:

s = h(x1 . . . xp) = f

α0 +

p∑
j=1

αjxj


I In brief, the activation function makes a transformation of a weighted

linear combination of the inputs.

E. Rachelson & M. Vignes (ISAE) SAD 2013 4 / 13



Biological vs artifical neuron

I Components for a (simplified) biological neuron:
I synapses: connecting points to other neurons and nerf or muscle fibres,
I dendrites: inputs for the neuron,
I axon: output point of the neuron towards other neurons or towards

fibres and
I nucleus: activates the output as a function of input stimuli

I Similarly, each artifical neuron is defined by an internal state s ∈ S,
input signals x1 . . . xp and an activation function:

s = h(x1 . . . xp) = f

α0 +

p∑
j=1

αjxj



I In brief, the activation function makes a transformation of a weighted
linear combination of the inputs.

E. Rachelson & M. Vignes (ISAE) SAD 2013 4 / 13



Biological vs artifical neuron

I Components for a (simplified) biological neuron:
I synapses: connecting points to other neurons and nerf or muscle fibres,
I dendrites: inputs for the neuron,
I axon: output point of the neuron towards other neurons or towards

fibres and
I nucleus: activates the output as a function of input stimuli

I Similarly, each artifical neuron is defined by an internal state s ∈ S,
input signals x1 . . . xp and an activation function:

s = h(x1 . . . xp) = f

α0 +

p∑
j=1

αjxj


I In brief, the activation function makes a transformation of a weighted

linear combination of the inputs.

E. Rachelson & M. Vignes (ISAE) SAD 2013 4 / 13



Artificial neuron (cont’d)

E. Rachelson & M. Vignes (ISAE) SAD 2013 5 / 13



Artificial neuron (cont’d)

I α0 is the bias of the neuron, αj ’s are its weights and need to be
estimated in a learning step. They are the memory or distributed
knwoledge of the network.

I Mostly used activation functions: linear, sigmoid, step or radial
function, etc.. Can be deterministic or stochastic.

I The choice of the activation function class is linked to that of the
learning algorithm.

I We restrict this course to the elementary (feedforward and not
recurrent) static structure of the network for supervised learning.

E. Rachelson & M. Vignes (ISAE) SAD 2013 6 / 13



Artificial neuron (cont’d)

I α0 is the bias of the neuron, αj ’s are its weights and need to be
estimated in a learning step. They are the memory or distributed
knwoledge of the network.

I Mostly used activation functions: linear, sigmoid, step or radial
function, etc.. Can be deterministic or stochastic.

I The choice of the activation function class is linked to that of the
learning algorithm.

I We restrict this course to the elementary (feedforward and not
recurrent) static structure of the network for supervised learning.

E. Rachelson & M. Vignes (ISAE) SAD 2013 6 / 13



Artificial neuron (cont’d)

I α0 is the bias of the neuron, αj ’s are its weights and need to be
estimated in a learning step. They are the memory or distributed
knwoledge of the network.

I Mostly used activation functions: linear, sigmoid, step or radial
function, etc.. Can be deterministic or stochastic.

I The choice of the activation function class is linked to that of the
learning algorithm.

I We restrict this course to the elementary (feedforward and not
recurrent) static structure of the network for supervised learning.

E. Rachelson & M. Vignes (ISAE) SAD 2013 6 / 13



Artificial neuron (cont’d)

I α0 is the bias of the neuron, αj ’s are its weights and need to be
estimated in a learning step. They are the memory or distributed
knwoledge of the network.

I Mostly used activation functions: linear, sigmoid, step or radial
function, etc.. Can be deterministic or stochastic.

I The choice of the activation function class is linked to that of the
learning algorithm.

I We restrict this course to the elementary (feedforward and not
recurrent) static structure of the network for supervised learning.

E. Rachelson & M. Vignes (ISAE) SAD 2013 6 / 13



Multilayer perceptron

I a multilayer perceptron is composed of successive layers.

I A layer is a set of neurons which are not connected between them but
can be connected to the previous and following layer.

I An input layer reads input signals (one neuron/input) and an output
layer gives the system response. In between several hidden layers
transfer and transform the signal.

E. Rachelson & M. Vignes (ISAE) SAD 2013 7 / 13



Multilayer perceptron

I a multilayer perceptron is composed of successive layers.

I A layer is a set of neurons which are not connected between them but
can be connected to the previous and following layer.

I An input layer reads input signals (one neuron/input) and an output
layer gives the system response. In between several hidden layers
transfer and transform the signal.

E. Rachelson & M. Vignes (ISAE) SAD 2013 7 / 13



Multilayer perceptron

I a multilayer perceptron is composed of successive layers.

I A layer is a set of neurons which are not connected between them but
can be connected to the previous and following layer.

I An input layer reads input signals (one neuron/input) and an output
layer gives the system response. In between several hidden layers
transfer and transform the signal.

E. Rachelson & M. Vignes (ISAE) SAD 2013 7 / 13



Multilayer perceptron

I a multilayer perceptron is composed of successive layers.

I A layer is a set of neurons which are not connected between them but
can be connected to the previous and following layer.

I An input layer reads input signals (one neuron/input) and an output
layer gives the system response. In between several hidden layers
transfer and transform the signal.

E. Rachelson & M. Vignes (ISAE) SAD 2013 7 / 13



Multilayer perceptron

I a multilayer perceptron is composed of successive layers.

I A layer is a set of neurons which are not connected between them but
can be connected to the previous and following layer.

I An input layer reads input signals (one neuron/input) and an output
layer gives the system response. In between several hidden layers
transfer and transform the signal.

E. Rachelson & M. Vignes (ISAE) SAD 2013 7 / 13



Neural networks
one layer is enough

Transfer function

A multilayer perceptron does a transformation of the input variables in the
form:

Y = ϕ (X1 . . . Xp;α) ,

where α is the vector with elements αjkl: parameter for entry j of neuron
k of layer l. Note that the entry layer (l = 0) is not parameterised.

Theorem (of “universal approximation”)

A not overwhelming structure with one hidden layer is enough to account
for most classical problems in statistics modelling or learning. Stems from
the approximation of any regular function with arbitrary accuracy in a
finite domain of variable space by a neural networks with a finite number
of neurons in a unique hidden layer and a linear output neuron.

E. Rachelson & M. Vignes (ISAE) SAD 2013 8 / 13



Neural networks
one layer is enough

Transfer function

A multilayer perceptron does a transformation of the input variables in the
form:

Y = ϕ (X1 . . . Xp;α) ,

where α is the vector with elements αjkl: parameter for entry j of neuron
k of layer l. Note that the entry layer (l = 0) is not parameterised.

Theorem (of “universal approximation”)

A not overwhelming structure with one hidden layer is enough to account
for most classical problems in statistics modelling or learning. Stems from
the approximation of any regular function with arbitrary accuracy in a
finite domain of variable space by a neural networks with a finite number
of neurons in a unique hidden layer and a linear output neuron.

E. Rachelson & M. Vignes (ISAE) SAD 2013 8 / 13



Learning

I We have a n-learning sample: (x
(i)
1 , . . . , x

(i)
p , y(i)) (i = 1 . . . n), for

variables X and Y .

I In the case of linear regression with a single output:
y = ϕ(x;α, β) = β0 +

>βz, with zk = f(αk,0 +
>αx), ∀k = 1 . . . q.

I Parameters can be estimated using a least square criterion by
minimising the quadratic loss

Q(α, β) =
∑

iQ
(i) =

∑
i

[
y(i) − ϕ(x(i);α, β)

]2
.

I for classification, this can be generalised to any differentiable loss
function in particular entropy.

I Several classical algorithms exist and are generally based on an
evaluation of the gradient by retro-propagation.

E. Rachelson & M. Vignes (ISAE) SAD 2013 9 / 13



Learning

I We have a n-learning sample: (x
(i)
1 , . . . , x

(i)
p , y(i)) (i = 1 . . . n), for

variables X and Y .

I In the case of linear regression with a single output:
y = ϕ(x;α, β) = β0 +

>βz, with zk = f(αk,0 +
>αx), ∀k = 1 . . . q.

I Parameters can be estimated using a least square criterion by
minimising the quadratic loss

Q(α, β) =
∑

iQ
(i) =

∑
i

[
y(i) − ϕ(x(i);α, β)

]2
.

I for classification, this can be generalised to any differentiable loss
function in particular entropy.

I Several classical algorithms exist and are generally based on an
evaluation of the gradient by retro-propagation.

E. Rachelson & M. Vignes (ISAE) SAD 2013 9 / 13



Learning

I We have a n-learning sample: (x
(i)
1 , . . . , x

(i)
p , y(i)) (i = 1 . . . n), for

variables X and Y .

I In the case of linear regression with a single output:
y = ϕ(x;α, β) = β0 +

>βz, with zk = f(αk,0 +
>αx), ∀k = 1 . . . q.

I Parameters can be estimated using a least square criterion by
minimising the quadratic loss

Q(α, β) =
∑

iQ
(i) =

∑
i

[
y(i) − ϕ(x(i);α, β)

]2
.

I for classification, this can be generalised to any differentiable loss
function in particular entropy.

I Several classical algorithms exist and are generally based on an
evaluation of the gradient by retro-propagation.

E. Rachelson & M. Vignes (ISAE) SAD 2013 9 / 13



Learning

I We have a n-learning sample: (x
(i)
1 , . . . , x

(i)
p , y(i)) (i = 1 . . . n), for

variables X and Y .

I In the case of linear regression with a single output:
y = ϕ(x;α, β) = β0 +

>βz, with zk = f(αk,0 +
>αx), ∀k = 1 . . . q.

I Parameters can be estimated using a least square criterion by
minimising the quadratic loss

Q(α, β) =
∑

iQ
(i) =

∑
i

[
y(i) − ϕ(x(i);α, β)

]2
.

I for classification, this can be generalised to any differentiable loss
function in particular entropy.

I Several classical algorithms exist and are generally based on an
evaluation of the gradient by retro-propagation.

E. Rachelson & M. Vignes (ISAE) SAD 2013 9 / 13



Learning

I We have a n-learning sample: (x
(i)
1 , . . . , x

(i)
p , y(i)) (i = 1 . . . n), for

variables X and Y .

I In the case of linear regression with a single output:
y = ϕ(x;α, β) = β0 +

>βz, with zk = f(αk,0 +
>αx), ∀k = 1 . . . q.

I Parameters can be estimated using a least square criterion by
minimising the quadratic loss

Q(α, β) =
∑

iQ
(i) =

∑
i

[
y(i) − ϕ(x(i);α, β)

]2
.

I for classification, this can be generalised to any differentiable loss
function in particular entropy.

I Several classical algorithms exist and are generally based on an
evaluation of the gradient by retro-propagation.

E. Rachelson & M. Vignes (ISAE) SAD 2013 9 / 13



Error retropropagation step
I Consists in evaluating the derivative of the cost function in the

direction of all parameters.

I If we write z
(i)
k = f(αk,0 +

>αx(i)) and z(i) = (z
(i)
1 , . . . , z

(i)
q , then:

∂Q(i)

∂βk
= −2(y(i) − ϕ(x(i)))(>βz(i))z(i)k = δiz

(i)
k

∂Q(i)

∂αkj
= −2(y(i) − ϕ(x(i)))(>βz(i))βkf ′(>αkx

(i))x(i)p = skix
(i)
p ,

I where δi (resp. ski) is the current error term for output (resp. hidden
layer neuron). They verify:

ski = f ′(>αkx
(i))βkδi.

I They are evaluated in 2 steps: “before” with current weight values,
input values are applied to get evaluations ϕ̂(x(i)) and “after” to
determine δi which are back-propagated to compute ski and hence
access gradient evaluations.

E. Rachelson & M. Vignes (ISAE) SAD 2013 10 / 13



Error retropropagation step
I Consists in evaluating the derivative of the cost function in the

direction of all parameters.

I If we write z
(i)
k = f(αk,0 +

>αx(i)) and z(i) = (z
(i)
1 , . . . , z

(i)
q , then:

∂Q(i)

∂βk
= −2(y(i) − ϕ(x(i)))(>βz(i))z(i)k = δiz

(i)
k

∂Q(i)

∂αkj
= −2(y(i) − ϕ(x(i)))(>βz(i))βkf ′(>αkx

(i))x(i)p = skix
(i)
p ,

I where δi (resp. ski) is the current error term for output (resp. hidden
layer neuron). They verify:

ski = f ′(>αkx
(i))βkδi.

I They are evaluated in 2 steps: “before” with current weight values,
input values are applied to get evaluations ϕ̂(x(i)) and “after” to
determine δi which are back-propagated to compute ski and hence
access gradient evaluations.

E. Rachelson & M. Vignes (ISAE) SAD 2013 10 / 13



Error retropropagation step
I Consists in evaluating the derivative of the cost function in the

direction of all parameters.

I If we write z
(i)
k = f(αk,0 +

>αx(i)) and z(i) = (z
(i)
1 , . . . , z

(i)
q , then:

∂Q(i)

∂βk
= −2(y(i) − ϕ(x(i)))(>βz(i))z(i)k = δiz

(i)
k

∂Q(i)

∂αkj
= −2(y(i) − ϕ(x(i)))(>βz(i))βkf ′(>αkx

(i))x(i)p = skix
(i)
p ,

I where δi (resp. ski) is the current error term for output (resp. hidden
layer neuron). They verify:

ski = f ′(>αkx
(i))βkδi.

I They are evaluated in 2 steps: “before” with current weight values,
input values are applied to get evaluations ϕ̂(x(i)) and “after” to
determine δi which are back-propagated to compute ski and hence
access gradient evaluations.

E. Rachelson & M. Vignes (ISAE) SAD 2013 10 / 13



Error retropropagation step
I Consists in evaluating the derivative of the cost function in the

direction of all parameters.

I If we write z
(i)
k = f(αk,0 +

>αx(i)) and z(i) = (z
(i)
1 , . . . , z

(i)
q , then:

∂Q(i)

∂βk
= −2(y(i) − ϕ(x(i)))(>βz(i))z(i)k = δiz

(i)
k

∂Q(i)

∂αkj
= −2(y(i) − ϕ(x(i)))(>βz(i))βkf ′(>αkx

(i))x(i)p = skix
(i)
p ,

I where δi (resp. ski) is the current error term for output (resp. hidden
layer neuron). They verify:

ski = f ′(>αkx
(i))βkδi.

I They are evaluated in 2 steps: “before” with current weight values,
input values are applied to get evaluations ϕ̂(x(i)) and “after” to
determine δi which are back-propagated to compute ski and hence
access gradient evaluations.

E. Rachelson & M. Vignes (ISAE) SAD 2013 10 / 13



Optimisation algorithm
I Once gradient computation is possible, several alogorithms can be

used.

I An elementary one is an iterative update in the steepest direction.
Since ∇.Q points in the largest increasing error direction, moving in
the alternative direction allows us to decrease Q:

I

β
(r+1)
k = β

(r)
k − τ

n∑
i=1

∂Q(i)

∂β
(r)
k

α
(r+1)
kp = α

(r)
kp − τ

n∑
i=1

∂Q(i)

∂α
(r)
kp

I τ is the learning rate. It can be kept to a default value, determined
bu the user or varied along the iterations.

I Refinements include second order expansion, stochastic modifications
for not being trapped in a local minimum, adding an inertia term to
avoid oscillations...Be aware of the algorithm you use and be critical
about possible convergence issues ?!

E. Rachelson & M. Vignes (ISAE) SAD 2013 11 / 13



Optimisation algorithm
I Once gradient computation is possible, several alogorithms can be

used.
I An elementary one is an iterative update in the steepest direction.

Since ∇.Q points in the largest increasing error direction, moving in
the alternative direction allows us to decrease Q:

I

β
(r+1)
k = β

(r)
k − τ

n∑
i=1

∂Q(i)

∂β
(r)
k

α
(r+1)
kp = α

(r)
kp − τ

n∑
i=1

∂Q(i)

∂α
(r)
kp

I τ is the learning rate. It can be kept to a default value, determined
bu the user or varied along the iterations.

I Refinements include second order expansion, stochastic modifications
for not being trapped in a local minimum, adding an inertia term to
avoid oscillations...Be aware of the algorithm you use and be critical
about possible convergence issues ?!

E. Rachelson & M. Vignes (ISAE) SAD 2013 11 / 13



Optimisation algorithm
I Once gradient computation is possible, several alogorithms can be

used.
I An elementary one is an iterative update in the steepest direction.

Since ∇.Q points in the largest increasing error direction, moving in
the alternative direction allows us to decrease Q:

I

β
(r+1)
k = β

(r)
k − τ

n∑
i=1

∂Q(i)

∂β
(r)
k

α
(r+1)
kp = α

(r)
kp − τ

n∑
i=1

∂Q(i)

∂α
(r)
kp

I τ is the learning rate. It can be kept to a default value, determined
bu the user or varied along the iterations.

I Refinements include second order expansion, stochastic modifications
for not being trapped in a local minimum, adding an inertia term to
avoid oscillations...Be aware of the algorithm you use and be critical
about possible convergence issues ?!

E. Rachelson & M. Vignes (ISAE) SAD 2013 11 / 13



Optimisation algorithm
I Once gradient computation is possible, several alogorithms can be

used.
I An elementary one is an iterative update in the steepest direction.

Since ∇.Q points in the largest increasing error direction, moving in
the alternative direction allows us to decrease Q:

I

β
(r+1)
k = β

(r)
k − τ

n∑
i=1

∂Q(i)

∂β
(r)
k

α
(r+1)
kp = α

(r)
kp − τ

n∑
i=1

∂Q(i)

∂α
(r)
kp

I τ is the learning rate. It can be kept to a default value, determined
bu the user or varied along the iterations.

I Refinements include second order expansion, stochastic modifications
for not being trapped in a local minimum, adding an inertia term to
avoid oscillations...Be aware of the algorithm you use and be critical
about possible convergence issues ?!

E. Rachelson & M. Vignes (ISAE) SAD 2013 11 / 13



Optimisation algorithm
I Once gradient computation is possible, several alogorithms can be

used.
I An elementary one is an iterative update in the steepest direction.

Since ∇.Q points in the largest increasing error direction, moving in
the alternative direction allows us to decrease Q:

I

β
(r+1)
k = β

(r)
k − τ

n∑
i=1

∂Q(i)

∂β
(r)
k

α
(r+1)
kp = α

(r)
kp − τ

n∑
i=1

∂Q(i)

∂α
(r)
kp

I τ is the learning rate. It can be kept to a default value, determined
bu the user or varied along the iterations.

I Refinements include second order expansion, stochastic modifications
for not being trapped in a local minimum, adding an inertia term to
avoid oscillations...Be aware of the algorithm you use and be critical
about possible convergence issues ?!E. Rachelson & M. Vignes (ISAE) SAD 2013 11 / 13



Controling for complexity

I Parameter choice:

1. number of hidden layers (1 or 2 in general) and number of neurons per
layer. They lead the bias/variance compromise and hence the learning
vs prediction quality.

2. iteration number, threshold for error and decay regularisation term
3. learning rate τ .

I It’s mainly about avoiding over-fitting: learning and test samples, CV
or bootstraps.

I Computation can be stopped when error on validation sample gets
worse, while error on learning sample still improves.

I the neuron number (per layer) can be chosen by CV.

I a decay (penalty term of the form Q(θ) + γ ‖ θ ‖) can avoid any
question about the number of neurons by choosing it large and then
restricting active parts of the activation functions by choosing γ only
by CV.

E. Rachelson & M. Vignes (ISAE) SAD 2013 12 / 13



Controling for complexity

I Parameter choice:

1. number of hidden layers (1 or 2 in general) and number of neurons per
layer. They lead the bias/variance compromise and hence the learning
vs prediction quality.

2. iteration number, threshold for error and decay regularisation term
3. learning rate τ .

I It’s mainly about avoiding over-fitting: learning and test samples, CV
or bootstraps.

I Computation can be stopped when error on validation sample gets
worse, while error on learning sample still improves.

I the neuron number (per layer) can be chosen by CV.

I a decay (penalty term of the form Q(θ) + γ ‖ θ ‖) can avoid any
question about the number of neurons by choosing it large and then
restricting active parts of the activation functions by choosing γ only
by CV.

E. Rachelson & M. Vignes (ISAE) SAD 2013 12 / 13



Controling for complexity

I Parameter choice:

1. number of hidden layers (1 or 2 in general) and number of neurons per
layer. They lead the bias/variance compromise and hence the learning
vs prediction quality.

2. iteration number, threshold for error and decay regularisation term

3. learning rate τ .

I It’s mainly about avoiding over-fitting: learning and test samples, CV
or bootstraps.

I Computation can be stopped when error on validation sample gets
worse, while error on learning sample still improves.

I the neuron number (per layer) can be chosen by CV.

I a decay (penalty term of the form Q(θ) + γ ‖ θ ‖) can avoid any
question about the number of neurons by choosing it large and then
restricting active parts of the activation functions by choosing γ only
by CV.

E. Rachelson & M. Vignes (ISAE) SAD 2013 12 / 13



Controling for complexity

I Parameter choice:

1. number of hidden layers (1 or 2 in general) and number of neurons per
layer. They lead the bias/variance compromise and hence the learning
vs prediction quality.

2. iteration number, threshold for error and decay regularisation term
3. learning rate τ .

I It’s mainly about avoiding over-fitting: learning and test samples, CV
or bootstraps.

I Computation can be stopped when error on validation sample gets
worse, while error on learning sample still improves.

I the neuron number (per layer) can be chosen by CV.

I a decay (penalty term of the form Q(θ) + γ ‖ θ ‖) can avoid any
question about the number of neurons by choosing it large and then
restricting active parts of the activation functions by choosing γ only
by CV.

E. Rachelson & M. Vignes (ISAE) SAD 2013 12 / 13



Controling for complexity

I Parameter choice:

1. number of hidden layers (1 or 2 in general) and number of neurons per
layer. They lead the bias/variance compromise and hence the learning
vs prediction quality.

2. iteration number, threshold for error and decay regularisation term
3. learning rate τ .

I It’s mainly about avoiding over-fitting: learning and test samples, CV
or bootstraps.

I Computation can be stopped when error on validation sample gets
worse, while error on learning sample still improves.

I the neuron number (per layer) can be chosen by CV.

I a decay (penalty term of the form Q(θ) + γ ‖ θ ‖) can avoid any
question about the number of neurons by choosing it large and then
restricting active parts of the activation functions by choosing γ only
by CV.

E. Rachelson & M. Vignes (ISAE) SAD 2013 12 / 13



Controling for complexity

I Parameter choice:

1. number of hidden layers (1 or 2 in general) and number of neurons per
layer. They lead the bias/variance compromise and hence the learning
vs prediction quality.

2. iteration number, threshold for error and decay regularisation term
3. learning rate τ .

I It’s mainly about avoiding over-fitting: learning and test samples, CV
or bootstraps.

I Computation can be stopped when error on validation sample gets
worse, while error on learning sample still improves.

I the neuron number (per layer) can be chosen by CV.

I a decay (penalty term of the form Q(θ) + γ ‖ θ ‖) can avoid any
question about the number of neurons by choosing it large and then
restricting active parts of the activation functions by choosing γ only
by CV.

E. Rachelson & M. Vignes (ISAE) SAD 2013 12 / 13



Controling for complexity

I Parameter choice:

1. number of hidden layers (1 or 2 in general) and number of neurons per
layer. They lead the bias/variance compromise and hence the learning
vs prediction quality.

2. iteration number, threshold for error and decay regularisation term
3. learning rate τ .

I It’s mainly about avoiding over-fitting: learning and test samples, CV
or bootstraps.

I Computation can be stopped when error on validation sample gets
worse, while error on learning sample still improves.

I the neuron number (per layer) can be chosen by CV.

I a decay (penalty term of the form Q(θ) + γ ‖ θ ‖) can avoid any
question about the number of neurons by choosing it large and then
restricting active parts of the activation functions by choosing γ only
by CV.

E. Rachelson & M. Vignes (ISAE) SAD 2013 12 / 13



Controling for complexity

I Parameter choice:

1. number of hidden layers (1 or 2 in general) and number of neurons per
layer. They lead the bias/variance compromise and hence the learning
vs prediction quality.

2. iteration number, threshold for error and decay regularisation term
3. learning rate τ .

I It’s mainly about avoiding over-fitting: learning and test samples, CV
or bootstraps.

I Computation can be stopped when error on validation sample gets
worse, while error on learning sample still improves.

I the neuron number (per layer) can be chosen by CV.

I a decay (penalty term of the form Q(θ) + γ ‖ θ ‖) can avoid any
question about the number of neurons by choosing it large and then
restricting active parts of the activation functions by choosing γ only
by CV.

E. Rachelson & M. Vignes (ISAE) SAD 2013 12 / 13



Let’s take a break before the practical sesson

Only 2 sessions left: regression trees and MCMC !

E. Rachelson & M. Vignes (ISAE) SAD 2013 13 / 13




