
1

Learning and optimization of 
noisy systems using Gaussian 
processes

Victor Picheny, CERFACS, Toulouse

Joint work with:

  D. Ginsbourger, University of Bern

  Y. Richet, IRSN



INRA - 4 mai 2012 2

 Examples
 Finite elements: structure, fluids…
 Reliability assessment

 Objectives: optimization / inversion / reliability analysis

 Number of runs very limited

 Popular solution: use of meta-models

Context: study of “expensive” computer 
experiments

SimulatorInputs x Output(s) y(x)
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Some contributions

 Adaptive designs of experiments for reliability 
analysis

 Optimal designs for kriging

 Space-time models for approximating partially 
converged simulations

 Noisy optimization
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The optimization problem considered

 Single objective, unconstrained:

 Dimension: 1 to 20
 Black-box approach (no derivatives)
 Expensive = 20 to 1000 runs
 Noisy: ( )    obs obs obsy y x ε= +

Assumptions:
• Independent, centered, Gaussian noise
• Known noise variance
• Repeatable experiments

min
xin D

y x 
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Outline

 Gaussian processes and optimization

 An infill criterion adapted to noisy problems

 Taking advantage of tunable precision

 One-dimensional example

 Application to a nuclear engineering problem
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I- Basics of Gaussian process 
based optimization
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Introduction to kriging
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Introduction to kriging
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Introduction to kriging
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Introduction to kriging
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Introduction to kriging

Probabilistic metamodel: associates a distribution to a 
prediction point instead of a scalar: ( ) ( ) ( )( )2~ ,K KF x N m x s x

( )
( )2

:  kriging mean

:  prediction variance

K

K

m x

s x
Very “rich” information for 
optimization!
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Optimization with Kriging: the EGO algorithm

 Use of the kriging 
prediction variance to 
choose experiments

 Trade-off between 
uncertainty and potential

 At each step: 
maximization of the 
expected improvement 
(EI): EI = E(ymin – ynew)+ 

 Noise-free only!
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Example: initial state with 4 observations
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Example: 5 observations
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Example: 6 observations
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Example: 7 observations
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Example: 8 observations
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Example: final state: 9 observations



INRA - 4 mai 2012 19

II- Adapting the Expected 
Improvement to noisy 
observations
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Kriging is well-suited to noisy observations

 Requires a small change in the equations:

With:
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Limitation of EI with noise

 Two problems with classical EI:

1. Current minimum is unknown due to noise

2. Future observation will also be observed in noise!

We need to rethink the notion of 
“improvement”
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EngOpt conference, Sept. 6-9, 

2010

Decision-making with noisy observations

 With noise, relation-order is not maintained

Which design is best?
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Decision-making with noisy observations

 Option 1: choose the best observation

EngOpt conference, Sept. 6-9, 
2010 23
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Decision-making with noisy observations

 Option 2: take the noise into account

EngOpt conference, Sept. 6-9, 
2010 24
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Decision-making with noisy observations

EngOpt conference, Sept. 6-9, 
2010 25

 Option 3: use a metamodel to filter the noise

safe choice: Kriging quantile
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Decision-making and “improvement”

 With noise-free function:
 Best design = minimal observation
 Improvement = reduction of the best observation value

 With noisy observations:
 Best design = minimal quantile
 Improvement = reduction of best quantile value
 Expected Quantile Improvement:

 EQI is analytically tractable (using Gaussian Process 
conditioning… and cumbersome calculations)

 Depends on past and future noise
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Illustration

 Future noise variance is 0.02
 Actual improvement here is 

0.26.

Step n Step n+1
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Influence of future noise level

 Criterion computed for 
several noise levels of 
the new observation

 With small noise: equal 
to classical EI

 With large noise: 
 New observation 

does not change the 
Kriging

 EQI is maximum at 
data points
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Conclusion of part II

 The EQI criterion
 Allows rigorous treatment of noise
 Is analytical
 Reflects the final user decision
 Depends on future noise

 The values of quantile level and future noise affect 
greatly the shape of the EQI

 Open question: one-step quantile improvement vs. 
global quantile minimization
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III- Taking advantage of tunable 
precision (and replications)
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What is tunable precision?

 Many simulators depends on parameters that tune the 
precision

 Two examples:
 Partially converged simulations (solver number of steps)
 Monte-Carlo simulators (sampling size)
 (Repeated experiments)

 Each observation is a trade-off between rapidity and 
accuracy

 Objective: use the tunable precision as an additional 
degree of freedom



INRA - 4 mai 2012 3232

Assumptions

 Noise variance decreases with 
computational time

 Relation between variance and time 
is assumed to be known

 The Monte-Carlo case:

 Response convergence is tractable 
on-line
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Key concepts and objectives

 On-line allocation
 Allocate computational time adapted to each design
 Detect when adding computational time will not provide 

valuable information
 Allows early stop / accurate simulations

 Finite time strategy
 Computational time is limited by resources and simulator 

complexity
 Our trade-off is necessarily driven by this limitation
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Using EQI for online allocation

 EQI allows us to choose the next experiment given a future noise 
variance

 EQI can be updated on-line
 By updating kriging with current observation value
 By updating future noise variance (see next slide)

 EI measures by how much we can improve our decision

 Proposition: use it as a point-switching criterion
 EQI decreases when observation becomes accurate
 If the design is 'better than expected': EQI increases
 If the design is 'worse than expected': EQI decreases faster

 To avoid too many EQI optimization: switch point when: EQI < EQIinit/2
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Choice of the noise level for on-line allocation

 Natural idea: evaluate the interest of a single time 
step

               EQI would show by how much we expect to decrease 
the quantile with one time step

 Problem: EQI would be ≈ zero everywhere

 Proposition: use the value of the smallest noise 
achievable
 Noise can be bounded by the user (solver tolerance)
 Noise is always bounded by the computational resource
            EQI shows the ultimate gain achievable by this 

observation
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Consequences

 The ‘smallest noise achievable’ 
 depends on the computational resource
 increases during the optimization

 The algorithm behaves differently at the beginning 
and the end of the optimization
 Beginning: enhances exploration
 End: avoids visiting new sites

 The strategy takes into account the limited 
computational resource
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1D example

 1D function
 Normally distributed error
 var(ε) = 0.5 / t
 Total time T = 100
 Time is divided in 100 steps

 We distinguish here:
 Algorithm iterations
 Time steps
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 37

Iteration 1: 4 steps used / 92 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 38

Iteration 2: 1 step used / 91 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 39

Iteration 3: 6 steps used / 85 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 40

Iteration 4: 11 steps used / 74 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 41

Iteration 5: 14 steps used / 60 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 42

Iteration 6: 4 steps used / 56 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 43

Iteration 7: 3 steps used / 53 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 44

Iteration 8: 22 steps used / 29 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 45

Iteration 9: 12 steps used / 17 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 46

Iteration 10: 11 steps used / 6 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 47

Iteration 11: 4 steps used / 2 remaining
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EngOpt conference, Sept. 6-9, 

2010Atelier Mascot-Num, 4 mai 2010 48

Iteration 12: 2 steps used / 0 remaining



INRA - 4 mai 2012 5049

Iteration 12: final design
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Concluding comments

 Main ideas:
 Use of metamodel for final decision
 Sampling criterion adapted to the decision
 On-line resource allocation for improved efficiency
 Finite resource strategy

 Requirements 
 Prior knowledge (or learning) of error variance
 Response monitoring
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Ongoing and future work

 Implementation in an R toolbox (DiceOptim)
 Comparison of all existing kriging-based methods
 Application to partial convergence

 Parallelization
 Integration of complementary heuristics (racing)
 Applications: CFD, Geosciences, …
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Appendix 1: Application to a 
nuclear engineering problem
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Nuclear criticality safety assessment

 Physical system: (interim) storage of fissile material 
(PuO2 powder in tubes)

 Safety measurement: neutron multiplication factor keff:
 keff > 1: increasing neutrons productions
 keff = 1: stage neutrons populations
 keff < 1: required for storage

 Optimization problem: search for worst case of 
physical configurations

 keff computed using the MORET simulator: 
 based on MCMC
 Sample size can be chosen by user
 Known variance, inversely proportional to sample size
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The benchmark problem

 Two parameters
 Density of fissile powder
 Density of water between storage 

tubes

 Computational time
 One time step = 4000 particles = 30s
 For one time step:
 For 200 time steps:

25 10τ −= ﾴ
34 10τ −= ﾴ

Actual response:
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Results for a computational budget T=30

 Final design: 6 + 10 observations
 Poor kriging model
 Region of actual minimum identified
 Actual minimum missed
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Results for a computational budget T=100

 Final design: 20 + 14 observations
 Locally accurate kriging model
 Actual minimum found
 36% budget allocated to best design
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Appendix 2: partial convergence

58
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Partial convergence

 Principle
 CFD code: relies on an internal solver (Newton-

Raphson)
 Idea: stop calculations before convergence
 Faster response, less accurate

 Potential assets
 Almost non-instrusive
 « Free » multi-fidelity
 Single simulator
 Continuum of fidelities available
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Example: pipe flow problem

 13 parameters
 OpenFOAM model: convergence in 500 steps
 Objective function: flow standard deviation
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Objective function convergence at 20 
designs

Useful information is obtained before full 
convergence!
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A Space-time Gaussian process model

 Stochastic modeling of convergence error
 Intrinsic properties integrated in the covariance function
 Requires a learning stage
 Allows the use of EQI
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Optimisation results on a toy problem
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Appendix 3: adaptive designs
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Adaptive design of experiments (1/3)

 Objective: accurate approximation when f(x)=T
 Constrained optimization / Probability of exceeding 

threshold / Inversion
 Proposition: new criterion for choosing sequentially 

experiments
 Automated trade-off between uncertainty 

reduction and exploration of critical regions
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Adaptive design of experiments (2/3)

Fonction exacte Distribution des paramètres d’entrée 
(Bigaussienne)

• Seuil : T = 1.3
• 2 régions de défaillance
• ‘Budget’ : 16 observations
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Adaptive design of experiments (3/3)

Initial: 5 points Après 4 itérations

Après 8 itérations Après 11 itérations 
(final)

Exact

  Krigeage
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Appendix 4: misc.

57
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Future quantile distribution

 Kriging seen from step n+1 (observation added at xn+1):

 At step n, everything is known except 
 We can provide a distribution using the kriging at step n:

 By linearity, future quantile follows a normal distribution:

 Finally:

( ) ( )1 2
1 1( )n

n nQ M sα+
+ += +x x x
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Illustration: kriging quantile distributions
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Comparison of EQI for alpha=0 (left) and 
alpha=1.64 (right)
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Algorithm overview

Initialization
- Define computational budget T
- Generate initial DoE
- Build metamodel

While T > 0

Select experiment
Choose new design that maximizes                                    

On-line allocation
While  

    - Add one time step, update observation
    - Update metamodel
    - Update T = T - tstep

    - Update EI

Choose final design based on Kriging quantile

EQI [2T ]EQI init /2

EQI init=EQI [
2 T ]
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 Equivalent observation:
 Two observations:

 Equivalent to:

 Noise of equivalent observation for going 
from step j to bi:

EQI update


