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The setting (1/2)

How to build an efficient sequence to estimate

arg min F(x)
xERN

where F : RN — R is a differentiable convex function with a L-Lipschitz
continuous gradient and at least one minimizer x*.

V(x,y) € RVXRY, ||VF(x)=VF(y)|| < Llx—yll
For all (x,y) € RY x RV, we have:
L 2
F(v) < FO) + (T, = x) 4+ 5 lly =

[ —
=A(x,y)

linear approximation



The setting (2/2)

Possible extensions to

@ Composite functions:
F(x) = f(x) + &(x)

where f is a convex differentiable function with a L-Lipschitz gradient and g
is a convex Isc (possibly nonsmooth but quite simple) function.

< Application to least square problems, LASSO:
in 211 Ax — bl + x|

min —||Ax — X
xERN 2 !

@ Constrained optimization:

argmin F(x) < argmin F(x) + ic(x).
xeC xERN

Applications in Image and Signal processing, machine learning,...



Two examples of algorithms

Let F : RY — R is a differentiable convex function with a L-Lipschitz continuous
gradient and at least one minimizer x*.

min F(x).
XEIIRN (X)
Explicit Gradient Descent
Xnt1 = Xp— hVF(x,), h<?2
Inertial Gradient Descent
Yn = Xp+ an(Xn - anl) 1

Le0,1], h< >,
Xp+1 = }/n_hv’:()/n) o & G[O ] <L




Outline of the talk

How to exploit the geometry of F to get good or optimal convergence rates ?

A methodology to analyze optimization algorithms

@ Link between optimization algorithms and ODEs. A guideline to study the
optimization algorithms

@ Analysis of ODEs using a Lyapunov approach

@ Building a sequence of Lyapunov energies adapted to the optimization
scheme to get the same decay rates

lllustration on two algorithms
© Gradient descent algorithm

@ Nesterov scheme




Gradient descent for strongly convex functions
Link with the ODEs

Assume that F is p-strongly convex i.e. that there exists p > 0 such that:
n n /’l’
¥(x,y) €R" XR", F(y) 2 F(x) + (VF(x),y = x) + Slly = x|

This class of functions satisfies a quadratic growth condition: for any minimizer
x* we have:

Vx € R", F(x) — F(x*) = Z)x — x*|2.



Gradient descent for strongly convex functions
Link with the ODEs

Explicit Gradient Descent

Assume that F is p-strongly convex. The explicit gradient algorithm
Xnt1 = Xpn — hV F(x,) ensures that for any h < 7,

F(x)) — F* < (1—k)"(F(x0) — F*)  where x = %

Explicit gradient descent iteration: X"Lh_xn +VF(x,) =0

Associated ODE: x(t) + VF(x(t)) =0.



Gradient descent for strongly convex functions
A Lyapunov analysis of the ODE x(t) + VF(x(t)) =0

Let:
E(t) = F(x(t)) — F~.

*

© Proving that £ is non increasing only ensures that F(x(t)) — F* is bounded.

£'(t) = (VF(x(1)), x(t)) = —[IVF(x(1))[I* < 0

hence:
F(x(t)) — F* < F(xo) — F™.



Gradient descent for strongly convex functions
A Lyapunov analysis of the ODE x(t) + VF(x(t)) =0

Let:
E(t) = F(x(t)) — F~.

*

© Proving that £ is non increasing only ensures that F(x(t)) — F* is bounded.
£'(t) = (VF(x(1)), x(t)) = —[IVF(x(1))[I* < 0

hence:
F(x(t)) — F* < F(xo) — F™.

@ Assume now that F is additionaly pu-strongly convex. Then we can prove:
vy € RV, [VF()I1? = 2u(F(x(t)) - F*),
hence:
E'(t) = (VF(x(1),x(t)) = —[IVF(x(t)|* < —2ué(t)
and we deduce:

Vt > ty, F(x(t)) — F* < (F(xo) — F*)e2n(t—t),



Gradient descent for strongly convex functions
From the continuous to the discrete

En=F(xy)— F* with:  x,41 = X, — hVF(xp).

L
Eni1— & = F(xp41) — F(xn) < (VF(xn), Xnt1 — Xn) + EHXnH - x,,||2
L
< (1= 50) IVFCIP

If the step h satisfies:

h< 2
S I
then the GD is a descent algorithm:
Vn, F(xnt1) < F(xn)

and the values F(x,) — F* are bounded.



Gradient descent for strongly convex functions
From the continuous to the discrete

En=F(xp) — F* with: X411 = x, — hVF(x,).

Assume now that F is additionally pu-strongly convex and h < %
i, [VF(a)l? = 2u(F(x0) — F*) = 2p&n,
hence:
L
En1—En < —2uh (1 — 2h) En
For example si h < % we get:

Vn, Emet—En < —phEn = En < (1 - ph)"&

hence:
F(xa) — F* < (F(x0) — F*)(1 — ph)".



Nesterov inertial scheme

Nesterov inertial scheme/FISTA

n
Yn = Xp+ n+a(Xn_Xn—1)
Xpy1 = Yn— hVF (yn) c

@ Initially, Nesterov (1984) proposes o = 3.
@ Adapted by Beck and Teboulle to composite nonmooth functions (FISTA)
@ For the class of convex functions, if h < % and:
» Ifa>3
N 1
F(x,) — F(x*)=0 <r12> .

[Su, Boyd, Candes 2016, Chambolle Dossal 2015, Attouch et al. 2018].



Efficiency of Nesterov-FISTA

1
F() = 5 lly = hexlz + A W)y

ISTA
FISTA

E(:4) - B(=")

50 100 150 200 250 300
Tteration k

(b) Convergence prof les

(c) Deconvolution ISTA(300)+UDWT (d) Deconvolution FISTA(300)+UDWT



Some questions

Some questions

1 . . .

@ Can we get more accurate rates than O <2) with more information on F?
n

@ Are these bounds tight 7

@ What is the role of the inertial parameter o ?

@ |s Nesterov scheme really an acceleration of the Gradient descent 7




Some questions

Some questions
1 . . .
@ Can we get more accurate rates than O ( — | with more information on F?
n

@ Are these bounds tight ?
@ What is the role of the inertial parameter o ?

@ Is Nesterov scheme really an acceleration of the Gradient descent ?

Answers
@ Yes... with strong convexity, Su et al. (15) Attouch et al. (17)

@ We give a more accurate answer for more general geometries.




Some questions

Some questions

1 . . .
@ Can we get more accurate rates than O (2) with more information on F?
n

@ Are these bounds tight ?
@ What is the role of the inertial parameter o ?

@ Is Nesterov scheme really an acceleration of the Gradient descent ?

Answers
@ Yes... with strong convexity, Su et al. (15) Attouch et al. (17)
@ We give a more accurate answer for more general geometries.
@ In many numerical problems Nesterov is more efficient, but not always.

@ Take-away message: Nesterov may be more efficient than GD... or not.




State of the art

Let F: RV — R be a differentiable convex function with X* := arg min(F) # (.

Yn = Xn+n+a(xn_xn—1) a0
Xn+1l = Yn— hVF()/n)
o Ifa>3
F(Xn) — F(X*) =0 (%) [Attouch, Peypouquet 2016]
n
o If a > 3, then (xp)n>1 cv and:
. 1 [Chambolle, Dossal 2014]
F(Xn) a F(X ) =0 (?) [Attouch, Peypouquet 2015]
@ If <3
o 1 [Attouch, Chbani, Riahi 2018]
F(X") - F(X ) =0 (nzf) ’ [Apidopoulos, Aujol, Dossal 2018]




First Example : F(x) = x? and o = 1 - State of the art rate: O(—7)

In blue F(x,), in orange n x (F(x,) — F*)

Trajectoire de Nesterov pour p= 2 et alpha=1
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Second Example : F(x) = x> and o = 4 - State of the art rate: O(})

In blue F(x,), in orange n* x (F(x,) — F*)

L0 Trajectoire de Mesterov pour p= 2 et alpha= 4
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Third Example : F(x) = [x|* and o = 1 - State of the art rate: O(—)

In blue F(x,), in orange n x (F(xn) — F¥)

Trajectoire de Nesterov pour p= 3 et alpha=1
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Fourth Example : F(x) = [x|> and o =7 - State of the art rate: O(})

In blue F(x,), in orange n® x (F(x,) — F*)

L0 Trajectoire de Mesterov pour p= 3 et alpha=7
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Nesterov: from the continuous to the discret

Discretization of an ODE, Su Boyd and Candés (15)
The scheme defined by

Xnt1 = Yn — WV F(y,) with y, = x, + (Xn — Xn—1)

n+ o
can be seen as a semi-implicit discretization of a solution of

x(t) + %X(t) + VF(x(t)) =0 (ODE)

With x(tp) = 0. Move of a solid in a potential field with a vanishing viscosity <.

Advantages of the continuous setting
@ A simpler Lyapunov analysis, better insight
@ Optimality of bounds




Nesterov, Proof of the convergence rate O (tlz) under convexity

A first Lyapunov energy
Ewm(t) = F(x(1) = F(<) + S Ix(1)11?
be the mechanical energy associated to the ODE. We have:

E(t) = (VF((D), X(0)) + (%(2), (1) = - S Ii(e) P <.
Hence:
vt 21, F(x(t)) = F(x*) < &m(t) < Em(to)
< Flo)~ F(x) + 5ol

A second Lyapunov energy to get the rate O (t%) Can we prove that the energy:

E(t) = £ (F(x(t)) — F(x")) + %Ilk(t)llz

is bounded ? The answer is : NO



Nesterov, Proof of the convergence rate O (tlz) under convexity

We define:
E(t) = 2(F(x(t)) — F(x*)) + % (e = 1)(x(£) = x*) + ex()]* -
Using (ODE), a straightforward computation shows that:
E'(t) = —(a—-1)t (VF(x(t)),x(t) —x*) +2t(F(x(t)) — F(x*))

>F(x(t))—F(x*) by convexity

< (B=a)e(F(x(t) — F(x)).

Q Ifa >3Vt >ty t2(F(x(t)) — F(x*)) < E(to).
+oo

Qfa>3 /t (@ — 3)E(F(x(t) — F(x"))dt < E(to).

=ty

If F is convex and if a > 3, the solution of (ODE) satisfies

Fx(e) - ) =0 ()

2




Improving the convergence rate under geometrical assumptions
Assume now that F is p-strongly convex and satisfies some flatness assumption:

H(v) VxeR", F(x)— F(x*) < =(VF(x),x — x*).

2=

for some v > 1.

o If (F— F*)% is convex, then F satisfies H(7).

@ If F satisfies H(7) then for any x* € X*, there exist C > 0 and 7 > 0 such
that

Vx € B(x*,n), F(x) — F(x*) < Cljx — x*||".

Theorem for sharp functions (Aujol, Dossal, R. (2018))

Assume now that F is pu-strongly convex, satisfies the flatness condition () and
admits a unique minimizer x*. Then:

Fx(e) - Fx) =0 5 W

ta2




Nesterov, Proof of convergence rate

© We define for (p,£,\) € R3

§

(o) = o (L(F(0) — F9) + 5 IOGLE) = x) + )P+ 5 Ix(0) - TP

@ We choose (p, &, \) € R depending on the hypotheses to ensure that # is
bounded. H may not be non increasing.

© We deduce that there exists A € R such that

§

tHP(F(x(1) = F(x7)) S A= 25 [|x(t) = x|

Q If £ >0 then F(x(t)) — F(x*) = O(tp:!l»Z)-
Q Ifé<

For the class of convex functions, take: p=0, A=a—1,£ =0.
For the class of sharp convex functions, take:

_ 295 A= 2o e AA+1-a)

0 we must use the strong convexity to conclude.




The continuous, a guideline to analyse the Nesterov scheme

For the class of convex functions

@ Continuous setting:
E(t) = t2(F(x(1)) - F(x*)) + % (e = 1)(x(2) = x*) + ex(t)[|*
@ Discrete setting:
€0 = P2(F() — F(x)) + 5 (o= 1) — x°) + nlxa — x02)|
Using the definition of (x,)n>1 and the following convex inequality

F(xn) — F(x*) < {x, — x*, VF(x,))

we get
Ent1—En < (3 - a)n(F(Xn) - F(X*)) (2)

Q Ifa>3VYn>1, n?(F(x,) — F(x*)) < &
Q Ifa>3, Z(a —3)n(F(xp) — F(x™)) < &

n>1




With geometry...

Theorem for sharp functions (Apidopoulos, Aujol, Dossal, R. (2018))
Assume that F is strongly convex and satisfies () for some 7 € [1, 2].

Va >0, F(x) — F(x*) = O (1> . 3)

n~+2

Comments

n3

@ For v =1 we recover the decay O (%) from [Attouch, Cabot 2018].

@ Since VF is L—Lipschitz and satisfies £(2), F automatically satisfies #(~y)

for some v > 1 and thus
2y« < 2a

v 42 3

@ For quadratic functions (i.e. for v = 2), we get O (%).




Convergence rates for flat functions

Theorem for flat functions (Apidopoulos, Aujol, Dossal, R. (2018))

Let v > 2. If F has a unique minimizer x*, if F satisfies the flatness condition
H() and the growth condition:
Vx € R", gnx —x*||" < F(x) — F*

: 42
Then if a > P

Comments
1
@ Better rate than o(—;).

@ Better rate than for the Gradient descent: if F satisfies £(7) with v > 2,
then

F(Xn) - F(X*) =0 ( 17) [Garrigos et al. 2017].

nv—2




Application to the linear Least Square problem

Let A: RV — RN a positive definite bounded linear operator and y € RV,
Consider

1
in F(x) :== Z[|Ax — y|.
min Fx) i= [l Ax — y|
@ F is convex and has a L-Lipschitz continuous gradient (L = [||A*A]).

@ As a convex quadratic function, we have:
1 1

S (VF(),x = x) = 5 [AGx = x|

F(x) — F(x)
» F satisfies H(y) for any v € [1,2], and £(2).
® Vn, x, € {xo} + Im(A*).

Since this problem has a unique solution on the space {xo} + Im(A*), our
theorem is still applicable and:




To sum up

Two ingredients to get better convergence rates on F(x,) — F*

@ A sharpness condition

Ensuring that the magnitude of the gradient is not too low in the
neighborhood of the minimizers.

@ A flatness condition.

Ensuring that F is not too sharp in the neighborhood of its minimizers
to prevent from bad oscillations of the solution.

Optimal convergence rates for Nesterov acceleration. J.-F. Aujol, Ch. Dossal, A.
Rondepierre. May 2018.

Convergence rates of an inertial gradient descent algorithm under growth and flatness

conditions. V. Apidopoulos, J.-F. Aujol, Ch. Dossal, A. Rondepierre. December 2018.



Conclusion

A first conclusion
@ If F is sharp, Gradient Descent is faster than Nesterov.
@ If F is flat, Nesterov is faster than Gradient Descent.

@ Choose « as large as possible

—— &
——FisTA
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Tteration J

(a) Input y: motion blur + noise (o = 2) 7 (b) Convergence prof les F(X) = % ||_y — h*X||§+)\ ||WX||1

satisfies £(2).

(c) Deconvolution ISTA(300)+UDWT (d) Deconvolution FISTA(300)+UDWT



Conclusion

A first conclusion
@ If F is sharp, Gradient Descent is faster than Nesterov.
@ If F is flat, Nesterov is faster than Gradient Descent.

@ Choose « as large as possible

A second conclusion : it's more complicated
@ Constants in big O or in geometric decays may be important.

For example in the convex case (y = 1), the constant in O (t_%a) is of the

form: ,
=

@ a)

Vi N

@ Nesterov with restart and backtracking may outperform Conjugate Gradient
on the least square problem.

Ve > -2 F(x(t)) - F(x*) < CEm(to)<
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