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 Examples
 Finite elements: structure, fluids…
 Reliability assessment

 Objectives: optimization / inversion / reliability analysis

 Number of runs very limited

 Popular solution: use of meta-models

Context: study of “expensive” computer 
experiments

SimulatorInputs x Output(s) y(x)
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Some contributions

 Adaptive designs of experiments for reliability 
analysis

 Optimal designs for kriging

 Space-time models for approximating partially 
converged simulations

 Noisy optimization
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The optimization problem considered

 Single objective, unconstrained:

 Dimension: 1 to 20
 Black-box approach (no derivatives)
 Expensive = 20 to 1000 runs
 Noisy: ( )    obs obs obsy y x ε= +

Assumptions:
• Independent, centered, Gaussian noise
• Known noise variance
• Repeatable experiments

min
xin D

y x 
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Outline

 Gaussian processes and optimization

 An infill criterion adapted to noisy problems

 Taking advantage of tunable precision

 One-dimensional example

 Application to a nuclear engineering problem



INRA - 4 mai 2012 6

I- Basics of Gaussian process 
based optimization
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Introduction to kriging



INRA - 4 mai 2012 8

Introduction to kriging
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Introduction to kriging

Probabilistic metamodel: associates a distribution to a 
prediction point instead of a scalar: ( ) ( ) ( )( )2~ ,K KF x N m x s x

( )
( )2

:  kriging mean

:  prediction variance

K

K

m x

s x
Very “rich” information for 
optimization!



INRA - 4 mai 2012 12

Optimization with Kriging: the EGO algorithm

 Use of the kriging 
prediction variance to 
choose experiments

 Trade-off between 
uncertainty and potential

 At each step: 
maximization of the 
expected improvement 
(EI): EI = E(ymin – ynew)+ 

 Noise-free only!
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Example: initial state with 4 observations
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Example: 5 observations
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Example: 6 observations
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Example: 7 observations
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Example: 8 observations
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Example: final state: 9 observations
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II- Adapting the Expected 
Improvement to noisy 
observations
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Kriging is well-suited to noisy observations

 Requires a small change in the equations:

With:
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Limitation of EI with noise

 Two problems with classical EI:

1. Current minimum is unknown due to noise

2. Future observation will also be observed in noise!

We need to rethink the notion of 
“improvement”
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EngOpt conference, Sept. 6-9, 

2010

Decision-making with noisy observations

 With noise, relation-order is not maintained

Which design is best?
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Decision-making with noisy observations

 Option 1: choose the best observation

EngOpt conference, Sept. 6-9, 
2010 23
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Decision-making with noisy observations

 Option 2: take the noise into account

EngOpt conference, Sept. 6-9, 
2010 24
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Decision-making with noisy observations

EngOpt conference, Sept. 6-9, 
2010 25

 Option 3: use a metamodel to filter the noise

safe choice: Kriging quantile
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Decision-making and “improvement”

 With noise-free function:
 Best design = minimal observation
 Improvement = reduction of the best observation value

 With noisy observations:
 Best design = minimal quantile
 Improvement = reduction of best quantile value
 Expected Quantile Improvement:

 EQI is analytically tractable (using Gaussian Process 
conditioning… and cumbersome calculations)

 Depends on past and future noise
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Illustration

 Future noise variance is 0.02
 Actual improvement here is 

0.26.

Step n Step n+1
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Influence of future noise level

 Criterion computed for 
several noise levels of 
the new observation

 With small noise: equal 
to classical EI

 With large noise: 
 New observation 

does not change the 
Kriging

 EQI is maximum at 
data points
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Conclusion of part II

 The EQI criterion
 Allows rigorous treatment of noise
 Is analytical
 Reflects the final user decision
 Depends on future noise

 The values of quantile level and future noise affect 
greatly the shape of the EQI

 Open question: one-step quantile improvement vs. 
global quantile minimization
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III- Taking advantage of tunable 
precision (and replications)
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What is tunable precision?

 Many simulators depends on parameters that tune the 
precision

 Two examples:
 Partially converged simulations (solver number of steps)
 Monte-Carlo simulators (sampling size)
 (Repeated experiments)

 Each observation is a trade-off between rapidity and 
accuracy

 Objective: use the tunable precision as an additional 
degree of freedom
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Assumptions

 Noise variance decreases with 
computational time

 Relation between variance and time 
is assumed to be known

 The Monte-Carlo case:

 Response convergence is tractable 
on-line
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Key concepts and objectives

 On-line allocation
 Allocate computational time adapted to each design
 Detect when adding computational time will not provide 

valuable information
 Allows early stop / accurate simulations

 Finite time strategy
 Computational time is limited by resources and simulator 

complexity
 Our trade-off is necessarily driven by this limitation
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Using EQI for online allocation

 EQI allows us to choose the next experiment given a future noise 
variance

 EQI can be updated on-line
 By updating kriging with current observation value
 By updating future noise variance (see next slide)

 EI measures by how much we can improve our decision

 Proposition: use it as a point-switching criterion
 EQI decreases when observation becomes accurate
 If the design is 'better than expected': EQI increases
 If the design is 'worse than expected': EQI decreases faster

 To avoid too many EQI optimization: switch point when: EQI < EQIinit/2
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Choice of the noise level for on-line allocation

 Natural idea: evaluate the interest of a single time 
step

               EQI would show by how much we expect to decrease 
the quantile with one time step

 Problem: EQI would be ≈ zero everywhere

 Proposition: use the value of the smallest noise 
achievable
 Noise can be bounded by the user (solver tolerance)
 Noise is always bounded by the computational resource
            EQI shows the ultimate gain achievable by this 

observation
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Consequences

 The ‘smallest noise achievable’ 
 depends on the computational resource
 increases during the optimization

 The algorithm behaves differently at the beginning 
and the end of the optimization
 Beginning: enhances exploration
 End: avoids visiting new sites

 The strategy takes into account the limited 
computational resource
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1D example

 1D function
 Normally distributed error
 var(ε) = 0.5 / t
 Total time T = 100
 Time is divided in 100 steps

 We distinguish here:
 Algorithm iterations
 Time steps
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 37

Iteration 1: 4 steps used / 92 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 38

Iteration 2: 1 step used / 91 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 39

Iteration 3: 6 steps used / 85 remaining



INRA - 4 mai 2012 41
EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 40

Iteration 4: 11 steps used / 74 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 41

Iteration 5: 14 steps used / 60 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 42

Iteration 6: 4 steps used / 56 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 43

Iteration 7: 3 steps used / 53 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 44

Iteration 8: 22 steps used / 29 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 45

Iteration 9: 12 steps used / 17 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 46

Iteration 10: 11 steps used / 6 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 47

Iteration 11: 4 steps used / 2 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 48

Iteration 12: 2 steps used / 0 remaining
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Iteration 12: final design
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Concluding comments

 Main ideas:
 Use of metamodel for final decision
 Sampling criterion adapted to the decision
 On-line resource allocation for improved efficiency
 Finite resource strategy

 Requirements 
 Prior knowledge (or learning) of error variance
 Response monitoring
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Ongoing and future work

 Implementation in an R toolbox (DiceOptim)
 Comparison of all existing kriging-based methods
 Application to partial convergence

 Parallelization
 Integration of complementary heuristics (racing)
 Applications: CFD, Geosciences, …
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Appendix 1: Application to a 
nuclear engineering problem
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Nuclear criticality safety assessment

 Physical system: (interim) storage of fissile material 
(PuO2 powder in tubes)

 Safety measurement: neutron multiplication factor keff:
 keff > 1: increasing neutrons productions
 keff = 1: stage neutrons populations
 keff < 1: required for storage

 Optimization problem: search for worst case of 
physical configurations

 keff computed using the MORET simulator: 
 based on MCMC
 Sample size can be chosen by user
 Known variance, inversely proportional to sample size
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The benchmark problem

 Two parameters
 Density of fissile powder
 Density of water between storage 

tubes

 Computational time
 One time step = 4000 particles = 30s
 For one time step:
 For 200 time steps:

25 10τ −= ﾴ
34 10τ −= ﾴ

Actual response:
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Results for a computational budget T=30

 Final design: 6 + 10 observations
 Poor kriging model
 Region of actual minimum identified
 Actual minimum missed
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Results for a computational budget T=100

 Final design: 20 + 14 observations
 Locally accurate kriging model
 Actual minimum found
 36% budget allocated to best design
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Appendix 2: partial convergence

58
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Partial convergence

 Principle
 CFD code: relies on an internal solver (Newton-

Raphson)
 Idea: stop calculations before convergence
 Faster response, less accurate

 Potential assets
 Almost non-instrusive
 « Free » multi-fidelity
 Single simulator
 Continuum of fidelities available
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Example: pipe flow problem

 13 parameters
 OpenFOAM model: convergence in 500 steps
 Objective function: flow standard deviation
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Objective function convergence at 20 
designs

Useful information is obtained before full 
convergence!
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A Space-time Gaussian process model

 Stochastic modeling of convergence error
 Intrinsic properties integrated in the covariance function
 Requires a learning stage
 Allows the use of EQI
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Optimisation results on a toy problem
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Appendix 3: adaptive designs
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Adaptive design of experiments (1/3)

 Objective: accurate approximation when f(x)=T
 Constrained optimization / Probability of exceeding 

threshold / Inversion
 Proposition: new criterion for choosing sequentially 

experiments
 Automated trade-off between uncertainty 

reduction and exploration of critical regions
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Adaptive design of experiments (2/3)

Fonction exacte Distribution des paramètres d’entrée 
(Bigaussienne)

• Seuil : T = 1.3
• 2 régions de défaillance
• ‘Budget’ : 16 observations
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Adaptive design of experiments (3/3)

Initial: 5 points Après 4 itérations

Après 8 itérations Après 11 itérations 
(final)

Exact

  Krigeage



INRA - 4 mai 2012 68

Appendix 4: misc.

57
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Future quantile distribution

 Kriging seen from step n+1 (observation added at xn+1):

 At step n, everything is known except 
 We can provide a distribution using the kriging at step n:

 By linearity, future quantile follows a normal distribution:

 Finally:

( ) ( )1 2
1 1( )n

n nQ M sα+
+ += +x x x
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Illustration: kriging quantile distributions
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Comparison of EQI for alpha=0 (left) and 
alpha=1.64 (right)
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Algorithm overview

Initialization
- Define computational budget T
- Generate initial DoE
- Build metamodel

While T > 0

Select experiment
Choose new design that maximizes                                    

On-line allocation
While  

    - Add one time step, update observation
    - Update metamodel
    - Update T = T - tstep

    - Update EI

Choose final design based on Kriging quantile

EQI [2T ]EQI init /2

EQI init=EQI [
2 T ]
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 Equivalent observation:
 Two observations:

 Equivalent to:

 Noise of equivalent observation for going 
from step j to bi:

EQI update


