Learning and optimization of noisy systems using Gaussian processes

Victor Picheny, CERFACS, Toulouse

Joint work with:

D. Ginsbourger, University of Bern

Y. Richet, IRSN

Context: study of "expensive" computer experiments

Examples

- □ Finite elements: structure, fluids...
- Reliability assessment

- Objectives: optimization / inversion / reliability analysis
- Number of runs very limited
- Popular solution: use of meta-models

Some contributions

- Adaptive designs of experiments for reliability analysis
- Optimal designs for kriging
- Space-time models for approximating partially converged simulations
- Noisy optimization

The optimization problem considered

Single objective, unconstrained:

 $\min_{x \text{ in } D} y(x)$

- Dimension: 1 to 20
- Black-box approach (no derivatives)
- Expensive = 20 to 1000 runs

• Noisy:
$$y_{obs} = y(x_{obs}) + \varepsilon_{obs}$$

Assumptions:

- Independent, centered, Gaussian noise
- Known noise variance
- Repeatable experiments

Outline

- Gaussian processes and optimization
- An infill criterion adapted to noisy problems
- Taking advantage of tunable precision
- One-dimensional example
- Application to a nuclear engineering problem

I- Basics of Gaussian process based optimization

Probabilistic metamodel: associates a distribution to a prediction point instead of a scalar: $F(x) \sim N(m_{K}x) \approx \frac{2}{K} (x)$

Optimization with Kriging: the EGO algorithm

- Use of the kriging prediction variance to choose experiments
- Trade-off between uncertainty and potential
- At each step: maximization of the expected improvement (EI): EI = E(y_{min} - y_{new})⁺
- Noise-free only!

Example: initial state with 4 observations

Example: 5 observations

Example: 6 observations

Example: 7 observations

Example: 8 observations

Example: final state: 9 observations

II- Adapting the Expected Improvement to noisy observations

Kriging is well-suited to noisy observations

Requires a small change in the equations:

Limitation of EI with noise

Two problems with classical EI:

$$EI(\mathbf{x}) = E\left[\left(\underbrace{\min\left(Y(\mathbf{X}_{n})\right)}_{unknown} - \underbrace{Y(\mathbf{x})}_{unreachable}\right)^{+}\right]$$

- 1. Current minimum is **unknown** due to noise
- 2. Future observation will also be observed in noise!

We need to rethink the notion of "improvement"

With noise, relation-order is not maintained
 Which design is best?

Option 1: choose the best observation

Option 2: take the noise into account

Option 3: use a metamodel to filter the noise
 safe choice: Kriging quantile

Decision-making and "improvement"

- With noise-free function:
 - □ Best design = minimal observation
 - Improvement = reduction of the best observation value
- With noisy observations:
 - Best design = minimal quantile
 - Improvement = reduction of best quantile value
 - Expected Quantile Improvement:

$$q_{min} = \min_{i=1...n} m_n(x_i) + \alpha \times s_n(x_i)$$
$$EQI(\mathbf{x}) = E\left[\left(q_{min} - q_{new}(\mathbf{x})\right)^+\right]$$

- EQI is analytically tractable (using Gaussian Process conditioning... and cumbersome calculations)
- Depends on past and future noise

Illustration

- Future noise variance is 0.02
- Actual improvement here is 0.26.

Influence of future noise level

- Criterion computed for several noise levels of the new observation
- With small noise: equal to classical EI
- With large noise:
 - New observation does not change the Kriging
 - EQI is maximum at data points

Conclusion of part II

The EQI criterion

- Allows rigorous treatment of noise
- □ Is analytical
- Reflects the final user decision
- Depends on future noise
- The values of quantile level and future noise affect greatly the shape of the EQI
- Open question: one-step quantile improvement vs. global quantile minimization

III- Taking advantage of tunable precision (and replications)

What is tunable precision?

- Many simulators depends on parameters that tune the precision
- Two examples:
 - Partially converged simulations (solver number of steps)
 - Monte-Carlo simulators (sampling size)
 - □ (Repeated experiments)
- Each observation is a trade-off between rapidity and accuracy
- Objective: use the tunable precision as an additional degree of freedom

Assumptions

- Noise variance decreases with computational time
- Relation between variance and time is assumed to be known
- The Monte-Carlo case:

$$\begin{cases} y_i = y(x_i) + \varepsilon_i \\ \varepsilon_i \sim N(0, \tau^2(x_i, t_i)) \\ \tau^2(x_i, t) = \frac{y(x_i)}{t} \end{cases}$$

Response convergence is tractable on-line

Key concepts and objectives

On-line allocation

- Allocate computational time adapted to each design
- Detect when adding computational time will not provide valuable information
- Allows early stop / accurate simulations
- Finite time strategy
 - Computational time is limited by resources and simulator complexity
 - Our trade-off is necessarily driven by this limitation

Using EQI for online allocation

- EQI allows us to choose the next experiment given a future noise variance
- EQI can be updated on-line
 By updating kriging with current observation value
 By updating future noise variance (see next slide)
- El measures by how much we can improve our decision
- Proposition: use it as a *point-switching* criterion
 EQI decreases when observation becomes accurate
 If the design is 'better than expected': EQI increases
 If the design is 'worse than expected': EQI decreases faster
- To avoid too many EQI optimization: switch point when: EQI < $EQI_{init}/2$

Choice of the noise level for on-line allocation

Natural idea: evaluate the interest of a single time step

 \implies EQI would show by how much we expect to decrease the quantile with one time step

- Problem: EQI would be ≈ zero everywhere
- Proposition: use the value of the smallest noise achievable
 - □ Noise can be bounded by the user (solver tolerance)
 - Noise is always bounded by the computational resource
 EQI shows the ultimate gain achievable by this observation

Consequences

The 'smallest noise achievable'
 depends on the computational resource
 increases during the optimization

- The algorithm behaves differently at the beginning and the end of the optimization
 - Beginning: enhances exploration
 - End: avoids visiting new sites

The strategy takes into account the limited computational resource
1D example

- ID function
- Normally distributed error
- $var(\epsilon) = 0.5 / t$
- Total time T = 100
- Time is divided in 100 steps
- We distinguish here:
 Algorithm iterations
 Time steps

Iteration 1: 4 steps used / 92 remaining

Iteration 2: 1 step used / 91 remaining

Iteration 3: 6 steps used / 85 remaining

Iteration 4: 11 steps used / 74 remaining

Iteration 5: 14 steps used / 60 remaining

Iteration 6: 4 steps used / 56 remaining

Iteration 7: 3 steps used / 53 remaining

Iteration 8: 22 steps used / 29 remaining

Iteration 9: 12 steps used / 17 remaining

Iteration 10: 11 steps used / 6 remaining

Iteration 11: 4 steps used / 2 remaining

Iteration 12: 2 steps used / 0 remaining

Iteration 12: final design

Concluding comments

- Main ideas:
 - Use of metamodel for final decision
 - □ Sampling criterion adapted to the decision
 - On-line resource allocation for improved efficiency
 - □ Finite resource strategy
- Requirements
 - □ Prior knowledge (or learning) of error variance
 - Response monitoring

Ongoing and future work

- Implementation in an R toolbox (DiceOptim)
- Comparison of all existing kriging-based methods
- Application to partial convergence
- Parallelization
- Integration of complementary heuristics (racing)
- Applications: CFD, Geosciences, …

Appendix 1: Application to a nuclear engineering problem

Nuclear criticality safety assessment

- Physical system: (interim) storage of fissile material $(P_uO_2 \text{ powder in tubes})$
- Safety measurement: neutron multiplication factor k_{eff}:
 - □ k_{eff} > 1: increasing neutrons productions
 - \Box $k_{eff} = 1$: stage neutrons populations
 - □ k_{eff} < 1: required for storage
- Optimization problem: search for worst case of physical configurations
- k_{eff} computed using the MORET simulator:
 - based on MCMC
 - □ Sample size can be chosen by user
 - Known variance, inversely proportional to sample size

The benchmark problem

Two parameters

- Density of fissile powder
- Density of water between storage tubes

Computational time

- \Box One time step = 4000 particles = 30s
- \Box For one time step: $\tau = 5 \Box 10^{-2}$
- For 200 time steps: $\tau = 4 \Box 10^{-3}$

Actual response:

Results for a computational budget T=30

- Final design: 6 + 10 observations
- Poor kriging model
- Region of actual minimum identified
- Actual minimum missed

Results for a computational budget T=100

- Final design: 20 + 14 observations
- Locally accurate kriging model
- Actual minimum found
- 36% budget allocated to best design

Appendix 2: partial convergence

Partial convergence

Principle

- CFD code: relies on an internal solver (Newton-Raphson)
- □ Idea: stop calculations before convergence
- □ Faster response, less accurate
- Potential assets
 - Almost non-instrusive
 - « Free » multi-fidelity
 - Single simulator
 - Continuum of fidelities available

Example: pipe flow problem

- 13 parameters
- OpenFOAM model: convergence in 500 steps
- Objective function: flow standard deviation

Objective function convergence at 20 designs

Useful information is obtained before full convergence!

A Space-time Gaussian process model

- Stochastic modeling of convergence error
- Intrinsic properties integrated in the covariance function
- Requires a learning stage
- Allows the use of EQI

Optimisation results on a toy problem

Actual function and final DOE

INRA - 4 mai 2012

Appendix 3: adaptive designs

Adaptive design of experiments (1/3)

- Objective: accurate approximation when f(x)=T
- Constrained optimization / Probability of exceeding threshold / Inversion
- Proposition: new criterion for choosing sequentially experiments
 - Automated trade-off between uncertainty reduction and exploration of critical regions

Adaptive design of experiments (2/3)

Fonction exacte Camelback function 0.5 0.5 0 0 -0.5 -0.5 -1 -1 Inputs distribution 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 L -1

-0.8

-0.6

-0.4 -0.2 0 0.2 0.4 0.6 0.8 Distribution des paramètres d'entrée (Bigaussienne)

- Seuil : T = 1.3
- 2 régions de défaillance
- 'Budget': 16 observations

Adaptive design of experiments (3/3)

Appendix 4: misc.

Future quantile distribution

• Kriging seen from step n+1 (observation added at \mathbf{x}_{n+1}):

$$M_{n+1}(\mathbf{x}) = \mathbf{c}_{n+1}(\mathbf{x}) \mathbf{C}_{n+1}^{-1} \begin{bmatrix} \tilde{\mathbf{Y}}_n \\ \tilde{\mathbf{Y}}(\mathbf{x}_{n+1}) \end{bmatrix}$$
$$s_{n+1}^2(\mathbf{x}) = \sigma^2 - \mathbf{c}_{n+1}(\mathbf{x}) \mathbf{C}_{n+1}^{-1} \mathbf{c}_{n+1}^T(\mathbf{x})$$

- At step n, everything is known except $\tilde{Y}(\mathbf{x}_{n+1})$
- We can provide a distribution using the kriging at step n:

$$\tilde{Y}(\mathbf{x}_{n+1}) \sim N(m_n(\mathbf{x}_{n+1}), s_n^2(\mathbf{x}_{n+1}) + \tau^2)$$
Kriging noise uncertainty

By linearity, future quantile follows a normal distribution: $Q^{n+1}(\mathbf{x}) = M_{n+1}(\mathbf{x}) + \alpha s_{n+1}^2(\mathbf{x})$

• Finally:
$$EQI(\mathbf{x}) = E\left[\left(q_{min} - Q^{n+1}(\mathbf{x})\right)^{+}\right]$$
 with $\mathbf{x}_{n+1} = \mathbf{x}$

Illustration: kriging quantile distributions

Comparison of EQI for alpha=0 (left) and alpha=1.64 (right)

INRA - 4 mai 2012

Algorithm overview

Initialization

- Define computational budget T
- Generate initial DoE
- Build metamodel

While T > 0

Select experiment

Choose new design that maximizes $EQI_{init} = EQI[\tau^2(T)]$

On-line allocation

While $EQI[\tau^2(T)] > EQI_{init}/2$

- Add one time step, update observation
- Update metamodel
- Update $T = T t_{step}$
- Update El

Choose final design based on Kriging quantile
EQI update

- Equivalent observation:
 - **D** Two observations: $\widetilde{y}_{i,1}$ and $\widetilde{y}_{i,2}$ $\tau_{i,1}^2$ and $\tau_{i,2}^2$

 $\Box \text{ Equivalent to: } \widetilde{y}_{i,eq} = \left(\tau_{i,1}^2 + \tau_{i,2}^2\right) \left(\tau_{i,1}^{-2} \widetilde{y}_{i,1} + \tau_{i,2}^{-2} \widetilde{y}_{i,2}\right)$

$$\frac{1}{\tau_{i,eq}^2} := \frac{1}{\tau_{i,1}^2} + \frac{1}{\tau_{i,2}^2} \Longrightarrow \tau_{i,eq}^2 = \frac{\tau_{i,1}^2 \tau_{i,2}^2}{\tau_{i,1}^2 + \tau_{i,2}^2}$$

Noise of equivalent observation for going from step *j* to *b_i*:

$$\tau_i^2[j \to b_i] := \frac{\tau_i^2[j]\tau_i^2[b_i]}{\tau_i^2[j] - \tau_i^2[b_i]} = \frac{\tau^2(j \times t_e)\tau^2(T_i)}{\tau^2(j \times t_e) - \tau^2(T_i)} =: \tau^2(j \times t_e \to T_i)$$