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The setting (1/2)

How to build an efficient sequence to estimate

arg min
x∈RN

F (x)

where F : RN → R is a differentiable convex function with a L-Lipschitz
continuous gradient and at least one minimizer x∗.

∀(x , y) ∈ RN×RN , ‖∇F (x)−∇F (y)‖ 6 L‖x−y‖.

For all (x , y) ∈ RN × RN , we have:

F (y) ≤ F (x) + 〈∇F (x), y − x〉︸ ︷︷ ︸
linear approximation

+
L

2
‖y − x‖2︸ ︷︷ ︸
=∆(x,y)
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The setting (2/2)

Possible extensions to

Composite functions:
F (x) = f (x) + g(x)

where f is a convex differentiable function with a L-Lipschitz gradient and g
is a convex lsc (possibly nonsmooth but quite simple) function.

↪→ Application to least square problems, LASSO:

min
x∈RN

1

2
‖Ax − b‖2 + ‖x‖1

Constrained optimization:

arg min
x∈C

F (x)⇔ arg min
x∈RN

F (x) + iC (x).

Applications in Image and Signal processing, machine learning,...
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Two examples of algorithms

Let F : RN → R is a differentiable convex function with a L-Lipschitz continuous
gradient and at least one minimizer x∗.

min
x∈RN

F (x).

Explicit Gradient Descent

xn+1 = xn − h∇F (xn), h < 2
L

Inertial Gradient Descent

yn = xn + αn(xn − xn−1)
xn+1 = yn − h∇F (yn)

, αn ∈ [0, 1], h <
1

L
.
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Outline of the talk

How to exploit the geometry of F to get good or optimal convergence rates ?

A methodology to analyze optimization algorithms

Link between optimization algorithms and ODEs. A guideline to study the
optimization algorithms

Analysis of ODEs using a Lyapunov approach

Building a sequence of Lyapunov energies adapted to the optimization
scheme to get the same decay rates

Illustration on two algorithms

1 Gradient descent algorithm

2 Nesterov scheme
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Gradient descent for strongly convex functions
Link with the ODEs

Assume that F is µ-strongly convex i.e. that there exists µ > 0 such that:

∀(x , y) ∈ Rn × Rn, F (y) > F (x) + 〈∇F (x), y − x〉+
µ

2
‖y − x‖2.

This class of functions satisfies a quadratic growth condition: for any minimizer
x∗ we have:

∀x ∈ Rn, F (x)− F (x∗) >
µ

2
‖x − x∗‖2.
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Gradient descent for strongly convex functions
Link with the ODEs

Explicit Gradient Descent

Assume that F is µ-strongly convex. The explicit gradient algorithm
xn+1 = xn − h∇F (xn) ensures that for any h 6 1

L ,

F (xn)− F ∗ 6 (1− κ)n(F (x0)− F ∗) where κ =
µ

L
.

Explicit gradient descent iteration:
xn+1 − xn

h
+∇F (xn) = 0

Associated ODE: ẋ(t) +∇F (x(t)) = 0.
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Gradient descent for strongly convex functions
A Lyapunov analysis of the ODE ẋ(t) +∇F (x(t)) = 0

Let:
E(t) = F (x(t))− F ∗.

1 Proving that E is non increasing only ensures that F (x(t))− F ∗ is bounded.

E ′(t) = 〈∇F (x(t)), ẋ(t)〉 = −‖∇F (x(t))‖2 6 0

hence:
F (x(t))− F ∗ 6 F (x0)− F ∗.

2 Assume now that F is additionaly µ-strongly convex. Then we can prove:

∀y ∈ RN , ‖∇F (y)‖2 > 2µ(F (x(t))− F ∗),

hence:

E ′(t) = 〈∇F (x(t)), ẋ(t)〉 = −‖∇F (x(t))‖2 6 −2µE(t)

and we deduce:

∀t > t0, F (x(t))− F ∗ 6 (F (x0)− F ∗)e−2µ(t−t0).
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Gradient descent for strongly convex functions
From the continuous to the discrete

En = F (xn)− F ∗ with: xn+1 = xn − h∇F (xn).

En+1 − En = F (xn+1)− F (xn) 6 〈∇F (xn), xn+1 − xn〉+
L

2
‖xn+1 − xn‖2

6 −h
(

1− L

2
h

)
‖∇F (xn)‖2

If the step h satisfies:

h <
2

L

then the GD is a descent algorithm:

∀n,F (xn+1) < F (xn)

and the values F (xn)− F ∗ are bounded.
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Gradient descent for strongly convex functions
From the continuous to the discrete

En = F (xn)− F ∗ with: xn+1 = xn − h∇F (xn).

Assume now that F is additionally µ-strongly convex and h < 2
L

∀n, ‖∇F (xn)‖2 > 2µ(F (xn)− F ∗) = 2µEn,

hence:

En+1 − En 6 −2µh

(
1− L

2
h

)
En

For example si h 6 1
L we get:

∀n, En+1 − En 6 −µhEn ⇒ En 6 (1− µh)nE0

hence:
F (xn)− F ∗ 6 (F (x0)− F ∗)(1− µh)n.
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Nesterov inertial scheme

Nesterov inertial scheme/FISTA

yn = xn +
n

n + α
(xn − xn−1)

xn+1 = yn − h∇F (yn) .

Initially, Nesterov (1984) proposes α = 3.

Adapted by Beck and Teboulle to composite nonmooth functions (FISTA)

For the class of convex functions, if h < 1
L and:

I If α > 3

F (xn)− F (x∗) = O
(

1

n2

)
.

[Su, Boyd, Candes 2016, Chambolle Dossal 2015, Attouch et al. 2018].



11/28

Efficiency of Nesterov-FISTA

F (x) =
1

2
‖y − h ? x‖2

2 + λ ‖Wx‖1Non-smooth convex optimization

(a) Input y: motion blur + noise (σ = 2)

50 100 150 200 250 300
10 -2

10 -1

10 0

10 1

10 2

ISTA
FISTA

(b) Convergence prof les

(c) Deconvolution ISTA(300)+UDWT (d) Deconvolution FISTA(300)+UDWT
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Some questions

Some questions

Can we get more accurate rates than O
(

1

n2

)
with more information on F?

Are these bounds tight ?

What is the role of the inertial parameter α ?

Is Nesterov scheme really an acceleration of the Gradient descent ?
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Can we get more accurate rates than O
(

1

n2

)
with more information on F?

Are these bounds tight ?

What is the role of the inertial parameter α ?

Is Nesterov scheme really an acceleration of the Gradient descent ?

Answers

Yes... with strong convexity, Su et al. (15) Attouch et al. (17)

We give a more accurate answer for more general geometries.

In many numerical problems Nesterov is more efficient, but not always.

Take-away message: Nesterov may be more efficient than GD... or not.
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State of the art

Let F : RN → R be a differentiable convex function with X ∗ := arg min(F ) 6= ∅.

yn = xn +
n

n + α
(xn − xn−1)

xn+1 = yn − h∇F (yn)
, α > 0

If α > 3

F (xn)− F (x∗) = O
(

1

n2

)
[Attouch, Peypouquet 2016]

If α > 3, then (xn)n>1 cv and:

F (xn)− F (x∗) = o

(
1

n2

)
[Chambolle, Dossal 2014]

[Attouch, Peypouquet 2015]

If α 6 3

F (xn)− F (x∗) = O
(

1

n
2α
3

)
.

[Attouch, Chbani, Riahi 2018]

[Apidopoulos, Aujol, Dossal 2018]
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First Example : F (x) = x2 and α = 1 - State of the art rate: O( 1
n2/3 )

In blue F (xn), in orange n × (F (xn)− F ∗)
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Second Example : F (x) = x2 and α = 4 - State of the art rate: O( 1
n2 )

In blue F (xn), in orange n4 × (F (xn)− F ∗)
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Third Example : F (x) = |x |3 and α = 1 - State of the art rate: O( 1
n2/3 )

In blue F (xn), in orange n
6
5 × (F (xn)− F ∗)
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Fourth Example : F (x) = |x |3 and α = 7 - State of the art rate: O( 1
n2 )

In blue F (xn), in orange n6 × (F (xn)− F ∗)
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Nesterov: from the continuous to the discret

Discretization of an ODE, Su Boyd and Candès (15)

The scheme defined by

xn+1 = yn − h∇F (yn) with yn = xn +
n

n + α
(xn − xn−1)

can be seen as a semi-implicit discretization of a solution of

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0 (ODE)

With ẋ(t0) = 0. Move of a solid in a potential field with a vanishing viscosity α
t .

Advantages of the continuous setting

1 A simpler Lyapunov analysis, better insight

2 Optimality of bounds
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Nesterov, Proof of the convergence rate O
(

1
t2

)
under convexity

A first Lyapunov energy

EM(t) = F (x(t))− F (x∗) +
1

2
‖ẋ(t)‖2

be the mechanical energy associated to the ODE. We have:

E ′M(t) = 〈∇F (x(t)), ẋ(t)〉+ 〈ẍ(t), ẋ(t)〉 = −α
t
‖ẋ(t)‖2 6 0.

Hence:

∀t > t0, F (x(t))− F (x∗) 6 EM(t) 6 EM(t0)

6 F (x0)− F (x∗) +
1

2
‖v̇0‖2

A second Lyapunov energy to get the rate O
(

1
t2

)
Can we prove that the energy:

E (t) = t2 (F (x(t))− F (x∗)) +
t2

2
‖ẋ(t)‖2

is bounded ? The answer is : NO
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Nesterov, Proof of the convergence rate O
(

1
t2

)
under convexity

We define:

E(t) = t2(F (x(t))− F (x∗)) +
1

2
‖(α− 1)(x(t)− x∗) + tẋ(t)‖2

.

Using (ODE), a straightforward computation shows that:

E ′(t) = −(α− 1)t 〈∇F (x(t)), x(t)− x∗〉︸ ︷︷ ︸
>F (x(t))−F (x∗) by convexity

+2t(F (x(t))− F (x∗))

6 (3− α)t(F (x(t)− F (x∗)).

1 If α > 3, ∀t > t0, t2(F (x(t))− F (x∗)) 6 E(t0).

2 If α > 3,

∫ +∞

t=t0

(α− 3)t(F (x(t)− F (x∗))dt 6 E(t0).

If F is convex and if α > 3, the solution of (ODE) satisfies

F (x(t))− F (x∗) = O
(

1

t2

)
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Improving the convergence rate under geometrical assumptions

Assume now that F is µ-strongly convex and satisfies some flatness assumption:

H(γ) ∀x ∈ Rn, F (x)− F (x∗) 6
1

γ
〈∇F (x), x − x∗〉.

for some γ > 1.

If (F − F ∗)
1
γ is convex, then F satisfies H(γ).

If F satisfies H(γ) then for any x∗ ∈ X ∗, there exist C > 0 and η > 0 such
that

∀x ∈ B(x∗, η), F (x)− F (x∗) 6 C‖x − x∗‖γ .

Theorem for sharp functions (Aujol, Dossal, R. (2018))

Assume now that F is µ-strongly convex, satisfies the flatness condition H(γ) and
admits a unique minimizer x∗. Then:

F (x(t))− F (x∗) = O
(

1

t
2αγ
γ+2

)
(1)
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Nesterov, Proof of convergence rate

1 We define for (p, ξ, λ) ∈ R3

H(t) = tp
(
t2(F (x(t))− F∗) +

1

2
‖(λ(x(t)− x∗) + tẋ(t)‖2 +

ξ

2
‖x(t)− x∗‖2

)
2 We choose (p, ξ, λ) ∈ R3 depending on the hypotheses to ensure that H is

bounded. H may not be non increasing.

3 We deduce that there exists A ∈ R such that

t2+p(F (x(t))− F (x∗)) 6 A− tp
ξ

2
‖x(t)− x∗‖2

4 If ξ > 0 then F (x(t))− F (x∗) = O
(

1
tp+2

)
.

5 If ξ 6 0 we must use the strong convexity to conclude.

For the class of convex functions, take: p = 0, λ = α− 1, ξ = 0.
For the class of sharp convex functions, take:

p = 2αγ
γ+2 − 2, λ = 2α

γ+2 , ξ = λ(λ+ 1− α).
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The continuous, a guideline to analyse the Nesterov scheme

For the class of convex functions

Continuous setting:

E(t) = t2(F (x(t))− F (x∗)) +
1

2
‖(α− 1)(x(t)− x∗) + tẋ(t)‖2

.

Discrete setting:

En = n2(F (xn)− F (x∗)) +
1

2h
‖(α− 1)(xn − x∗) + n(xn − xn−1)‖2

Using the definition of (xn)n>1 and the following convex inequality

F (xn)− F (x∗) 6 〈xn − x∗,∇F (xn)〉

we get
En+1 − En 6 (3− α)n(F (xn)− F (x∗)) (2)

1 If α > 3, ∀n > 1, n2(F (xn)− F (x∗)) 6 E1

2 If α > 3,
∑
n>1

(α− 3)n(F (xn)− F (x∗)) 6 E1
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With geometry...

Theorem for sharp functions (Apidopoulos, Aujol, Dossal, R. (2018))

Assume that F is strongly convex and satisfies H(γ) for some γ ∈ [1, 2].

∀α > 0, F (xn)− F (x∗) = O
(

1

n
2γα
γ+2

)
. (3)

Comments

For γ = 1 we recover the decay O
(

1

n
2α
3

)
from [Attouch, Cabot 2018].

Since ∇F is L−Lipschitz and satisfies L(2), F automatically satisfies H(γ)
for some γ > 1 and thus

2γα

γ + 2
>

2α

3
.

For quadratic functions (i.e. for γ = 2), we get O
(

1
nα

)
.
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Convergence rates for flat functions

Theorem for flat functions (Apidopoulos, Aujol, Dossal, R. (2018))

Let γ > 2. If F has a unique minimizer x∗, if F satisfies the flatness condition
H(γ) and the growth condition:

∀x ∈ Rn,
µ

2
‖x − x∗‖γ 6 F (x)− F ∗

Then if α > γ+2
γ−2

F (xn)− F (x∗) = O

(
1

n
2γ

γ−2

)
.

Comments

Better rate than o( 1
n2 ).

Better rate than for the Gradient descent: if F satisfies L(γ) with γ > 2,
then

F (xn)− F (x∗) = O

(
1

n
γ

γ−2

)
[Garrigos et al. 2017].
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Application to the linear Least Square problem

Let A : RN → RN a positive definite bounded linear operator and y ∈ RN .
Consider

min
x∈RN

F (x) :=
1

2
‖Ax − y‖2.

F is convex and has a L-Lipschitz continuous gradient (L = |||A∗A|||).

As a convex quadratic function, we have:

F (x)− F (x∗) =
1

2
〈∇F (x), x − x∗〉 =

1

2
‖A(x − x∗)‖2.

I F satisfies H(γ) for any γ ∈ [1, 2], and L(2).

∀n, xn ∈ {x0}+ Im(A∗).

Since this problem has a unique solution on the space {x0}+ Im(A∗), our
theorem is still applicable and:

F (xn)− F ∗ = O
(

1

nα

)
.
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To sum up

Two ingredients to get better convergence rates on F (xn)− F ∗

A sharpness condition

I Ensuring that the magnitude of the gradient is not too low in the
neighborhood of the minimizers.

A flatness condition.

I Ensuring that F is not too sharp in the neighborhood of its minimizers
to prevent from bad oscillations of the solution.

Optimal convergence rates for Nesterov acceleration. J.-F. Aujol, Ch. Dossal, A.

Rondepierre. May 2018.

Convergence rates of an inertial gradient descent algorithm under growth and flatness

conditions. V. Apidopoulos, J.-F. Aujol, Ch. Dossal, A. Rondepierre. December 2018.
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Conclusion

A first conclusion

If F is sharp, Gradient Descent is faster than Nesterov.

If F is flat, Nesterov is faster than Gradient Descent.

Choose α as large as possibleNon-smooth convex optimization

(a) Input y: motion blur + noise (σ = 2)

50 100 150 200 250 300
10 -2

10 -1

10 0

10 1

10 2

ISTA
FISTA

(b) Convergence prof les

(c) Deconvolution ISTA(300)+UDWT (d) Deconvolution FISTA(300)+UDWT

F (x) =
1

2
‖y − h ? x‖2

2+λ ‖Wx‖1

satisfies L(2).
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Conclusion

A first conclusion

If F is sharp, Gradient Descent is faster than Nesterov.

If F is flat, Nesterov is faster than Gradient Descent.

Choose α as large as possible

A second conclusion : it’s more complicated

Constants in big O or in geometric decays may be important.

For example in the convex case (γ = 1), the constant in O
(
t−

2α
3

)
is of the

form:

∀t > α
√
µ
, F (x(t))− F (x∗) 6 CEm(t0)

(
α

t
√
µ

) 2α
3

Nesterov with restart and backtracking may outperform Conjugate Gradient
on the least square problem.
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