Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

- With P fixed With T fixed Alternate minimization
- Permutation matrices Convex relaxation ? Genetic algorithms
- Numerical results

Convex optimization for learning Gene Regulatory Network

Magali Champion

Sébastien Gadat, Christine Cierco-Ayrolles et Matthieu Vignes

14 juin 2013

Plan

Learning networks

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed With T fixed Alternate minimization

Permutation matrices Convex relaxation Genetic algorithm

Numerical results

Introduction

- Presentation of the problem
 - Model
 - Linear regression
 - Optimization problem
 - Oracle inequality

Procedure of optimization

- With P fixed
- With T fixed
- Alternate minimization

3

Permutation matrices

- Convex relaxation ?
- Genetic algorithms

Numerical results

Introduction (biological)

Objective : Recover the unknown gene network \mathcal{G} for which :

- a node of \mathcal{G} is one of the *p* genes,
- an edge of G represents an interaction between two genes.

Learning networks

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed With T fixed Alternate minimization

Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

- With P fixed With T fixed Alternate minimization
- Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

Introduction (statistical)

p studied genes, for which we know the expression data
sample of size *n*

Objective : Recover the unknown gene network $\ensuremath{\mathcal{G}}$ for which :

- a node of \mathcal{G} is one of the *p* genes,
- an edge of *G* represents an interaction between two genes.

Magali Champion

Introduction

Presentation of the problem

Model

Linear regression Optimization problem Oracle inequality

Procedure of optimization

- With P fixed With T fixed Alternate minimization
- Permutation matrices Convex relaxation ? Genetic algorithms
- Numerical results

The first idea consists in considering gene G^{i} as an observation and the others genes as explanatory variables.

Model I

$$orall 1 \leq j \leq
ho, \ \ G^j = \sum_{1 \leq i
eq j \leq
ho} G^i + arepsilon.$$

Magali Champion

Introduction

Presentation of the problem

Model

Linear regression Optimization problem Oracle inequality

Procedure of optimization

- With P fixed With T fixed Alternate minimization
- Permutation matrices Convex relaxation ? Genetic algorithms
- Numerical results

The first idea consists in considering gene G^{i} as an observation and the others genes as explanatory variables.

$$\forall 1 \leq j \leq p, \ G^{j} = \sum_{1 \leq i \neq j \leq p} \frac{\theta_{j}^{j}G^{j}}{\epsilon}$$

 $\Theta = (\theta^1, ..., \theta^p)$ is the adjacency matrix associated to the graph \mathcal{G} , which support is denoted \mathcal{S} .

Model I

$$\Theta = egin{pmatrix} 0 & 0 & -1 & 0 \ 0.8 & 0 & 2 & 0.8 \ 0 & 0 & 0 & 0 \ 0 & 0 & -1 & 0 \end{pmatrix}$$

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed With T fixed Alternate minimization

Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

We can first rewrite the model as the following way :

$$Y = X\theta + \varepsilon.$$

Use of

Linear regression

- Lasso,
- Boosting...

 \rightarrow Main disadvantage : we don't exploit the structure of the graph.

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

- With P fixed With T fixed Alternate minimization
- Permutation matrices Convex relaxation for Genetic algorithms
- Numerical results

Consider the set of gaussian Directed Acyclic Graphs.

Proposition

Any adjacency matrix Θ associated to a DAG ${\mathcal G}$ satisfies :

$$\Theta = PT^t P,$$

where P and T are permutation and lower-triangular matrices.

$$T = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 2 & 0.8 & 0.8 & 0 \end{pmatrix}$$

Model II

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

- With P fixed With T fixed Alternate minimization
- Permutation matrices Convex relaxation of Genetic algorithms
- Numerical results

Consider the set of gaussian Directed Acyclic Graphs.

Proposition

Any adjacency matrix Θ associated to a DAG ${\mathcal G}$ satisfies :

$$\Theta = PT^t P,$$

where P and T are permutation and lower-triangular matrices.

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Model II

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed With T fixed Alternate minimization

Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

Optimization problem

We aim at minimizing the negative penalized log-likelihood :

$$(\hat{P}, \hat{T}) = \operatorname*{argmin}_{P \in \mathbb{P}_{p}(\mathbb{R}), T \in \mathbb{T}_{p}(\mathbb{R})} \left\{ \frac{1}{n} \| G - GPT^{t}P \|_{F}^{2} + \lambda \| T \|_{1} \right\},$$

where

- $\mathbb{P}_{\rho}(\mathbb{R})$ is the set of permutation matrices,
- $\mathbb{T}_{\rho}(\mathbb{R})$ is the set of strict lower-triangular matrices,
- $\|M\|_F = \operatorname{Trace}({}^tMM) = \sum_{i,j} (M_i^j)^2$,
- $\|\boldsymbol{M}\|_1 = \sum_{i,j} |\boldsymbol{M}_i^j|.$

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed With T fixed Alternate minimization

Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

Oracle inequality

Let $\hat{\Theta}$ an estimator of the parameter Θ^* and R(.) a risk function. Oracle inequalities aim at comparing the risk of the proposed estimator with the risk of the "oracle", defined as the unknown parameter which minimizes the risk.

Theorem (Oracle inequality)

 $R(\hat{\Theta}) \leq \inf_{\Theta} \{R(\Theta) + \text{residual term}\}.$

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed With T fixed Alternate minimization

Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

Oracle inequality

11 3 2 8 4 11

Assumption $Re(s, c_0)$: for some integer $s \in \{1, ..., p\}$, and $c_0 \ge 0$, the following condition holds :

$$\kappa(s, c_0) := \min_{\substack{J \subset \{1, \dots, p\} \\ |J| \le s}} \min_{\substack{M \neq 0 \\ \|M_{J^c}\|_1 \le c_0 \|M_J\|_1}} \frac{\|XM\|_F}{\sqrt{n} \|M_J\|_F} > 0.$$

Theorem (Oracle inequality)

Let $\eta > 0$ and $s \le p$. Consider the estimate $\hat{\Theta} = \hat{P}\hat{T}^t\hat{P}$ with $\lambda = A\sigma\sqrt{\frac{\log p}{n}}$, where $A > 4\sqrt{2}$. Then, with probability at least $1 - p^{2-A^2/16}$, there exists $C(\eta)$ such that :

$$\frac{1}{n} \|G\hat{\Theta} - G\Theta^*\|_F^2 \le (1+\eta) \inf_{\Theta, |\mathcal{S}_{\Theta}| \le s} \left\{ \frac{1}{n} \|G\Theta - G\Theta^*\|_F^2 + \frac{C(\eta)A^2\sigma^2}{\kappa^2(s, 3+4/\eta)} \frac{\log p}{n} \right\}$$

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed

With T fixed Alternate minimization

Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

For *P* fixed

We aim at minimizing the negative penalized log-likelihood :

$$\hat{T} = \operatorname*{argmin}_{T \in \mathbb{T}_{P}(\mathbb{R})} \left\{ \frac{1}{n} \| G - GPT^{t}P \|_{F}^{2} + \lambda \| T \|_{1} \right\}.$$

 minimization of a convex, differentiable and quadratic function + penalization

$$T_{k+1} = \underset{T}{\operatorname{argmin}} \left\{ \frac{L}{2} \| T - \left(T_k - \frac{\nabla f(T_k)}{L} \right) \|_F^2 + \lambda \| T \|_1 \right\}.$$

• projection on the space of constraints $\mathbb{T}_{\rho}(\mathbb{R})$.

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization With P fixed

With T fixed Alternate minimization

Permutation matrices Convex relaxation Genetic algorithms

Numerical results

We aim at minimizing $\hat{P} = \underset{P \in \mathbb{P}_{\rho}(\mathbb{R})}{\operatorname{argmin}} \left\{ \frac{1}{n} \| G - GPT^{t}P \|_{F}^{2} \right\}.$

For T fixed

Since the space of constraints is not convex, we propose a convex relaxation of the criterion to minimize.

Definition

A bistochastic matrix $A = (a_{ij})_{1 \le i,j \le p}$ is a matrix such that :

•
$$\sum_i a_{ij} = \sum_j a_{ij} = 1$$

Proposition (Birkhoff)

The set of bistochastic matrices $\mathbb{B}_p(\mathbb{R})$ is a convex set, which permutation matrices are extreme points.

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed

With T fixed Alternate minimization

Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

Alternate projection

We can write $\mathbb{B}_p(\mathbb{R})=\Lambda^+\cap\mathcal{LC}_1$ as the intersection of the two sets :

the convex cone $\Lambda^+ = \Big\{ M = (M_i^j)_{i,j} \in \mathcal{M}_p, \ \forall i, j, \ M_i^j \ge 0 \Big\},$

2 the affine subspace

$$\mathcal{LC}_1 = \Big\{ \boldsymbol{M} = (\boldsymbol{M}_i^j)_{i,j} \in \mathcal{M}_p, \ \sum_{i=1}^p \boldsymbol{M}_i^j = \sum_{j=1}^p \boldsymbol{M}_i^j = 1 \Big\}.$$

We use alternate projection algorithms (algorithm of Von Neumann or Boyle-Dykstra) to find the expression of the projected bistochastic matrix.

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed

With T fixed

Alternate minimization

Permutation matrices Convex relaxation Genetic algorithm

Numerical results

Algorithm of Boyle-Dykstra

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed

With T fixed

minimization

Permutation matrices Convex relaxation Genetic algorithm

Numerical results

Alternate minimization

$$\begin{split} (\hat{P}, \hat{T}) &= \underset{P \in \mathbb{B}_{p}(\mathbb{R}), T \in \mathbb{T}_{p}(\mathbb{R})}{\operatorname{argmin}} \frac{1}{n} \|G - GPT^{t}P\|_{F}^{2} + \lambda \|T\|_{1}. \\ P_{0} \in \mathbb{P}_{p}(\mathbb{R}) \xrightarrow{\operatorname{optimization}} T_{0} \xrightarrow{\operatorname{proj}} T_{0}' \in \mathbb{T}_{p}(\mathbb{R}) \\ & \text{projected gradient descent} \\ P_{1} \in \mathbb{B}_{p}(\mathbb{R}) \xrightarrow{\operatorname{optimization}} T_{1} \xrightarrow{\operatorname{proj}} T_{1}' \in \mathbb{T}_{p}(\mathbb{R}) \\ & \text{projected gradient descent} \\ P_{2} \in \mathbb{B}_{p}(\mathbb{R}) \xrightarrow{\cdots} \underbrace{\operatorname{Projection over}} \mathbb{P}_{p}(\mathbb{R}) \end{split}$$

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed With T fixed Alternate minimization

Permutation matrices

Convex relaxation? Genetic algorithms

Numerical results

Permutation matrices

We rewrite the problem of finding the projection of any bistochastic matrix $B \in \mathbb{B}_{\rho}(\mathbb{R})$ on $\mathbb{P}_{\rho}(\mathbb{R})$ as :

Remark that the new function $-2\langle B, P \rangle_F$ to minimize is linear, whereas the space of constraints $\mathbb{P}_p(\mathbb{R})$ is the set of all extreme points of the convex polytope.

There exists thus an extreme point solution of the relaxed problem

$$P = \operatorname*{argmin}_{P \in \mathbb{B}_{p}(\mathbb{R})} - 2\langle B, P
angle_{F}.$$

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed With T fixed Alternate minimization

Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

Another issue

Joint work with Victor

Instead of relaxing the condition $P \in \mathbb{P}_p(\mathbb{R})$, we propose to use genetic algorithms, which are heuristic searchs that mimic the process of natural evolution.

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

- With P fixed With T fixed Alternate minimization
- Permutation matrices Convex relaxation ? Genetic algorithms
- Numerical results

In few words (initialization)

We take N permutation matrices. Each of them will be represented by a sequence of "genes", called "chromosome".

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$
chromosome $\longrightarrow 2 \ 3 \ 6 \ 1 \ 4 \ 5$

We search the strict lower-triangular matrix T associated to each chromosome.

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed With T fixed Alternate minimization

Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

In few words (crossover)

Selection for the crossover : roulette wheel selection
 Method of crossover

1	2	3	4	5	6			1	3	2	
6	5	1	3	2	4	~		3	4	5	

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

With P fixed With T fixed Alternate minimization

Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

In few words (crossover)

Selection for the crossover : roulette wheel selection
 Method of crossover

1	2	3	4	5	6	 4	5	1	3	2	6
6	5	1	3	2	4	 6	1	3	4	5	2

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

- With P fixed With T fixed Alternate minimization
- Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

Confusion matrix :

		Prediction			
		edge	no edge		
Reality	edge	true positives	false negatives		
	no edge	false positives	true negatives		

We then define :

• the recall

 $R = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}}.$

• the precision

$$Pr = rac{\text{True Positives}}{\text{True Positives} + \text{False Positives}}$$

Performances

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

- With P fixed With T fixed Alternate minimization
- Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

Experimental results

We also compute :

- the MSE : $\|\hat{\Theta} \Theta^*\|_F^2$
- the MSEP : $\frac{1}{n} \|G G\hat{\Theta}\|_F^2$.

For n = 100 and p = 5

	Optimization	G-A	Boosting	Lasso
R	0.86	0.91	0.91	0.83
Pr	0.63	0.69	0.42	0.46
MSE	2.62	0.29	2.33	
MSEP	8.02	4.88	5.26	

Magali Champion

Introduction

Presentation of the problem Model Linear regression Optimization problem Oracle inequality

Procedure of optimization

- With P fixed With T fixed Alternate minimization
- Permutation matrices Convex relaxation ? Genetic algorithms

Numerical results

Experimental results

We also compute :

- the MSE : $\|\hat{\Theta} \Theta^*\|_F^2$
- the MSEP : $\frac{1}{n} \|G G\hat{\Theta}\|_F^2$.

For n = 100 and p = 5

	Optimization	G-A	Boosting	Lasso	Random
R	0.86	0.91	0.91	0.83	094
Pr	0.63	0.69	0.42	0.46	0.71
MSE	2.62	0.29	2.33		0.29
MSEP	8.02	4.88	5.26		4.88