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Introduction (biological)

Objective : Recover the unknown gene network G for which :

a node of G is one of the p genes,
an edge of G represents an interaction between two
genes.
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Introduction (statistical)

p studied genes, for which we know the expression data
sample of size n

G2 G3

G1

Objective : Recover the unknown gene network G for which :

a node of G is one of the p genes,
an edge of G represents an interaction between two
genes.
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Model I

The first idea consists in considering gene Gj as an
observation and the others genes as explanatory variables.

∀1 ≤ j ≤ p, Gj =
∑

1≤i 6=j≤p

Gi + ε.

G2 G3

G1

G4
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Model I

The first idea consists in considering gene Gj as an
observation and the others genes as explanatory variables.

∀1 ≤ j ≤ p, Gj =
∑

1≤i 6=j≤p

θj
i G

i + ε.

G2 G3

G1

G4

2

0.8 −1

−10.8

Θ = (θ1, ..., θp) is the adjacency
matrix associated to the graph G,
which support is denoted S.

Θ =


0 0 −1 0

0.8 0 2 0.8
0 0 0 0
0 0 −1 0


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Linear regression

We can first rewrite the model as the following way :

Y = Xθ + ε.

X2 Y

X1

X3

2

−1

−1

Use of
Lasso,
Boosting...

→ Main disadvantage : we don’t exploit the structure of the
graph.
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Model II
Consider the set of gaussian Directed Acyclic Graphs.

Proposition
Any adjacency matrix Θ associated to a DAG G satisfies :

Θ = PT tP,

where P and T are permutation and lower-triangular
matrices.

G2 G3

G1

G4

2

0.8 −1

−10.8

T =


0 0 0 0
−1 0 0 0
−1 0 0 0
2 0.8 0.8 0


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Model II
Consider the set of gaussian Directed Acyclic Graphs.

Proposition
Any adjacency matrix Θ associated to a DAG G satisfies :

Θ = PT tP,

where P and T are permutation and lower-triangular
matrices.

G2 G3

G1

G4

2

0.8 −1

−10.8

P =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


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Optimization problem

We aim at minimizing the negative penalized log-likelihood :

(P̂, T̂ ) = argmin
P∈Pp(R),T∈Tp(R)

{
1
n
‖G −GPT tP‖2F + λ‖T‖1

}
,

where
Pp(R) is the set of permutation matrices,
Tp(R) is the set of strict lower-triangular matrices,

‖M‖F = Trace(tMM) =
∑

i,j(M
j
i )2,

‖M‖1 =
∑

i,j |M
j
i |.
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Oracle inequality

Let Θ̂ an estimator of the parameter Θ∗ and R(.) a risk
function. Oracle inequalities aim at comparing the risk of the
proposed estimator with the risk of the "oracle", defined as
the unknown parameter which minimizes the risk.

Theorem (Oracle inequality)

R(Θ̂) ≤ inf
Θ
{R(Θ) + residual term}.
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Oracle inequality
Assumption Re(s, c0) : for some integer s ∈ {1, ...,p}, and
c0 ≥ 0, the following condition holds :

κ(s, c0) := min
J⊂{1,...,p}
|J|≤s

min
M 6=0

‖MJc ‖1≤c0‖MJ‖1

‖XM‖F√
n‖MJ‖F

> 0.

Theorem (Oracle inequality)

Let η > 0 and s ≤ p. Consider the estimate Θ̂ = P̂T̂
t
P̂ with

λ = Aσ
√

log p
n , where A > 4

√
2. Then, with probability at

least 1− p2−A2/16, there exists C(η) such that :

1
n
‖GΘ̂−GΘ∗‖2F ≤

(1 + η) inf
Θ,|SΘ|≤s

{
1
n
‖GΘ−GΘ∗‖2F +

C(η)A2σ2

κ2(s,3 + 4/η)

log p
n

}
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For P fixed

We aim at minimizing the negative penalized log-likelihood :

T̂ = argmin
T∈Tp(R)

{
1
n
‖G −GPT tP‖2F + λ‖T‖1

}
.

minimization of a convex, differentiable and quadratic
function + penalization

Tk+1 = argmin
T

{
L
2
‖T −

(
Tk −

∇f (Tk )

L

)
‖2F + λ‖T‖1

}
.

projection on the space of constraints Tp(R).
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For T fixed

We aim at minimizing P̂ = argmin
P∈Pp(R)

{
1
n‖G −GPT tP‖2F

}
.

Since the space of constraints is not convex, we propose a
convex relaxation of the criterion to minimize.

Definition
A bistochastic matrix A = (aij)1≤i,j≤p is a matrix such that :

aij ≥ 0,∑
i aij =

∑
j aij = 1.

Proposition (Birkhoff)
The set of bistochastic matrices Bp(R) is a convex set,
which permutation matrices are extreme points.
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Alternate projection

We can write Bp(R) = Λ+ ∩ LC1 as the intersection of the
two sets :

1 the convex cone
Λ+ =

{
M = (M j

i )i,j ∈Mp, ∀i , j , M j
i ≥ 0

}
,

2 the affine subspace
LC1 =

{
M = (M j

i )i,j ∈Mp,
∑p

i=1 M j
i =

∑p
j=1 M j

i = 1
}

.

We use alternate projection algorithms (algorithm of Von
Neumann or Boyle-Dykstra) to find the expression of the
projected bistochastic matrix.
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Algorithm of Boyle-Dykstra
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Alternate minimization

(P̂, T̂ ) = argmin
P∈Bp(R),T∈Tp(R)

1
n
‖G −GPT tP‖2F + λ‖T‖1.

P0 ∈ Pp(R)
optimization // T0

proj // T ′0 ∈ Tp(R)

projected gradient descent
mmmmmmmmmmm

vvmmmmmmmmmmm

P1 ∈ Bp(R)
optimization // T1

proj // T ′1 ∈ Tp(R)

projected gradient descent
mmmmmmmmmmm

vvmmmmmmmmmmm

P2 ∈ Bp(R) // ...
Projection over Pp(R)//
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Permutation matrices

We rewrite the problem of finding the projection of any
bistochastic matrix B ∈ Bp(R) on Pp(R) as :

ProjPp(R)(B) = argmin
P∈Pp(R)

‖B − P‖F

= argmin
P∈Pp(R)

− 2〈B,P〉F .

Remark that the new function −2〈B,P〉F to minimize is
linear, whereas the space of constraints Pp(R) is the set of
all extreme points of the convex polytope.
There exists thus an extreme point solution of the relaxed
problem

P = argmin
P∈Bp(R)

− 2〈B,P〉F .
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Another issue
Joint work with Victor

Instead of relaxing the condition P ∈ Pp(R), we propose to
use genetic algorithms, which are heuristic searchs that
mimic the process of natural evolution.

Initialization Selection Crossover Mutation

Evaluation

Test
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In few words (initialization)

1 We take N permutation matrices. Each of them will be
represented by a sequence of “genes”, called
“chromosome”.

P =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0



2 3 6 1 4 5chromosome

2 We search the strict lower-triangular matrix T
associated to each chromosome.



Learning
networks

Magali
Champion

Introduction

Presentation
of the problem
Model

Linear regression

Optimization problem

Oracle inequality

Procedure of
optimization
With P fixed

With T fixed

Alternate
minimization

Permutation
matrices
Convex relaxation ?

Genetic algorithms

Numerical
results

In few words (crossover)

1 Selection for the crossover : roulette wheel selection
2 Method of crossover

1 2 3 4 5 6

6 5 1 3 2 4

1 3 2

3 4 5
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In few words (crossover)

1 Selection for the crossover : roulette wheel selection
2 Method of crossover

1 2 3 4 5 6

6 5 1 3 2 4

4 5 1 3 2 6

6 1 3 4 5 2
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Performances
Confusion matrix :

Prediction
edge no edge

Reality edge true positives false negatives
no edge false positives true negatives

We then define :
the recall

R =
True Positives

True Positives + False Negatives
.

the precision

Pr =
True Positives

True Positives + False Positives
.
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Experimental results

We also compute :
the MSE : ‖Θ̂−Θ∗‖2F
the MSEP : 1

n‖G −GΘ̂‖2F .

For n = 100 and p = 5

Optimization G-A Boosting Lasso
R 0.86 0.91 0.91 0.83
Pr 0.63 0.69 0.42 0.46

MSE 2.62 0.29 2.33
MSEP 8.02 4.88 5.26
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Experimental results

We also compute :
the MSE : ‖Θ̂−Θ∗‖2F
the MSEP : 1

n‖G −GΘ̂‖2F .

For n = 100 and p = 5

Optimization G-A Boosting Lasso Random
R 0.86 0.91 0.91 0.83 094
Pr 0.63 0.69 0.42 0.46 0.71

MSE 2.62 0.29 2.33 0.29
MSEP 8.02 4.88 5.26 4.88
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