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______________________________________________________________________ 

Abstract: Networks are very useful tools to decipher complex regulatory relationships between genes in 

an organism. Most work address this issue in the context of  i.i.d., treated vs. control or time-series 

samples. However, many data sets include expression obtained for the same cell type of  an organism, but 

in several conditions. We introduce a novel method for inferring networks from samples obtained in 

various but related experimental conditions. This approach is based on a double penalization: a first 

penalty aims at controlling the global sparsity of  the solution whilst a second penalty is used to make 

condition-specific networks consistent with a consensual network. This “consensual network” is 

introduced to represent the dependency structure between genes, which is shared by all conditions. We 

show that different “consensus” penalties can be used, some integrating prior (e.g., bibliographic) 

knowledge and others that are adapted along the optimization scheme. In all situations, the proposed 

double penalty can be expressed in terms of  a LASSO problem and hence, solved using standard 

approaches which address quadratic problems with 1L -regularization. This approach is combined with a 

bootstrap approach and is made available in the R package therese1. Our proposal is illustrated on 

simulated datasets and compared with independent estimations and alternative methods. It is also applied 

to a real dataset to emphasize the differences in regulatory networks before and after a low-calorie diet. 
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______________________________________________________________________ 

1. Introduction 

he recent development of  high-throughput techniques produces huge datasets where 

thousand of  gene expressions are simultaneously measured. However, the number of  

observations is comparatively very small, and those are often measured in a variety of  

experimental conditions. One of  the big challenges of  modern Systems Biology is to 

understand the influence of  controlled experimental conditions on the functioning of  living 

organisms. This question is usually addressed by searching for the differences between gene 

expressions pertaining to the conditions (hence for “differentially expressed genes”). A more 

comprehensive look at the roles of  the genes of  an organism can be obtained by 

deciphering the interactions of  these genes with each other; finding which regulation 

pathways are modified by a given experimental condition gives an interesting insight on the 

influence of  the condition on the living system as a whole. 
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One of  the most popular approach to understand the complex relationships existing 

between the expression of  a large set of  genes is to infer a co-expression network from a 

transcriptomic dataset. In such a model, nodes of  the network represent the genes and an 

edge is meant to stand for a regulatory link between the two nodes it connects. A large 

number of  different methods have been proposed to infer such networks: using correlations 

(“relevance network”, [4]), Bayesian networks [19, 20], Gaussian Graphical Model [7, 21]. 

When observations are collected in different conditions, a naive approach would be to 

independently infer a network for each condition and to compare them. However, this 

method is not suited to highlight specific differences and shared motifs of  regulation 

phenomenons. Moreover, since the number of  observations is often too small, inferring 

networks independently (assuming that a common functioning exists in most scenarii) 

leads to emphasize irrelevant differences. Several proposals have already been made to 

overcome this issue: [5, 6, 17] use a modified Gaussian graphical model and [13] proceeds 

in two steps with a clustering prior to the inference. The proposal developed in this paper is 

close to that of  [5, 6, 17]: a Gaussian graphical model is used and two interpretable 

penalties are added to the likelihood. The first penalty aims at inferring sparse solutions; 

the second penalty is used to make networks obtained in different conditions consistent 

with a consensual network. The “consensual network” is introduced to represent high-level 

dependencies between genes, i.e., a common functioning of  the living organism under study, 

in most situations. It can either include prior (e.g., bibliographic) knowledge or be 

expressed from the condition-specific networks. Finally, the estimation is made more robust 

by using a bootstrap approach. 

The paper is organized as follows: Section 2 describes the double penalty approach. 

Section 3 explains our proposal for estimating the networks with a bootstrap strategy. 

Finally, Section 4 provides experimental results on simulations. 

2. cLasso 

In the Gaussian graphical model (GGM) framework, the classical objective is to 

estimate the graph of  conditional dependencies between p  variables (usually modeling 

gene expressions), 1, ,( )j j pX , from n  i.i.d. observations of  the variables, namely 

 1, ,( )ij i nX ,  {1, , }j p . Each p -dimensional vector X .i  is assumed to be the realization 

of  a Gaussian random variable  Σ0, . In this framework, non-zero entries of  the 

concentration matrix ΣK
1  exactly encode actual edges (between genes) in the 

conditional dependency graph. In the present section, we describe how this framework can 

be extended to the case where observations are obtained from different samples, each 

sample being measured in a given (but related) experimental condition. 

2.1. Inferring Multiple Networks with GGM 

Now assuming that the p  gene expressions are measured from k  samples, each 

corresponding to a specific experimental condition, the following model can be set: 

   1, , , 1, ,( )cj j p c kX  are k  Gaussian p -dimensional vector, Σ(0, ).c  A total of  n  

observations are available:   1

1
1, , , 1,...,( )ij i n j pX  ...    1, ,  , 1, ,( )

k

k
ij i n j pX , with c cn n  and, for 

all c  and all i ,  1, ,( )cij j pX  are i.i.d. observations of  Σ(0, )c . In the following, our 

goal is twofold: 

 inferring k  sparse graphs that model gene regulations in the k  conditions;  

 finding one consensual graph that models a “shared” functioning between conditions.  
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The GGM framework is used for the inference. As previously explained, the 

concentration matrices  Σ


K
1

c c  need be estimated and the entries of  these matrices 

exactly measure conditional dependencies between variables ( )cj jX  through partial 

correlation coefficients,  ' ' , ' , |( )c c c c
jj j j l l j js or X X X  because of  the relation 

 K K K' ' ' '/c c c c
jj jj jj j js  [13]. 

These quantities can be estimated by considering the following ( k p ) linear 

regression problems [18]:   1, ,c k ,   1 ,j p ,  

   X X\ ,c c c c
j j j j                              (1) 

where X\
c
j  is the matrix    X 1, , , 1, ,( )

c

c c
ij i n j pX  deprived from its j -th column X

c
j , 

   ' '( )c c
j jj j j  is a ( 1)p -dimensional vector and  c

j  is a Gaussian centered error. In the 

Gaussian framework, it can be shown that the coefficients of  the linear model are related to 

the previous quantities by   K K' ' /
c c c
jj jj jj . 

The k p  linear models of  Equation (1) can be jointly estimated by maximizing a 

pseudo-likelihood:  

  ‍ ‍ ‍
  

   K X X K,\
1 1 1

( | ) logP |  , .
cnpk

c c c
ij i j j

c j i

X                  (2) 

[8] proved that maximizing the pseudo-likelihood of  Equation (2) over matrices K( )c c  is 

equivalent to minimizing the following p  quantities simultaneously:  

Σ      \ \ \         
1 ˆˆ1, , , .
2

 T T
j jjj j j jj p      (3) 

The p  problems of  Equation (3) are  ( 1)p k -dimensional quadratic optimization 

problems in which:   

   1, ,c k ,   
  1

' '( )c c p
j jj j j , where   K K

1
' '( )c c c

jj jj jj ;  

       1 ( 1), ,
T

k k p
j j j ;  

 Σ\ \
ˆ

j j  is the block diagonal matrix \ \
ˆ

j j    1
\ \ \ \

ˆDiag ,  ,ˆ k
j j j j , having 

dimensions   ( 1) ( 1)k p k p ;  

 Σ \
ˆ
j j  is the ( 1)k p -dimensional vector,  Σ 1

\ \
ˆˆ , ,  k

j j j j .  

However, this approach leads to matrices without non-zero entries. Moreover, when 

( )c cn  are not larger than p , the estimation of  ( )j j  becomes trickier and pseudo-inverse 

methods lead to highly unstable results. Using the additional assumption that conditional 

dependency graphs are indeed sparse, a standard approach is to add a 1L -penalization to 

the likelihood of  Equation (2) (“Graphical LASSO”, see [9]) or, alternatively, to consider 

p  independent 1L -penalized problems derived from those of  Equation (3), see [8, 18]. 

The latter, more direct approach, has been reported to be more accurate in terms of  edge 

detection in [7]. 

2.2. Using a “Consensus” Penalty 

In the previous section, the conditional dependency graphs are obtained from each 

sample independently. The assumption that the graphs issued from the different 

experimental conditions should be somehow alike, is not integrated into the model. 
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Especially in the case where the sample sizes are low, such an assumption should help to 

predict edges more accurately. Various techniques exist to address this issue: [5] proposed to 

replace the covariance matrices ̂c  by mixing it with the covariance matrices 

corresponding to the other conditions. Alternatively, some authors suggest to penalize the 

pseudo-likelihood by a penalty that can explicitly deal with the similarity between 

condition-specific graphs via different strategies:   

 [8] proposed two kinds of  Group-LASSO type penalties: 

‍ ‍  K K
2(( ) ) ( )c c

c ij
ij c

P   

(Group-LASSO) and 

‍ ‍ ‍ 

 
    

 
K K K

2 2(( ) ) ( ) ( )c c c
c ij ij

c cij

P  

(sign-coherent Group- LASSO or “Cooperative LASSO”). The group-LASSO 

penalty globally controls sparsity and inferred edges are common to all conditions. 

The sign coherent option of  their penalization scheme offers the possibility to enforce 

an edge to encode either an activating or repressing process but not both: it provides 

strongly similar networks between conditions and has been proven efficient in case of  

experimental conditions leading to small changes in the regulations. However, for 

some particular applications (e.g., certain forms of  cancer that lead to a complete 

re-organization of  the living system), the assumption that the relations between two 

genes is always a repressing/enhancing relation is not biologically desirable;  

 [21] used the penalty  

‍


 K K K
'

1'

(( ) )c c c
c

c c

P , 

where 
1

.  is the standard 1L -norm, which commands a strong similarity across 

conditions. This approach would lead to very similar condition-specific network, 

allowing only a few differences. Unlike the Cooperative Lasso approach described 

above, no special sign-coherent assumption is required but this method is more suited 

when condition-specific networks are not supposed to be very different; 

 [14] introduced the penalty  

‍ ‍ ‍
 

  K K K
'

2' 1

(( ) )
p

c c c
c j j

c c j

P , 

where 
2

.  is the standard 2L -norm and K j  is the j -th column of  K . Hence, 

this approach encourages the support of  K K
'c c  to be the union of  a given set of  

columns. Hence, this penalty only provides some flexibility to a few nodes to differ 

among conditions while all the other nodes have the same pattern of  interactions. 

The main idea of  our proposal, we coined cLasso, is similar to the latter approaches, but 

using a softer penalization scheme than group-Lasso type penalties. This choice aims at 

better estimating the edges that are not similar and also does not need to assume a 

particular origin for the differences between conditions. The k  inferred graphs, c , are 

forced toward a “consensual” graph: the resulting graphs are different from each other, but 
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these differences can be controlled. This idea is tackled by using a penalized ML 

framework in which two penalties are introduced: 

 the first one is a sparse penalization which controls the number of  edges in every 

graph c ; 

 the second one is a 2L  penalization that aims at limiting the differences between the 

 K 1, ,( )c c k . 

More precisely,   1, ,j p , a consensual regression coefficient,  cons
j , is introduced, that 

can be defined from the sample-dependent coefficients  c
j  or can be fixed by the user, 

including, in particular, prior biological knowledge. This coefficient represents a kind of   

“global” solution, that is condition-independent. It is used by replacing the minimization 

problems described in Equation (3) by the following double-penalized minimization 

problems: 

Σ ‍       


    
2

\ \ \ 1 21

1 ˆˆ .
2

k
T T cons c
j j j j j j j j j j

c

              (4) 

In Equation (4),  cons
j  is used to model the “consensus”. In the following section, 

different types of  consensus are described, and the practical computation of  the solution is 

derived from the different cases. All described solutions lead to the optimization of  

quadratic problems penalized by the 1L -norm. 

Contrary to the other approaches presented above, the second penalty of  Equation (4) 

is a soft one, that does not control drastically the number of  different edges between 

conditions but rather limits them. It is thus advisable in the case of  a not too low number of  

differences and when the user really wants to see the differences across the conditions. Also, 

contrary to [14, 21], our proposal does not rely on a penalty which complexity increases 

quadratically with the number of  conditions (this might be a problem if  the number of  

conditions is high). Finally, as explained in Section 2.3.1, the definition of  a consensus 

network can integrate prior knowledge that can help estimating the network with an 

increased accuracy. 

Remark 1 As shown in Section 3.1, any choice for  cons
j  that leads to obtain a minimization 

problem that can be expressed as:  

 
1

 jconvex part , 

is a valid consensus choice that can be solved using a common framework. In particular, this includes 

any consensus that is expressed as a linear combination of  the estimated coefficients  c
j  (Section 

2.3.2) or (fixed) a priori consensus (Section 2.3.1). 

2.3. Consensus Choices 

2.3.1. A Fixed Consensus 

When a prior information is known on the network (e.g., a bibliographic network), a 

natural choice is to use it for cons . In this case, cons  is fixed in advance and does not 

depend on ( )cj j : it does not need to be estimated. However, if  no prior information is 

available, the network estimated from all the samples considered as a whole or any 

combination of  networks obtained with independent estimations can be used for consensus 

and considered as a (fixed) a priori information network. 

Proposition 1 Using a fixed  cons
j , Equation (4) is equivalent to minimizing the following standard 

quadratic problem with 1L -penalty: 
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        1 2

1

1
( ) ( ) ,

2

T T
j j j jB B                     (5) 

where    1
\ \ ( 1)

ˆ( ) 2j j k pB , with ( 1)k p  the ( 1)k p -identity matrix and  2 ( )B  

  \ ( 1)
ˆ 2 cons
j j k p j  with  cons

j  a ( 1)k p  vector that only depends on the prior  cons
j . 

Proof (and exact values for 1
B  and 2

B ): The 2L -penalty of  Equation (4) can be 

re-written as: 

         
 

     
  

2 2

2 21 1

2
k k T T

cons c c c c cons cons
j j j j j j j

c c

. 

Noticing that 
2

2

cons
j  is a fixed value that does not depend on the estimated coefficients 

 c
j , it follows that minimizing Equation (4) is equivalent to minimizing:  

    \ \ ( 1)

1
2

2
ˆT

j j j k p j         \ ( 1) 1
2 ,ˆT cons

j j j k p j j  

where  j
cons  is the vector      , ,j j

TT T
cons cons . 

2.3.2. An Averaged Consensus 

When no prior information is given, an intuitive and convenient choice for the 

consensus is to simply average the estimators over the different samples: 

   1 /cons ck
c c jj n n . In this case,  j

cons  is a linear combination of  the ( )cj c , which is an 

interesting feature, as explained in Proposition 2. Notice that the choice of  averaging the 

coefficients  c
j  is almost equivalent in terms of  networks (i.e., in terms of  non-zero entries) 

as having a consensus which is the union of  the condition-dependent networks. 

Proposition 2 Using    1 /cons ck
c c jj n n , Equation (4) can be re-written as the following 

standard quadratic problem with 1L -penalty: 

       \ 1

1
( )

2
ˆT T

j j j j j j jS ,                      (6) 

where    \ \
ˆ( ) 2 T

j j jS A A  where A  is a   ( 1) ( 1)k p k p -matrix that does not depend on 

j . 

Proof (and exact value for A ): If,   1, ,c k ,  1 /c c pIU n n  (with 1pI  the unit 

matrix having dimension 1p ) and     11 /c c pn IV n , then  

    ,c cons
j j c jA  

where cA  is the   ( 1) ( 1)p k p -matrix      1 1 1[ , , , , ,..., ]c c c pU U V U U . Then, 

 ‍ ‍   
 

  
2

21 1

k k
cons c T T
j j j c c j

c c

A A , 

and thus, setting  

 

 
 

  
 
 

1

,

k

A

A

A
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implies that 

 ‍   


 
2

21

k
cons c T T
j j j j

c

A A , 

which concludes the proof. 

Remark 2 Because the term  T T
j jA A  is a quadratic term in  , the formulation of  the 

minimization problem given in Equation (4) is not a direct penalization of  the ML optimization. 

More specifically, minimizing Equation (4) is equivalent to minimizing the following penalized ML:  

 ‍


 



  K X K K K
2

1/2 ,

1 21

( | ) ( )
k

c cons c c

c

D
n

, 

where   

 ‍ ‍ ‍
  

   K K K '1 11 1 , ' 1

| |
pk k

c c
jj

c c j j

; 

  K K K11 22 Diag( , , , )c c c c
ppD ; 

 ‍


 
K

K
K K

,
\ \

1

c
jjt

t
jj

k
ncons c t

j j j jn
t

. 

Note that, as explained in [8], estimating ( )c
jj jK  is not relevant to unveil the graph structure so, in 

practice, these values are set equal to  1ˆ
jj . Hence, from the ML point of  view, there is no definition of  

a consensual concentration matrix since this quantity depends on the sample (the average is weighted 

differently depending on the sample). 

In practice, in every task, the variables are previously scaled and c
jjK  are all set equal to one, 

which leads to the following equivalent formulation of  the optimization problem  

 ‍





  K X K K K
2

1 21

( | ) ,
k

cons c

cn
 

where ‍


 K K
\ \

1

/
j j

k
cons t

t j j
t

n n .   

Remark 3 The penalty of  [14] can be re-written as:  

           

‍

'
2

'

' '
2

2'

'
2

1 '

2 ,

( 1) 2 , .

c cons cons c
j j j j

c c

c cons c cons c cons cons c
j j j j j j j j

c c

k
c cons c cons c cons
j j j j j j

c c c

k





 

  

        

        

K K K K

K K K K K K K K

K K K K K K

 

Then, in the case of  the averaged consensus, an edge ( , ')j j  is in the consensus network if  and only 

if  it is in at least one of  the condition-specific networks. In particular, for  2k ,  K K
1

' 0cons
jj j  

means that ( , ')j j  is an edge in the consensual network and is not an edge in the network specific to 

condition 1 . It is thus also an edge in the network specific to condition 2 (as there is only two 

conditions). In conclusion, when  2k ,     K K K K
2 1, 0cons cons
j j j j  and thus the consensus 

penalty is very similar to the penalty proposed in [13]. However, for  2k , the situation might be 
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more complicated: a condition-specific edge can be specific to more than one condition and thus the 

equality     K K K K
', 0c cons c cons

j j j j  is no more guaranteed for the averaged consensus. Conversely, 

nullity of  the scalar product (and thus the equivalence between the consensus penalty and the penalty 

proposed by [17]) would be obtained, for instance, if  an edge that is specific to a condition is present in 

only one of  the condition-specific networks. This property does not seem to be desirable on a biological 

point of  view. 

3. Computational Aspects 

This section will provide computational details on the cLasso methods. First, the 

method used to solve the optimization problems introduced above is described and then, a 

bootstrap approach is introduced to help decreasing the false positive rate and to help 

increasing the prediction accuracy when dealing with small sample size problems. 

3.1. cLasso Optimization 

The cLasso problem is solved by minimizing the p  sub-problems of  Equations (5) 

and (6). The objective function of  all the problems that can be decomposed into:   

      1 2( ) ( ) ( )/2T T
j j j j j j , convex in ( )j j  and that does not depend on  ; 

‍  
1

) /( j j c
c

n  that is non differentiable at 0, with respect to j . 

The non differentiability of   shrinks the LASSO estimate toward 0 and potentially sets 

0jl   for several indexes l , as explained in [22]. In [22], the LASSO optimization 

problem is solved by a quadratic programming method, which is used to perform the 

estimation of  the ( )jl l  together with a variable selection. Since then, several authors have 

proposed more efficient approaches to solve the LASSO optimization problem: [11] 

developed the so-called “shooting algorithm” that starts from an unconstrained least-square 

solution and uses a coordinate descent. Unfortunately, this algorithm is not applicable in 

the case of  sparse problems as soon as n p . Others proposed to use differentiable 

approximations of  , such as [14] that takes advantage of  the approximation 

‍2

1 j j    . Finally, [18] uses a method that is efficient for medium-size problems 

and suited to the case n p . We used a similar strategy, which is close to the one described 

in [5]: it is based on a greedy update of  an “active set” that progressively gathers together 

all non-zeros coefficients of  the different sub-problems. At each step of  the algorithm, the 

coefficients are estimated only for the variables that are included in the active set. 

More precisely, for a fixed value of   , starting from a vector j  of  non-zero 

coefficients on the active set , the method first solves the so-called “master problem” 

given by Equations (5) or (6), which is differentiable, because, by definition, the coefficients 

of  j  are not null. This is done by using the sub-gradient ( ) ( )
j j j       . Then, 

the set of  active variables is updated by adding the variables that violate the most the 

first-order optimality condition. The algorithm stops when 

 for all l , 0jl   and  

                      
1 2( ) ( ) ( ) ( ) ( ) 0 

j j j j j j jl
ll

sign . 

 for all l , 0jl   and  

 1 2( ) ( )j j j
l

       . 
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Further details on the method can be found in [5], that uses the same optimization scheme 

for the so-called “intertwined LASSO”method. 

Finally, the method is applied to a whole set of    values, starting from largest (i.e., 

from the one that yields to the strongest constraint) and using the optimal j  as a prior for 

solving the problem with the next smaller  . This method is implemented in the R  

package therese, that can be downloaded from http://therese-pkg.r-forge.r-project.org/. 

3.2. Bootstrapped cLasso 

As demonstrated in [4], the LASSO converges to the selection of  all the variables 

included in the true model (true positives) with probability one but asymptotically selects 

all other variables (false positives), with a strictly positive probability. In practice, this means 

that using the LASSO algorithm yields to a rather high number of  false positive edges in 

the network estimation. To overcome this difficulty, [2] proposes the so-called “Bolasso” 

method, that combines LASSO performed on bootstrap samples. Bootstrapping [8] is a 

resampling technique that consists in creating new samples of  the same size as the original 

by sampling randomly with replacement from the original dataset. Its aim is to estimate the 

sampling distribution of  almost any statistics and thus to estimate the accuracy for these 

statistics. In Bolasso, LASSO is run on a large number of  bootstrap samples and the 

intersection of  the variables selected in every bootstrap sample are finally kept. It is proved 

that this approach is a consistent model selection method. 

Hence, in order to improve the false positive rate of  the approach described above, we 

use a similar methodology, only taking into account the fact that the typical sample size in 

transcriptomic experiments is far from being close to the asymptotic case. More precisely, 

instead of  intersecting the edges selected in every bootstrap sample, the number of  times an 

edge is selected by all computations run on each bootstrap sample is used as a quality 

measure of  the edge. Only the most frequently selected edges, those that are selected more 

than a given number of  times denoted by  2 {1, , }bootT N , are finally included in the 

estimated network. 

In practice, for every bootstrap sample, Equation (5) or Equation (6) is solved for a list 

of  several values of    and a fixed value for  , using the method described in Section 3.1. 

A given value of   , depending on the bootstrap sample, is retained which corresponds to 

the first time in the path (i.e., to the largest  ) for which the number of  estimated edges is 

larger than a target value, 1T . 1T  is fixed to a rather high value to avoid missing relevant 

edges. The complete procedure is described in Algorithm 1. 

The impact of  1T  and 2T  is discussed further in the simulations of  Section 4.1.2. 
_____________________________________________________________________________ 

Algorithm 1 Bootstrap cLasso 
_____________________________________________________________________________ 

1: require: 

list of genes {1, , }p  

list of individuals {1, , }n  

individuals’ sample number 1, , nc c  with {1, , }ic k   

gene expressions X  (dimension n p ) 

parameters   ( 2L -regularization parameter) and 1 2,T T  (number of  edges 
selected). 
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2: initialize: c k   ,   , ' {1, , }j j p , ( , ') 0cN j j  

3: for 1b P   do. 

4:     Sample at random with replacement in {1, , }n  return bootstrap sample bB  

5: Use bB  to solve Equation (6) or Equation (5) for a full set of    values return     
, ,

, ,( )c b
j j c


  

6: Find ‍  




  
   

  
, , 10

, ',

: argmax c b
j

max
j j c

T  return   max, ,,
, ,( ) : ( )c bc b

j j c j j c  

7:     for all  , ' {1, , }j j p  do 

8:         if 
,
, ' 0c b
j j   then 

9:            ( , ') ( , ') 1c cN j j N j j . 

10:         end if 

11:     end for 

12: end for 

13: return List of  edges for sample c :  2( , ') : ( , ')cj j j j T  
_____________________________________________________________________________ 

4. Application 

The simulations described in this section have been performed using R version 3.0 and the 

packages glasso 2 , SIMoNe 3  and JGL 4 . Bootstrap was performed using a parallel 

implementation with the package doMC. 

4.1. Simulated Data 

The method is first illustrated on simulated data. These experiments use one of  the 

graphs provided at http://www.comp-sys-bio.org/AGN/data.html and created by Pedro 

Mendes (Virginia Bioinformatics Institute and State University; see [21]). More precisely, 

the graph “scale-free Century 007”5 was used to test the method. This network has 100 

nodes (corresponding to genes) and 200 edges (corresponding to gene interactions): the 

density of  the (undirected) network is thus approximately equal to 4%. The term “scale 

free” indicates that the network has been generated from a preferential attachment model, 

as described in [8]. Additionally, the edges of  the network are colored: half  are “red” and 

half  are “blue”, which will differentiate a positive from a negative correlation between two 

variables. 

4.1.1. Data Generation 

Several artificial expression datasets were generated from the graph described above. 

More precisely, 

 k  child networks were created by randomly rewiring a given ratio r  of  the edges 

of  the original network. Hence, two child networks have approximately 

100(1 2 )r % of  shared edges. Loops and multiple edges were forbidden during the 

rewiring process but the color of  the edges was preserved. Each of  these k  networks 

is used to model one experimental condition;  

                                                 
2
 http://cran.r-project.org/web/packages/glasso/index.html 

3
 http://stat.genopole.cnrs.fr/logiciels/simone 

4
 http://cran.r-project.org/web/packages/JGL/index.html 

5
 http://www.comp-sys-bio.org/AGN/Century/index.html 
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 cn  expression data were then generated from a Gaussian multivariate variable with a 

covariance matrix Σc  for which the conditional dependency structure corresponded 

to one of  the child network. In addition, the edge colors were used to define the sign 

of  the partial correlation: blue edges corresponded to negative partial correlations 

(mimicking inhibition) and red edges to positive ones (mimicking activation).  

 

 

Figure 1 The “scale free Century 007” graph and two resulting child networks, 
obtained with 5% of  rewired edges. Green dotted edges are shared edges whereas 
red solid ones are condition specific edges. The vertex positions result from a 
force-directed placement algorithm as in [10] and are common to all three networks 
so that the edges can easily be compared. 

Several experiments were designed with various values for k  (2, 4 or 5), r  (varied 

between 5%, 10% and 20%) and the respective sample sizes 1, , kn n : 2 20 , 2 30 , 

2 50 , 5 20  and 4 30 . Only small sample sizes (no less than 50 observations) were 

used to fit realistic experimental conditions in which only a few observations per condition 

are generally available. The resulting child networks had no more than 40% of  different 

edges. Figure 1 illustrates the generation process on an example: the “scale free Century 

007” graph is displayed as well as two of  its children, obtained by rewiring 5% of  the edges. 
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4.1.2. Bootstrap Analysis 

In this section, we investigate the effect of  1T  and 2T  on the performance of  the 

algorithm. This analysis is made using the results obtained from the expression data 

generated with 5% of  rewired edges, 2 conditions, each containing 20 observations. 

For this network, 100 bootstrap samples were extracted: this number is low compared 

to standard recommendations but, for one hand, the approach is computationally expensive 

and, for the other hand, a previous work [1] showed that the benefit of  bootstrapping was 

achieved with the combination of  30 to 40 bootstrap samples. Also, several values of  1T  

and   have been tested: 1 {250,300,500}T  and {0.1,1} . The performance of  the 

different parameters are compared by means of  the F  statistics: 

 


 


precision recall
2 ,

precision recall
F  

where the precision is the ratio of  retrieved edges that are in the true network (true positive 

edges among positive edges) and the recall is the ratio of  true edges that are retrieved by the 

method (true positive edges among the edges in the original network). F  is the harmonic 

mean of  the precision and of  the recall and computes a trade-off  between the two 

quantities. 

 

 
Figure 2. Maximum F  along the path of  2T  values for different 

parameters   and 1T . 

 

For each condition and each pair of  parameters 1{ , } T  , the F  statistics were 

calculated along the precision/recall values obtained for different values of  2T  (bootstrap 

estimation). Then, the pairs of  parameters 1{ , } T   were compared based on the averaged 

F  over the conditions: the “best pair” of  parameters is the one that maximizes the 

maximum averaged F  along the path of  2T  values, the maximum F  being used as a 

way to find the best compromise between precision/recall. According to this method, the 

best pair 1{ , } T   for the expression data described above was {500, 1} , as shown in the 

level plot of  Figure 2. 
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When the value of  1T  is set to a rather high value, 500 (which is much larger than the 

true number of  edges), and when   is equal to 1, Figure 3 gives an indication on the 

influence of  2T  on the density of  the inferred networks. The histogram displays the 

distribution of  the number of  times a given edge is chosen by the algorithm over the 100 

bootstrap samples. Notice that only a few edges are very frequently selected by the 

bootstrap method, whereas the targeted density of  4% is obtained by keeping edges that are 

selected about at least 40 times (i.e., in at least 40% of  the bootstrap samples). 

 
Figure 3. Distribution of  the number of  times an edge is selected over 100 bootstrap 
samples for the first condition (left) and evolution of  the density versus 2T  for the 
2 conditions (right). 1 500T  , 1  . 

 
Figure 4. Precision/Recall curve (with varying 2T ) for the total number of  edges of  
the true child networks compared to the corresponding inferred network. 1 500T  , 

1   (each curve corresponds to one of  the 2k   child networks). 

Figure 4 displays the precision/recall curves. Two points are emphasized on this figure: 

they correspond to the maximum F  on the curve. The maximum F  are obtained by 

keeping edges that are selected at least 40/45 times (approximately) over the 100 bootstrap 

samples and correspond to a precision about 25% and a recall about 30%. These points give 

inferred networks with a resulting density slightly lower that the true network density 
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(2.5-3.5% instead of  4%). This illustrates the fact that, if  there is a prior knowledge on a 

targeted density, a good strategy could be to choose 2T  so that resulting networks fit this 

targeted density. 

When the value of  1T  is equal to a smaller value (250 which is larger than the true 

number of  edges), the evolution of  the density versus 2T  and the precision/recall curve 

are given in Figure 5. The conclusions are very similar except, of  course, that for a given 

value of  2T , the densities of  the resulting networks are lower. Otherwise, the distributions 

of  the number of  times a given edge is selected by the algorithm in the bootstrap samples 

are quite similar and the best F  value is also obtained for networks that have densities 

slightly lower than the true density. 

 
Figure 5. Evolution of  the density versus 2T  for the 2 conditions (left) and 
Precision/Recall curve (with varying 2T ) for the total number of  edges of  the true 
child networks compared to the corresponding inferred network. 1 250T  , 1  . 

However, as shown in Figure 2, 2T  is a less important parameter for the method 

performance, as compared to  . Optimal parameters, according to the maximum F  

statistics, are given in Table 1 for all simulations. As expected,   needs be smaller in the 

case where the two conditions correspond to more different networks (i.e., when the 

number of  rewired edges is larger) but generally, using a rather high value for 1T  is the 

strategy that provides the best results. The effect of  the bootstrap on the performance is 

shown in the last column of  this table, which contains the percentage of  increase of  the 

corresponding maximum F  compared to the direct approach. Bootstrap only improves 

the performances when the percentage of  rewired edges is moderate (lower than 10%) or 

when there are many different conditions. The counter-performance of  bootstrapping could 

be explained by the fact that it enforces the joint effect and thus fails to estimate edges 

specific to the condition, that are less numerous in those cases. Additionally, this might be a 

very high-dimension issue [23]: when the /n p  ratio allows us to draw model inference 

but is at the limit of  producing reasonably accurate estimates, the use of  a bootstrap 

procedure produces a set of  highly unstable estimates, which lead to fewer robust estimated 

edges. As a consequence, the model estimate might focus on those edges which are 

supported by many conditions and does not detect finer pattern of  dependencies in the 

data. 
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Table 1. Best parameters of  the bootstrap cLasso for each simulation according to 
the maximum F  along the path of  2T  values, and percentage of  increase of  the 
best F  value compared to the direct (i.e., un-bootstrapped) approach. 

   
1T  

% of  improvement  

of  bootstrapping 

network sizes rewired edges: 5% 

20-20 1 500 28.80 

30-30 1 300 20.15 

50-50 1 300 13.44 

20-20-20-20-20 1 500 83.75 

30-30-30-30 0.1 500 42.67 

network sizes rewired edges: 10% 

20-20 0.1 250 18.35 

30-30 0.1 500 16.17 

50-50 1 250 4.230 

20-20-20-20-20 0.1 500 55.48 

30-30-30-30 0.1 250 29.56 

network sizes rewired edges: 20% 

20-20 0.1 300 -17.86 

30-30 1 500 -7.970 

50-50 0.1 300 -7.830 

20-20-20-20-20 0.1 500 10.27 

30-30-30-30 1 500 13.48 

 

4.1.3. Performance Comparison 

In this section, cLasso is compared to alternative methods for inferring graphs from 

expression data. More precisely, for each expression dataset described in Section 4.1.1, the 

following methods are applied to infer the k  conditional dependency networks 

corresponding to the k  different conditions: 

 the graphical Lasso method, as described in [9] and hereafter denoted by gLasso: the 

k  networks corresponding to the k  different conditions are inferred independently. 

Hence, the comparison with this method aims at showing the effect of  jointly 

inferring the networks instead of  independently;  

 the intertwined Lasso, the cooperative Lasso and the group Lasso methods, as 

described in [5] and hereafter denoted by iLasso, coopLasso and groupLasso, 

respectively. These methods are used to provide a comparison with other joint 

inference methods. Also notice that the data generation provides sign-coherent 

networks (i.e., the different child networks are very likely to have the same sign for 

partial correlations corresponding to shared edges), which should favor the 

cooperative Lasso method;  

 the fused graphical Lasso, as described in [6], denoted by fgLasso. After a few tests, 

the second regularization parameter, which controls the similarity accross conditions, 

was set to the value 0.1  for all simulations;  

 the consensus Lasso method, as described in Section 2. The two choices of  consensus 

described in Section 2.3 are tested with, for a priori network:   
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— the mother network (i.e., the true network used to generate the child networks, 

which is never known in practice but is the closest thing we have in this 

simulation from a bibliographic network),  

— or, for comparing a naive two-step approach with the averaged consensus 

described in Section 2.3.2, a network which is the mean over the conditions of  

independent estimations (i.e., estimations obtained with 0  ).  

These methods are denoted by cLasso (m) (for the averaged consensus method 

described in Section 2.3.2), cLasso (p) (for the method using the true prior) and cLasso (2) 

(for the naive two-step approach that uses a mean over conditions of  independant 

estimations). Notice that the method using as a prior the mother network is clearly favored 

in this comparison, since even if  the child networks are not identical to the mother network, 

they are very related to it. The comparison with this method should be used to understand 

what is the effect of  integrating true prior knowledge in the estimation.   was set equal to 1.  

For each method, the inference is performed for a whole path of    values and the 

corresponding precision and recall are calculated for each value of   . A bootstrap version 

with 100 bootstrap samples of  each of  these methods is also implemented with 1 500T  . 

The number of  times a given edge in a given condition is selected is then used to calculate 

precision/recall values for different values of  2T . 

Precisions and recalls are calculated by comparing the estimated condition-specific 

networks with the children networks they are generated from. We do not compare directly 

the consensus network with the mother network because we are interested in testing the 

ability of  the method to estimate the common edges as well as the condition-specific edges. 

The F  statistics is used as a way to compare the different methods, as in Section 4.1.2. 

First, averaged F , over the different conditions, are calculated along the precision/recall 

values obtained for different values of    (direct estimation) or for different values of  2T  

(bootstrap estimation). Then, the maximum of  these values (for recall and precision values 

larger than 0.05, to avoid extremely bad values of  the precision or of  the recall) is used as a 

way to compare the performance of  the different methods. The results are given in Table 2 

(direct estimation) and Table 3 (bootstrap estimation), for each of  the 6 methods described 

above. 

Several conclusions can be drawn from these results. For a moderate ratio of  rewired 

edges (smaller than 10%), bootstrapping improves the performances of  all methods, except 

for iLasso (also, the increase is very limited for the coopLasso method). The increase is 

particularly interesting when the sample size is small and/or the number of  samples is high. 

On the contrary, when the ratio of  rewired edges is equal to 20%, bootstrapping only 

improves the performances of  cLasso with prior, and, only for 4-5 samples having the 

smallest sizes, of  gLasso, groupLasso and cLasso (m). 

As expected, the overall performance is strongly increased when a relevant prior is 

added (the best F  is often 3 times larger), which shows that this strategy should probably 

be used when such an information is available. When this is not the case, fgLasso often 

obtains the best results. Otherwise, coopLasso, bootstrap cLasso or iLasso also have good 

performances. Bootstrap cLasso (m) seems to be useful in the case of  a moderate number 

of  rewired edges and when the sample size is smaller. The naive two-step approach, which 

requires two estimations instead of  one, often leads to deteriorated performances as 

compared to cLasso (m) which is twice faster. Finally, direct iLasso is advised for the 
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largest number of  rewired edges and coopLasso is to be preferred when the number of  

rewired edges is small but the sample size larger. 

 

Table 2. Summary of  the performance for the different methods in terms of  the maximum 
value of  the F  statistics. The best method for each couple of  percentage of  rewired edges 
and network sizes, is emphasized with bold face. 

Method gLasso iLasso groupLasso coopLasso fgLasso 
cLasso 

(m) 

cLasso 

(p) 

cLasso 

(2) 

network sizes rewired edges: 5% 

20-20 0.19 0.27 0.23 0.28 0.26 0.22 0.84 0.21 

30-30 0.28 0.35 0.32 0.35 0.32 0.31 0.86 0.30 

50-50 0.36 0.47 0.48 0.49 0.47 0.43 0.88 0.40 

20-20-20-20-20 0.19 0.34 0.34 0.41 0.43 0.23 0.84 0.23 

30-30-30-30 0.30 0.46 0.48 0.51 0.55 0.36 0.88 0.35 

network sizes rewired edges: 10% 

20-20 0.19 0.24 0.22 0.26 0.22 0.23 0.78 0.21 

30-30 0.27 0.35 0.33 0.35 0.34 0.31 0.81 0.29 

50-50 0.41 0.48 0.45 0.46 0.49 0.45 0.82 0.41 

20-20-20-20-20 0.20 0.30 0.24 0.36 0.35 0.23 0.74 0.23 

30-30-30-30 0.28 0.39 0.35 0.40 0.45 0.31 0.79 0.32 

network sizes rewired edges: 20% 

20-20 0.21 0.22 0.19 0.21 0.21 0.23 0.58 0.21 

30-30 0.28 0.31 0.27 0.31 0.30 0.31 0.67 0.33 

50-50 0.42 0.43 0.41 0.44 0.45 0.43 0.68 0.40 

20-20-20-20-20 0.20 0.26 0.22 0.25 0.26 0.22 0.63 0.23 

30-30-30-30 0.27 0.35 0.28 0.35 0.35 0.29 0.63 0.31 

Table 3. Summary of  the performance for the different methods (bootstrap version) in 
terms of  the maximum value of  the F  statistics. The best method for each couple of  
percentage of  rewired edges and network sizes, is emphasized with bold face. 

Method gLasso iLasso groupLasso coopLasso fgLasso 
cLasso 

(m) 

cLasso 

(p) 

cLasso 

(2) 

network sizes rewired edges: 5% 

20-20 0.26 0.27 0.28 0.29 0.29 0.29 0.85 0.28 

30-30 0.31 0.34 0.36 0.34 0.36 0.37 0.86 0.35 

50-50 0.46 0.48 0.48 0.47 0.48 0.49 0.88 0.47 

20-20-20-20-20 0.38 0.34 0.44 0.43 0.44 0.43 0.89 0.41 

30-30-30-30 0.48 0.44 0.51 0.53 0.53 0.51 0.89 0.51 

network sizes rewired edges: 10% 

20-20 0.25 0.23 0.25 0.27 0.27 0.25 0.79 0.27 

30-30 0.33 0.36 0.35 0.36 0.38 0.35 0.80 0.34 

50-50 0.45 0.47 0.46 0.44 0.48 0.46 0.82 0.43 

20-20-20-20-20 0.32 0.30 0.36 0.34 0.36 0.35 0.78 0.35 

30-30-30-30 0.36 0.38 0.39 0.41 0.42 0.40 0.80 0.38 

network sizes rewired edges: 20% 

20-20 0.17 0.22 0.17 0.18 0.21 0.18 0.59 0.18 

30-30 0.27 0.31 0.27 0.28 0.27 0.29 0.67 0.28 

50-50 0.37 0.43 0.38 0.37 0.41 0.39 0.66 0.37 

20-20-20-20-20 0.20 0.23 0.25 0.23 0.26 0.24 0.66 0.24 

30-30-30-30 0.30 0.31 0.32 0.32 0.32 0.33 0.63 0.31 
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Computational times needed6 for the different estimations are very different:   

 the time needed to estimate one of  the condition-specific networks with glasso  

(independent estimations with graphical LASSO as described in [9]) is approximately 

equal to 1 second for 25 values of    (to be multiplied by the number of  conditions);  

 the time needed to estimate 5 joined networks with simone (implementing the 

methods described in [5]; the time is reported for “cooperative LASSO”) is 

approximately equal to 1 minute 30 seconds for 100 values of   ;  

 the time needed to estimate 2 joined network with JGL (implementing the methods 

described in [6]; the time is reported for “fused LASSO”) is approximately equal to 

for 25 values of    and the time needed to estimate 5 joined networks with this 

method is approximately equal to 2 hours 30 minutes. Notice that the path of    has 

been performed manually as this package is the only one that does not propose a 

regularization path for the sparse parameter;  

 finally, the time needed to estimate 5 joined networks with therese is approximately 

equal to 2 minutes 30 seconds for 100 values of    (and a little bit less than twice 

this value for the naive two-step approach).  

4.2. Real Data: Effect of  a Diet on Regulatory Network 

As an application to a real biological data set, we analyzed gene expression data 

described in [24]. More precisely, the expression of  221 genes are used. These were 

obtained for 204 obese women before and after 8-week low-calorie diet (LCD) with the 

objective of  more than 8% weight loss. Considering the two time steps of  the analysis as 

two different conditions, we used the bootstrapped cLasso approach with 1   and 

1 1000T   (that corresponded to a targeted density of  approximately 4%). The choice of  a 

rather high regularization parameter   was directed by the will to emphasize only a few 

different edges between the two conditions and hence to focus on the most relevant 

differences between the two conditions. Notice that the possibility to monitor   allows to 

infer networks that are more or less consensual, depending on what your prior is. The 

choice for 1T  was directed by the fact that we wanted to obtain very sparse networks, 

easily readable for the biologist, which, in the case of  approximately 200 nodes, requires to 

have a very low density. 100 bootstrap samples where used to estimate the edges by the 

cLasso approach. 

The distribution of  the number of  times an edge is selected for expression data after the 

diet was very similar to what was found before the diet. Hence, in order to favor a high 

precision (at the cost of  maybe a low recall), only the edges that appeared in at least 80 

bootstrap samples were selected. This yielded to networks having respectively 316 and 315 

edges (with a density about 1.3%). These networks had 292 edges in common (i.e., 

approximately 90% of  the total number of  inferred edges). 

The histogram of  the number of  times a given edge is selected over the 100 bootstrap 

samples is given in Figure 6 (for the network corresponding to gene expression data before 

the diet). It has to be noted that pairs of  variables that were never selected over the 100 

bootstrap samples have been removed from the histogram (they corresponded to 

approximately 70% of  the 221 220  potential edges). 

                                                 
6
Computational times are reported for a 4-core laptop, Intel(R) Core(TM) i5-3360M CPU @ 2.80GHz, 

RAM 8Go DDR3, with OS Kubuntu Linux 12.04. 



Inferring Networks from Multiple Samples with Consensus LASSO                              57 

  

 

 
Figure 6. Distribution of  the number of  times an edge is selected over 
100 bootstrap samples for the expression data before the diet. 

 

 

 
Figure 7. Networks inferred by bootstrapped cLasso: before (left) and after low-calorie diet 
(right). Blue edges are shared edges and pink edges are condition specific edges. Some gene 
names are given, that are commented in the text. 

Other shared edges are highly probable, such as the one between AZGP1 and GPD1L 

which are two known biomarkers of  the metabolic syndrome [24]. However, quite 

interestingly, at least one condition specific edge is also expected: the genes PCK2 and 

CIDEA are the best biomarkers, among this set of  genes, for the weight loss, and the main 

difference between the two conditions is indeed the weight loss [24]. 

The resulting networks are displayed in Figure 7. They have approximately 92% of  

their edges in common. The full biological validation of  such a network is unrealistic 

(because of  the very limited knowledge available in this area) but some of  the interactions 
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make sense. For instance, some regulatory relationships shared between the two conditions 

are already known, such as the relation between FADS1 and FADS2, which encode two 

desaturase enzymes from the same cluster gene with similar regulation by dietary 

composition [15]. 

5. Conclusion 

We have proposed the cLasso method, which is used for jointly inferring networks in 

the case of  multiple and dependent expression data. This method relies on the definition of  

a consensual solution, which in our case, is simply the mean between the different 

conditions. The different networks are forced toward this consensus by a 2L -penalty whilst 

the sparsity of  the solution is handled by an additional 1L  penalty. The solution proposed 

in this paper can be reformulated as a LASSO problem similar to the ones described in [8, 

18] and the method is implemented in the R package therese. Experiments were conducted, 

using a bootstrapped approach based on the cLasso method and showed that this method is 

reliable. 

Future work should address the issue of  unbalanced sample sizes between conditions, 

and of  the choice of   : a naive selection based on out-of-bag MSE has been proven 

inefficient so far for selecting the best value. However, this parameter can also be useful for 

the biologist to include prior knowledge about how similar the condition-specific networks 

should be: using different   provides a family of  solutions with different fractions of  

common edges, among which the biologist is free to choose. 
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