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Abstract: Networks are very useful tools to decipher complex regulatory relationships between genes in
an organism. Most work address this issue in the context of i.i.d., treated vs. control or time-series
samples. However, many data sets include expression obtained for the same cell type of an organism, but
in several conditions. We introduce a novel method for inferring networks from samples obtained in
various but related experimental conditions. This approach is based on a double penalization: a first
penalty aims at controlling the global sparsity of the solution whilst a second penalty is used to make
condition-specific networks consistent with a consensual network. This “consensual network” is
introduced to represent the dependency structure between genes, which is shared by all conditions. We
show that different “consensus” penalties can be used, some integrating prior (e.g., bibliographic)
knowledge and others that are adapted along the optimization scheme. In all situations, the proposed
double penalty can be expressed in terms of a LASSO problem and hence, solved using standard
approaches which address quadratic problems with L, -regularization. This approach is combined with a
bootstrap approach and is made available in the R package therese'. Our proposal is illustrated on
simulated datasets and compared with independent estimations and alternative methods. It is also applied
to a real dataset to emphasize the differences in regulatory networks before and after a low-calorie diet.
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1. Introduction

he recent development of high-throughput techniques produces huge datasets where

thousand of gene expressions are simultaneously measured. However, the number of
observations is comparatively very small, and those are often measured in a variety of
experimental conditions. One of the big challenges of modern Systems Biology is to
understand the influence of controlled experimental conditions on the functioning of living
organisms. This question is usually addressed by searching for the differences between gene
expressions pertaining to the conditions (hence for “differentially expressed genes”). A more
comprehensive look at the roles of the genes of an organism can be obtained by
deciphering the interactions of these genes with each other; finding which regulation
pathways are modified by a given experimental condition gives an interesting insight on the
influence of the condition on the living system as a whole.

“ Corresponding author. E-mail: nathalie.villa@univ-paris.fr
! therese can be downloaded on R-Forge, from http://therese-pkg.r-forge.r-project.org/.
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One of the most popular approach to understand the complex relationships existing
between the expression of a large set of genes is to infer a co-expression network from a
transcriptomic dataset. In such a model, nodes of the network represent the genes and an
edge is meant to stand for a regulatory link between the two nodes it connects. A large
number of different methods have been proposed to infer such networks: using correlations
(“relevance network”, [4]), Bayesian networks [19, 20], Gaussian Graphical Model [7, 21].
When observations are collected in different conditions, a naive approach would be to
independently infer a network for each condition and to compare them. However, this
method is not suited to highlight specific differences and shared motifs of regulation
phenomenons. Moreover, since the number of observations is often too small, inferring
networks independently (assuming that a common functioning exists in most scenarii)
leads to emphasize irrelevant differences. Several proposals have already been made to
overcome this issue: [5, 6, 17] use a modified Gaussian graphical model and [13] proceeds
in two steps with a clustering prior to the inference. The proposal developed in this paper is
close to that of [5, 6, 17]: a Gaussian graphical model is used and two interpretable
penalties are added to the likelihood. The first penalty aims at inferring sparse solutions;
the second penalty is used to make networks obtained in different conditions consistent
with a consensual network. The “consensual network” is introduced to represent high-level
dependencies between genes, i.e., a common functioning of the living organism under study,
in most situations. It can either include prior (e.g., bibliographic) knowledge or be
expressed from the condition-specific networks. Finally, the estimation is made more robust
by using a bootstrap approach.

The paper is organized as follows: Section 2 describes the double penalty approach.
Section 3 explains our proposal for estimating the networks with a bootstrap strategy.
Finally, Section 4 provides experimental results on simulations.

2. cLasso

In the Gaussian graphical model (GGM) framework, the classical objective is to
estimate the graph of conditional dependencies between p variables (usually modeling
gene expressions), (X;),, ,, from n iid. observations of the variables, namely
(X;)iz1, n» Vi €1l,...,p} . Each p-dimensional vector X; 1is assumed to be the realization
of a Gaussian random variable N (0,2). In this framework, non-zero entries of the
concentration matrix K =X exactly encode actual edges (between genes) in the
conditional dependency graph. In the present section, we describe how this framework can
be extended to the case where observations are obtained from different samples, each

sample being measured in a given (but related) experimental condition.
2.1. Inferring Multiple Networks with GGM

Now assuming that the p gene expressions are measured from k£ samples, each
corresponding to a specific experimental condition, the following model can be set:
(X))jor,..p 1.2 are k Gaussian p -dimensional vector, N(0,Z°). A total of =
observations are available: (X;-)i:l’___,nl, il (X;)Z.:L'__,nk, ja1..po With ¥ .n =n and, for
all ¢ and all i/, (Xj),, , are iid. observations of A(0,X°). In the following, our

goal is twofold:
e inferring k£ sparse graphs that model gene regulations in the % conditions;
¢ finding one consensual graph that models a “shared” functioning between conditions.
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The GGM framework is used for the inference. As previously explained, the
. . -1 . . .
concentration matrices K° =(2”) need be estimated and the entries of these matrices
exactly measure conditional dependencies between variables (X;); through partial
correlation  coefficients, s;,:(Cor(Xj.,Xj, | (X7 )., j,) because of the relation
c _ _K°¢ ce
s ==K / JK5KS o [13].

These quantities can be estimated by considering the following ( £xp ) linear
regression problems [18]: Vc=1,...,k, Vi=1..,p,

X, =X;B; +¢&;, (1)
where X{; is the matrix X°=(X;),, , ;. ., deprived from its j-th column X¢,
B; =(B;);.; isa (p-1)-dimensional vector and ¢; is a Gaussian centered error. In the
Gaussian framework, it can be shown that the coefficients of the linear model are related to

. s ¢ _ e c
the previous quantities by S =-Kj. /K.

The kxp linear models of Equation (1) can be jointly estimated by maximizing a
pseudo-likelihood:

k n,
LIKIX)=3 T ¥ logP(X; Xy, K ). )

=1 j=1i=1

[8] proved that maximizing the pseudo-likelihood of Equation (2) over matrices (K¢), is
equivalent to minimizing the following p quantities simultaneously:

. 1 S 3
Vi=1,...,p, Eﬁfz\j\jﬁj +,B;T2j\f' )

The p problems of Equation (3) are (p—1)xk-dimensional quadratic optimization
problems in which:

* Ve=1,..,k, ﬂ;T:(ﬁ;j,)j,ﬁeRP*l,where B = (K, K
© Bi=(BjnBf) RO

* X,,, is the block diagonal matrix PN N Diag(i{ A s A j) , having
dimensions k(p—1)xk(p—1);
. ﬁlj\j is the k(p—1)-dimensional vector, (i}\j,..., i’j\j).

However, this approach leads to matrices without non-zero entries. Moreover, when
(n.), are not larger than p, the estimation of (f;); becomes trickier and pseudo-inverse
methods lead to highly unstable results. Using the additional assumption that conditional
dependency graphs are indeed sparse, a standard approach is to add a L, -penalization to
the likelihood of Equation (2) (“Graphical LASSO”, see [9]) or, alternatively, to consider
p independent L, -penalized problems derived from those of Equation (3), see [8, 18].
The latter, more direct approach, has been reported to be more accurate in terms of edge
detection in [7].

2.2, Using a “Consensus” Penalty

In the previous section, the conditional dependency graphs are obtained from each
sample independently. The assumption that the graphs issued from the different
experimental conditions should be somehow alike, is not integrated into the model.
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Especially in the case where the sample sizes are low, such an assumption should help to
predict edges more accurately. Various techniques exist to address this issue: [5] proposed to
replace the covariance matrices 3° by mixing it with the covariance matrices
corresponding to the other conditions. Alternatively, some authors suggest to penalize the
pseudo-likelihood by a penalty that can explicitly deal with the similarity between
condition-specific graphs via different strategies:

¢ [8] proposed two kinds of Group-LASSO type penalties:
P((K),) =X [5(K;)?
Vi c

(Group-LASSO) and

P(K))=T N;(K;)i +\/§(K§,)E}

(sign-coherent Group- LASSO or “Cooperative LASSO”). The group-LASSO
penalty globally controls sparsity and inferred edges are common to all conditions.
The sign coherent option of their penalization scheme offers the possibility to enforce
an edge to encode either an activating or repressing process but not both: it provides
strongly similar networks between conditions and has been proven efficient in case of
experimental conditions leading to small changes in the regulations. However, for
some particular applications (e.g., certain forms of cancer that lead to a complete
re-organization of the living system), the assumption that the relations between two
genes is always a repressing/enhancing relation is not biologically desirable;

* [21] used the penalty

P(K))= ¥ [k =K,
c#c 1

where |||, is the standard L ,-norm, which commands a strong similarity across

conditions. This approach would lead to very similar condition-specific network,

allowing only a few differences. Unlike the Cooperative Lasso approach described

above, no special sign-coherent assumption is required but this method is more suited

when condition-specific networks are not supposed to be very different;

* [14] introduced the penalty

P(K))=% S HKj- ‘K?Hz’

c#d j=1

where ||, is the standard L,-norm and K is the j-th column of K. Hence,
this approach encourages the support of K°—K¢ to be the union of a given set of
columns. Hence, this penalty only provides some flexibility to a few nodes to differ
among conditions while all the other nodes have the same pattern of interactions.

The main idea of our proposal, we coined cLasso, is similar to the latter approaches, but
using a softer penalization scheme than group-Lasso type penalties. This choice aims at
better estimating the edges that are not similar and also does not need to assume a
particular origin for the differences between conditions. The % inferred graphs, G, are
forced toward a “consensual” graph: the resulting graphs are different from each other, but
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these differences can be controlled. This idea is tackled by using a penalized ML
framework in which two penalties are introduced:

e the first one is a sparse penalization which controls the number of edges in every
graph G°;

* thesecond oneisa L, penalization that aims at limiting the differences between the
(Kc)c=1,...,k .
cons

More precisely, Vj=1,...,p, a consensual regression coefficient, [;"" , is introduced, that
can be defined from the sample-dependent coefficients S; or can be fixed by the user,
including, in particular, prior biological knowledge. This coefficient represents a kind of
“global” solution, that is condition-independent. It is used by replacing the minimization
problems described in Equation (3) by the following double-penalized minimization
problems:

LA LN Y L 0

5

In Equation (4), B;”" is used to model the “consensus”. In the following section,
different types of consensus are described, and the practical computation of the solution is
derived from the different cases. All described solutions lead to the optimization of
quadratic problems penalized by the L, -norm.

Contrary to the other approaches presented above, the second penalty of Equation (4)
is a soft one, that does not control drastically the number of different edges between
conditions but rather limits them. It is thus advisable in the case of a not too low number of
differences and when the user really wants to see the differences across the conditions. Also,
contrary to [14, 21], our proposal does not rely on a penalty which complexity increases
quadratically with the number of conditions (this might be a problem if the number of
conditions is high). Finally, as explained in Section 2.3.1, the definition of a consensus
network can integrate prior knowledge that can help estimating the network with an
increased accuracy.

cons

Remark 1 As shown in Section 3.1, any choice for B that leads to obtain a minimization
problem that can be expressed as:

convex part + /1||,Bj ¥
is a valid consensus choice that can be solved using a common framework. In particular, this includes
any consensus that is expressed as a linear combination of the estimated coefficients [3; (Section
2.3.2) or (fixed) a priori consensus (Section 2.3.1).

2.3. Consensus Choices
2.3.1. A Fixed Consensus

‘When a prior information is known on the network (e.g., a bibliographic network), a
natural choice is to use it for F““. In this case, S“” is fixed in advance and does not
depend on (;);: it does not need to be estimated. However, if no prior information is
available, the network estimated from all the samples considered as a whole or any
combination of networks obtained with independent estimations can be used for consensus
and considered as a (fixed) a priori information network.

Proposition 1 Using a fixed ;" , Equation (4) is equivalent to minimizing the following standard
quadratic problem with L, -penalty:
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BB B, + BB 0+ A )

where B' (u)zi\ w20l , with 1y, the k(p-1) -identity matrix and B*(u) =

cons

o 2uly, B with B a k(p—1) vector that only depends on the prior ;" .

Proof (and exact values for B' and B?): The L, -penalty of Equation (4) can be
re-written as:

‘2

, |

.. 2 . . .
Noticing that ‘ B , isa fixed value that does not depend on the estimated coefficients
B; , it follows that minimizing Equation (4) is equivalent to minimizing:

%ﬂf (i\j\j + 24l )'Bj +5; (if\f =24l ) B ) + ’1”/31‘”1 ’

cons c
B = B

ﬁ]{,:OI’LS

5| =2l(m) m-20m)

. T \T
where S is the vector ((ﬂ;m) ,...,(,li’fom) ) :
2.3.2. An Averaged Consensus

When no prior information is given, an intuitive and convenient choice for the
consensus is to simply average the estimators over the different samples:
B = Sk on B; /n. In this case, B is a linear combination of the (f;),, which is an
interesting feature, as explained in Proposition 2. Notice that the choice of averaging the
coefficients f; is almost equivalent in terms of networks (i.e., in terms of non-zero entries)

as having a consensus which is the union of the condition-dependent networks.
Proposition 2 Using f;”° = Sk on B; /n, Equation (4) can be re-written as the following
standard quadratic problem with L, -penalty:

BTS04 TS+ 2B, ©)

1 )
ufhere S:(w)= i\ INE UAT A where A isa k(p—1)xk(p—1)-matrix that does not depend on
j.

Proof (and exact value for A): If, Ve=1...k, U ,=nl,,/n (with I, , the unit
matrix having dimension p-1)and ¥V, =(1-n,/n)I, , then

Be— B = AB,,
where A4, isthe (p—-1)xk(p-1)-matrix [-U,,...,-U_,,V.,—U,

c-1"" ¢ C+1""’_UP] . Then,

k
2]

c=1

2 k
I = %ﬂfAzAcﬁja

and thus, setting
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implies that

slpr-pl, - 54 4B,

which concludes the proof.

Remark 2 Because the term ﬁJ.TATAﬁj is a quadratic term in [, the formulation of the
minimization problem given in Equation (4) is not a direct penalization of the ML optimization.
More specifically, minimizing Equation (4) is equivalent to minimizing the following penalized ML:

k 2
LK1X) - 2|K], —5 5 H(D‘)’l/z (Ko —Ke) X
where
k R k p . )
o Kl =2k = 2 2K

e D° =Diag(K¢,, K;Z,...,K;p);

kK
Kese =y B e
NJ k] K, FAVAN

Note that, as explained in [8], estimating (K35); is not relevant to unveil the graph structure so, in
practice, these values are set equal to Z;jl . Hence, from the ML point of view, there is no definition of
a consensual concentration matrix since this quantity depends on the sample (the average is weighted
differently depending on the sample).

In practice, in every task, the variables are previously scaled and K are all set equal to one,
which leads to the following equivalent formulation of the optimization problem

2
5

k
LK IX) 2K, —5 gluK"s —K*

k
where K =Sn K. ./n.
A=

FAY
Remark 3 The penalty of [14] can be re-written as:

)

c#c'

_ c __ cons ¢ econs
_Z(HK] K|, + K - KS

c cons cons c'
K = K™ + K™ =K |,

2+2<Kj.—Kj"”S,Kj."”S—Kj>)
k ! cons
:(/e—l)gHKj—Kj 2 +2 205 - K§™, K = K§™).

Then, in the case of the averaged consensus, an edge (j,j") is in the consensus network if and only
if it is in at least one of the condition-specific networks. In particular, for k=2, K}j, -K =0
means that (7,7'") is an edge in the consensual network and is not an edge in the network specific to
condition 1. It is thus also an edge in the network specific to condition 2 (as there is only two
conditions). In conclusion, when k=2, (K? - Kj-””s,Ki. - Kj"’”) =0 and thus the consensus
penalty is very similar to the penalty proposed in [13]. However, for k> 2, the situation might be
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more complicated: a condition-specific edge can be specific to more than one condition and thus the
equality (K —K%™, Kj =K =0 is no more guaranteed for the averaged consensus. Conversely,
nullity of the scalar product (and thus the equivalence between the consensus penalty and the penalty
proposed by [17]) would be obtained, for instance, if an edge that is specific to a condition is present in
only one of the condition-specific networks. This property does not seem to be desirable on a biological
point of view.

3. Computational Aspects

This section will provide computational details on the cLasso methods. First, the
method used to solve the optimization problems introduced above is described and then, a
bootstrap approach is introduced to help decreasing the false positive rate and to help
increasing the prediction accuracy when dealing with small sample size problems.

3.1. cLasso Optimization

The cLasso problem is solved by minimizing the p sub-problems of Equations (5)
and (6). The objective function of all the problems that can be decomposed into:

C(B)= ﬂjTQ}(,u)ﬂj /2 +ﬂ].TQf(,u) , convex in (f3;); and that does not depend on 4;
P(B;)= Z“ y/j f||1 /n, thatis non differentiable at 0, with respectto S, .

The non differentiability of P shrinks the LASSO estimate toward 0 and potentially sets
By =0 for several indexes /, as explained in [22]. In [22], the LASSO optimization
problem is solved by a quadratic programming method, which is used to perform the
estimation of the (8,), together with a variable selection. Since then, several authors have
proposed more efficient approaches to solve the LASSO optimization problem: [11]
developed the so-called “shooting algorithm” that starts from an unconstrained least-square
solution and uses a coordinate descent. Unfortunately, this algorithm is not applicable in
the case of sparse problems as soon as n<p. Others proposed to use differentiable
approximations of P, such as [14] that takes advantage of the approximation
18, == j,f f} +& . Finally, [18] uses a method that is efficient for medium-size problems
and suited to the case 7 < p. We used a similar strategy, which is close to the one described
in [5]: it is based on a greedy update of an “active set” that progressively gathers together
all non-zeros coefficients of the different sub-problems. At each step of the algorithm, the
coefficients are estimated only for the variables that are included in the active set.

More precisely, for a fixed value of A, starting from a vector ﬂf of non-zero
coefficients on the active set A, the method first solves the so-called “master problem”
given by Equations (5) or (6), which is differentiable, because, by definition, the coefficients
of ,8;4 are not null. This is done by using the sub-gradient & 5 LC(ﬁj)+/1P(ﬁj):|. Then,
the set of active variables is updated by adding the variables that violate the most the
first-order optimality condition. The algorithm stops when

o forall /e A, B,#0 and
05, [CB)+2PB)]] =[ QB +Q ()], + 4 sign(B,) =0.
* forall /e A, f,=0 and
[Qwp+w]|<a.
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Further details on the method can be found in [5], that uses the same optimization scheme
for the so-called “intertwined LASSO”method.

Finally, the method is applied to a whole set of A values, starting from largest (i.e.,
from the one that yields to the strongest constraint) and using the optimal g, as a prior for
solving the problem with the next smaller A. This method is implemented in the R
package therese, that can be downloaded from http://therese-pkg.r-forge.r-project.org/.

3.2. Bootstrapped cLasso

As demonstrated in [4], the LASSO converges to the selection of all the variables
included in the true model (true positives) with probability one but asymptotically selects
all other variables (false positives), with a strictly positive probability. In practice, this means
that using the LASSO algorithm yields to a rather high number of false positive edges in
the network estimation. To overcome this difficulty, [2] proposes the so-called “Bolasso”
method, that combines LASSO performed on bootstrap samples. Bootstrapping [8] is a
resampling technique that consists in creating new samples of the same size as the original
by sampling randomly with replacement from the original dataset. Its aim is to estimate the
sampling distribution of almost any statistics and thus to estimate the accuracy for these
statistics. In Bolasso, LASSO is run on a large number of bootstrap samples and the
intersection of the variables selected in every bootstrap sample are finally kept. It is proved
that this approach is a consistent model selection method.

Hence, in order to improve the false positive rate of the approach described above, we
use a similar methodology, only taking into account the fact that the typical sample size in
transcriptomic experiments is far from being close to the asymptotic case. More precisely,
instead of intersecting the edges selected in every bootstrap sample, the number of times an
edge is selected by all computations run on each bootstrap sample is used as a quality
measure of the edge. Only the most frequently selected edges, those that are selected more
than a given number of times denoted by 7, €{l,...,N,,,}, are finally included in the
estimated network.

In practice, for every bootstrap sample, Equation (5) or Equation (6) is solved for a list
of several values of A and a fixed value for x, using the method described in Section 3.1.
A given value of 1, depending on the bootstrap sample, is retained which corresponds to
the first time in the path (i.e., to the largest 1) for which the number of estimated edges is
larger than a target value, 7. T, is fixed to a rather high value to avoid missing relevant
edges. The complete procedure is described in Algorithm 1.

The impact of 7, and T, is discussed further in the simulations of Section 4.1.2.

Algorithm 1 Bootstrap cLasso

1: require:
list of genes {1,...,p}
list of individuals {1,...,7}
individuals’ sample number c¢,,...,c, with ¢, €{l,... k}
gene expressions X (dimension #nxp)

parameters R (L,-regularization parameter) and 77,7, € N (number of edges
selected).
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2: initialize: V ce 1,...,k}, V), j'e{l,....,p}, N°(4,j) <0

3: for b=1—P do.

4: Sample at random with replacement in {l,...,n} return bootstrap sample B,
5

Use B, to solve Equation (6) or Equation (5) for a full set of A values return
(ﬂ;‘jﬁh )j,c,ﬁ.

6 Find 4, :=argmax, {&Z I ﬂj-’“’#cOJ > Tl} return ( ’3]917 )i =( ﬁjﬂmax,b ).
7: forall j,j'e{l,...p} 'dd "

8: if B%#0 then

9: N(7, 7)< N°(,7)+1.

10: end if

11: end for

12: end for

13: return List of edges for sample ¢ :{(j, U, N> Tz}

4. Application

The simulations described in this section have been performed using R version 3.0 and the
packages glasso?, SIMoNe’ and JGL*. Bootstrap was performed using a parallel
implementation with the package doMC.

4.1. Simulated Data

The method is first illustrated on simulated data. These experiments use one of the
graphs provided at http://www.comp-sys-bio.org/AGN/data.html and created by Pedro
Mendes (Virginia Bioinformatics Institute and State University; see [21]). More precisely,
the graph “scale-free Century 007 was used to test the method. This network has 100
nodes (corresponding to genes) and 200 edges (corresponding to gene interactions): the
density of the (undirected) network is thus approximately equal to 4%. The term “scale
free” indicates that the network has been generated from a preferential attachment model,
as described in [8]. Additionally, the edges of the network are colored: half are “red” and
half are “blue”, which will differentiate a positive from a negative correlation between two
variables.

4.1.1. Data Generation

Several artificial expression datasets were generated from the graph described above.
More precisely,

* [ child networks were created by randomly rewiring a given ratio » of the edges
of the original network. Hence, two child networks have approximately
100(1-27)% of shared edges. Loops and multiple edges were forbidden during the
rewiring process but the color of the edges was preserved. Each of these & networks
is used to model one experimental condition;

http://cran.r-project.org/web/packages/glasso/index.html
http://stat.genopole.cnrs.fr/logiciels/simone
http://cran.r-project.org/web/packages/JGL/index.html
http://www.comp-sys-bio.org/AGN/Century/index.html

a o~ w N
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* . expression data were then generated from a Gaussian multivariate variable with a
covariance matrix X° for which the conditional dependency structure corresponded
to one of the child network. In addition, the edge colors were used to define the sign
of the partial correlation: blue edges corresponded to negative partial correlations
(mimicking inhibition) and red edges to positive ones (mimicking activation).

Mother graph (SF Century 007)

°
"9 °
o
% o Q4 -
o { ©
o ° o °© o
0. 0
X o
o o g o 5
[} N a3 o Q o
o
o—F ° d4.</ b
o R o
[ o Q Q & o
Y o o o0
oo o o < 2
o o (3 %
o o o 00
N O—¢ N2 °
[ o o\ @
o o O
o o 2
o o o
o
o
o
3] *
Child 1 Child 2

Figure 1 The “scale free Century 007” graph and two resulting child networks,
obtained with 5% of rewired edges. Green dotted edges are shared edges whereas
red solid ones are condition specific edges. The vertex positions result from a
force-directed placement algorithm as in [10] and are common to all three networks
so that the edges can easily be compared.

Several experiments were designed with various values for £ (2, 4 or 5), r (varied
between 5%, 10% and 20%) and the respective sample sizes #,,...,n,: 2x20, 2x30,
2x50, 5x20 and 4x30. Only small sample sizes (no less than 50 observations) were
used to fit realistic experimental conditions in which only a few observations per condition
are generally available. The resulting child networks had no more than 40% of different
edges. Figure 1 illustrates the generation process on an example: the “scale free Century
007” graph is displayed as well as two of its children, obtained by rewiring 5% of the edges.
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4.1.2. Bootstrap Analysis

In this section, we investigate the effect of 7; and 7, on the performance of the
algorithm. This analysis is made using the results obtained from the expression data
generated with 5% of rewired edges, 2 conditions, each containing 20 observations.

For this network, 100 bootstrap samples were extracted: this number is low compared
to standard recommendations but, for one hand, the approach is computationally expensive
and, for the other hand, a previous work [1] showed that the benefit of bootstrapping was
achieved with the combination of 30 to 40 bootstrap samples. Also, several values of T;
and u have been tested: 7] €{250,300,500} and xe{0.1,1} . The performance of the
different parameters are compared by means of the F statistics:

Foox precision x recall

. . ’
precision + recall

where the precision is the ratio of retrieved edges that are in the true network (true positive
edges among positive edges) and the recall is the ratio of true edges that are retrieved by the
method (true positive edges among the edges in the original network). F is the harmonic
mean of the precision and of the recall and computes a trade-off between the two
quantities.

500 -
best F

0.284

b= 200 0.280

0.276

Figure 2. Maximum F along the path of 7, values for different
parameters u and T;.

For each condition and each pair of parameters {7;, x4}, the F statistics were
calculated along the precision/recall values obtained for different values of T, (bootstrap
estimation). Then, the pairs of parameters {7;, x#} were compared based on the averaged
F over the conditions: the “best pair” of parameters is the one that maximizes the
maximum averaged F along the path of T, values, the maximum F being used as a
way to find the best compromise between precision/recall. According to this method, the
best pair {7}, u} for the expression data described above was {500, 1}, as shown in the
level plot of Figure 2.
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When the value of 7; is set to a rather high value, 500 (which is much larger than the
true number of edges), and when u is equal to 1, Figure 3 gives an indication on the
influence of 7, on the density of the inferred networks. The histogram displays the
distribution of the number of times a given edge is chosen by the algorithm over the 100
bootstrap samples. Notice that only a few edges are very frequently selected by the
bootstrap method, whereas the targeted density of 4% is obtained by keeping edges that are
selected about at least 40 times (i.e., in at least 40% of the bootstrap samples).

Frequency
Density of the resulting graph

CoLmts N Tz

Figure 3. Distribution of the number of times an edge is selected over 100 bootstrap
samples for the first condition (left) and evolution of the density versus 7, for the
2 conditions (right). 7; =500, ux=1.

recall

43 selections at least
40 selections at |least

precis‘ibn |
Figure 4. Precision/Recall curve (with varying T, ) for the total number of edges of

the true child networks compared to the corresponding inferred network. 7; =500,
1 =1 (each curve corresponds to one of the 2=2 child networks).

Figure 4 displays the precision/recall curves. Two points are emphasized on this figure:
they correspond to the maximum F on the curve. The maximum F are obtained by
keeping edges that are selected at least 40/45 times (approximately) over the 100 bootstrap
samples and correspond to a precision about 25% and a recall about 30%. These points give
inferred networks with a resulting density slightly lower that the true network density
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(2.5-3.5% instead of 4%). This illustrates the fact that, if there is a prior knowledge on a
targeted density, a good strategy could be to choose 7, so that resulting networks fit this
targeted density.

When the value of 7; is equal to a smaller value (250 which is larger than the true
number of edges), the evolution of the density versus 7, and the precision/recall curve
are given in Figure 5. The conclusions are very similar except, of course, that for a given
value of T,, the densities of the resulting networks are lower. Otherwise, the distributions
of the number of times a given edge is selected by the algorithm in the bootstrap samples
are quite similar and the best F value is also obtained for networks that have densities
slightly lower than the true density.

1
recall
.

30 selections at least
30 selections at least

Density of the resulting graph

Te precision

Figure 5. Evolution of the density versus 7, for the 2 conditions (left) and
Precision/Recall curve (with varying T;) for the total number of edges of the true
child networks compared to the corresponding inferred network. 7; =250, u=1.

However, as shown in Figure 2, T, is a less important parameter for the method
performance, as compared to x. Optimal parameters, according to the maximum F
statistics, are given in Table 1 for all simulations. As expected, u needs be smaller in the
case where the two conditions correspond to more different networks (i.e., when the
number of rewired edges is larger) but generally, using a rather high value for 7| is the
strategy that provides the best results. The effect of the bootstrap on the performance is
shown in the last column of this table, which contains the percentage of increase of the
corresponding maximum F compared to the direct approach. Bootstrap only improves
the performances when the percentage of rewired edges is moderate (lower than 10%) or
when there are many different conditions. The counter-performance of bootstrapping could
be explained by the fact that it enforces the joint effect and thus fails to estimate edges
specific to the condition, that are less numerous in those cases. Additionally, this might be a
very high-dimension issue [23]: when the #/ p ratio allows us to draw model inference
but is at the limit of producing reasonably accurate estimates, the use of a bootstrap
procedure produces a set of highly unstable estimates, which lead to fewer robust estimated
edges. As a consequence, the model estimate might focus on those edges which are
supported by many conditions and does not detect finer pattern of dependencies in the
data.
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Table 1. Best parameters of the bootstrap cLasso for each simulation according to
the maximum F along the path of 7, values, and percentage of increase of the
best F value compared to the direct (i.e., un-bootstrapped) approach.

u T % of improvement
1 .
of bootstrapping
network sizes rewired edges: 5%
20-20 1 500 28.80
30-30 1 300 20.15
50-50 1 300 13.44
20-20-20-20-20 1 500 83.75
30-30-30-30 0.1 500 42.67
network sizes rewired edges: 10%
20-20 0.1 250 18.35
30-30 0.1 500 16.17
50-50 1 250 4.230
20-20-20-20-20 0.1 500 55.48
30-30-30-30 0.1 250 29.56
network sizes rewired edges: 20%

20-20 0.1 300 -17.86
30-30 1 500 -7.970
50-50 0.1 300 -7.830
20-20-20-20-20 0.1 500 10.27
30-30-30-30 1 500 13.48

4.1.3. Performance Comparison

In this section, cLasso is compared to alternative methods for inferring graphs from
expression data. More precisely, for each expression dataset described in Section 4.1.1, the
following methods are applied to infer the #% conditional dependency networks
corresponding to the k£ different conditions:

* the graphical Lasso method, as described in [9] and hereafter denoted by gLasso: the
k networks corresponding to the % different conditions are inferred independently.
Hence, the comparison with this method aims at showing the effect of jointly
inferring the networks instead of independently;

e the intertwined Lasso, the cooperative Lasso and the group Lasso methods, as
described in [5] and hereafter denoted by iLasso, coopLasso and groupLasso,
respectively. These methods are used to provide a comparison with other joint
inference methods. Also notice that the data generation provides sign-coherent
networks (i.e., the different child networks are very likely to have the same sign for
partial correlations corresponding to shared edges), which should favor the
cooperative Lasso method;

* the fused graphical Lasso, as described in [6], denoted by fgLasso. After a few tests,
the second regularization parameter, which controls the similarity accross conditions,
was set to the value 0.1 for all simulations;

¢ the consensus Lasso method, as described in Section 2. The two choices of consensus
described in Section 2.3 are tested with, for a priori network:
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— the mother network (i.e., the true network used to generate the child networks,
which is never known in practice but is the closest thing we have in this
simulation from a bibliographic network),

— or, for comparing a naive two-step approach with the averaged consensus
described in Section 2.3.2, a network which is the mean over the conditions of
independent estimations (i.e., estimations obtained with z=0).

These methods are denoted by cLasso (m) (for the averaged consensus method
described in Section 2.3.2), cLasso (p) (for the method using the true prior) and cLasso (2)
(for the naive two-step approach that uses a mean over conditions of independant
estimations). Notice that the method using as a prior the mother network is clearly favored
in this comparison, since even if the child networks are not identical to the mother network,
they are very related to it. The comparison with this method should be used to understand
what is the effect of integrating true prior knowledge in the estimation. u was set equal to 1.

For each method, the inference is performed for a whole path of A values and the
corresponding precision and recall are calculated for each value of A. A bootstrap version
with 100 bootstrap samples of each of these methods is also implemented with 7; =500 .
The number of times a given edge in a given condition is selected is then used to calculate
precision/recall values for different values of T,.

Precisions and recalls are calculated by comparing the estimated condition-specific
networks with the children networks they are generated from. We do not compare directly
the consensus network with the mother network because we are interested in testing the
ability of the method to estimate the common edges as well as the condition-specific edges.
The F statistics is used as a way to compare the different methods, as in Section 4.1.2.
First, averaged F', over the different conditions, are calculated along the precision/recall
values obtained for different values of A (direct estimation) or for different values of T,
(bootstrap estimation). Then, the maximum of these values (for recall and precision values
larger than 0.05, to avoid extremely bad values of the precision or of the recall) is used as a
way to compare the performance of the different methods. The results are given in Table 2
(direct estimation) and Table 3 (bootstrap estimation), for each of the 6 methods described
above.

Several conclusions can be drawn from these results. For a moderate ratio of rewired
edges (smaller than 10%), bootstrapping improves the performances of all methods, except
for iLasso (also, the increase is very limited for the coopLasso method). The increase is
particularly interesting when the sample size is small and/or the number of samples is high.
On the contrary, when the ratio of rewired edges is equal to 20%, bootstrapping only
improves the performances of cLasso with prior, and, only for 4-5 samples having the
smallest sizes, of gl.asso, groupLasso and cLasso (m).

As expected, the overall performance is strongly increased when a relevant prior is
added (the best F' 1is often 3 times larger), which shows that this strategy should probably
be used when such an information is available. When this is not the case, fglasso often
obtains the best results. Otherwise, coopLasso, bootstrap cLasso or iLasso also have good
performances. Bootstrap cLasso (m) seems to be useful in the case of a moderate number
of rewired edges and when the sample size is smaller. The naive two-step approach, which
requires two estimations instead of one, often leads to deteriorated performances as
compared to cLasso (m) which is twice faster. Finally, direct il.asso is advised for the
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largest number of rewired edges and coopLasso is to be preferred when the number of
rewired edges is small but the sample size larger.

Table 2. Summary of the performance for the different methods in terms of the maximum
value of the F statistics. The best method for each couple of percentage of rewired edges
and network sizes, is emphasized with bold face.

. cLasso cLasso cLasso
Method glasso ilLasso groupLasso coopLasso fgLasso (m) ) @
network sizes rewired edges: 5%
20-20 0.19 0.27 0.23 0.28 0.26 0.22 0.84 0.21
30-30 0.28 0.35 0.32 0.35 0.32 0.31 0.86 0.30
50-50 0.36 0.47 0.48 0.49 0.47 0.43 0.88 0.40
20-20-20-20-20 0.19 0.34 0.34 0.41 0.43 0.23 0.84 0.23
30-30-30-30 0.30 0.46 0.48 0.51 0.55 0.36 0.88 0.35
network sizes rewired edges: 10%
20-20 0.19 0.24 0.22 0.26 0.22 0.23 0.78 0.21
30-30 0.27 0.35 0.33 0.35 0.34 0.31 0.81 0.29
50-50 0.41 0.48 0.45 0.46 0.49 0.45 0.82 0.41
20-20-20-20-20 0.20 0.30 0.24 0.36 0.35 0.23 0.74 0.23
30-30-30-30 0.28 0.39 0.35 0.40 0.45 0.31 0.79 0.32
network sizes rewired edges: 20%
20-20 0.21 0.22 0.19 0.21 0.21 0.23 0.58 0.21
30-30 0.28 0.31 0.27 0.31 0.30 0.31 0.67 0.33
50-50 0.42 0.43 0.41 0.44 0.45 0.43 0.68 0.40
20-20-20-20-20 0.20 0.26 0.22 0.25 0.26 0.22 0.63 0.23
30-30-30-30 0.27 0.35 0.28 0.35 0.35 0.29 0.63 0.31

Table 3. Summary of the performance for the different methods (bootstrap version) in
terms of the maximum value of the F statistics. The best method for each couple of
percentage of rewired edges and network sizes, is emphasized with bold face.

. cLasso cLasso cLasso
Method glasso ilLasso groupLasso coopLasso fgLlasso (m) ) )
network sizes rewired edges: 5%
20-20 0.26 0.27 0.28 0.29 0.29 0.29 0.85 0.28
30-30 0.31 0.34 0.36 0.34 0.36 0.37 0.86 0.35
50-50 0.46 0.48 0.48 0.47 0.48 0.49 0.88 0.47
20-20-20-20-20  0.38 0.34 0.44 0.43 0.44 0.43 0.89 0.41
30-30-30-30 0.48 0.44 0.51 0.53 0.53 0.51 0.89 0.51
network sizes rewired edges: 10%
20-20 0.25 0.23 0.25 0.27 0.27 0.25 0.79 0.27
30-30 0.33 0.36 0.35 0.36 0.38 0.35 0.80 0.34
50-50 0.45 0.47 0.46 0.44 0.48 0.46 0.82 0.43
20-20-20-20-20  0.32 0.30 0.36 0.34 0.36 0.35 0.78 0.35
30-30-30-30 0.36 0.38 0.39 0.41 0.42 0.40 0.80 0.38
network sizes rewired edges: 20%
20-20 0.17 0.22 0.17 0.18 0.21 0.18 0.59 0.18
30-30 0.27 0.31 0.27 0.28 0.27 0.29 0.67 0.28
50-50 0.37 0.43 0.38 0.37 0.41 0.39 0.66 0.37
20-20-20-20-20  0.20 0.23 0.25 0.23 0.26 0.24 0.66 0.24
30-30-30-30 0.30 0.31 0.32 0.32 0.32 0.33 0.63 0.31
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Computational times needed® for the different estimations are very different:

e the time needed to estimate one of the condition-specific networks with glasso
(independent estimations with graphical LASSO as described in [9]) is approximately
equal to 1 second for 25 values of A (to be multiplied by the number of conditions);

* the time needed to estimate 5 joined networks with simone (implementing the
methods described in [5]; the time is reported for “cooperative LASSO”) is
approximately equal to 1 minute 30 seconds for 100 values of A;

e the time needed to estimate 2 joined network with JGL (implementing the methods
described in [6]; the time is reported for “fused LASSO”) is approximately equal to
for 25 values of A and the time needed to estimate 5 joined networks with this
method is approximately equal to 2 hours 30 minutes. Notice that the path of 1 has
been performed manually as this package is the only one that does not propose a
regularization path for the sparse parameter;

e finally, the time needed to estimate 5 joined networks with therese is approximately
equal to 2 minutes 30 seconds for 100 values of A (and a little bit less than twice
this value for the naive two-step approach).

4.2. Real Data: Effect of a Diet on Regulatory Network

As an application to a real biological data set, we analyzed gene expression data
described in [24]. More precisely, the expression of 221 genes are used. These were
obtained for 204 obese women before and after 8-week low-calorie diet (LCD) with the
objective of more than 8% weight loss. Considering the two time steps of the analysis as
two different conditions, we used the bootstrapped cLasso approach with =1 and
7, =1000 (that corresponded to a targeted density of approximately 4%). The choice of a
rather high regularization parameter u was directed by the will to emphasize only a few
different edges between the two conditions and hence to focus on the most relevant
differences between the two conditions. Notice that the possibility to monitor x allows to
infer networks that are more or less consensual, depending on what your prior is. The
choice for 7, was directed by the fact that we wanted to obtain very sparse networks,
easily readable for the biologist, which, in the case of approximately 200 nodes, requires to
have a very low density. 100 bootstrap samples where used to estimate the edges by the
cLasso approach.

The distribution of the number of times an edge is selected for expression data affer the
diet was very similar to what was found before the diet. Hence, in order to favor a high
precision (at the cost of maybe a low recall), only the edges that appeared in at least 80
bootstrap samples were selected. This yielded to networks having respectively 316 and 315
edges (with a density about 1.3%). These networks had 292 edges in common (i.e.,
approximately 90% of the total number of inferred edges).

The histogram of the number of times a given edge is selected over the 100 bootstrap
samples is given in Figure 6 (for the network corresponding to gene expression data before
the diet). It has to be noted that pairs of variables that were never selected over the 100
bootstrap samples have been removed from the histogram (they corresponded to
approximately 70% of the 221x220 potential edges).

®Computational times are reported for a 4-core laptop, Intel(R) Core(TM) i5-3360M CPU @ 2.80GHz,
RAM 8Go DDR3, with OS Kubuntu Linux 12.04.
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Figure 6. Distribution of the number of times an edge is selected over
100 bootstrap samples for the expression data before the diet.
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Figure 7. Networks inferred by bootstrapped cLasso: before (left) and after low-calorie diet
(right). Blue edges are shared edges and pink edges are condition specific edges. Some gene
names are given, that are commented in the text.

Other shared edges are highly probable, such as the one between AZGPI and GPDIL
which are two known biomarkers of the metabolic syndrome [24]. However, quite
interestingly, at least one condition specific edge is also expected: the genes PCK2 and
CIDEA are the best biomarkers, among this set of genes, for the weight loss, and the main
difference between the two conditions is indeed the weight loss [24].

The resulting networks are displayed in Figure 7. They have approximately 92% of
their edges in common. The full biological validation of such a network is unrealistic
(because of the very limited knowledge available in this area) but some of the interactions
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make sense. For instance, some regulatory relationships shared between the two conditions
are already known, such as the relation between FADSI and FADSZ2, which encode two
desaturase enzymes from the same cluster gene with similar regulation by dietary
composition [15].

5. Conclusion

We have proposed the cLasso method, which is used for jointly inferring networks in
the case of multiple and dependent expression data. This method relies on the definition of
a consensual solution, which in our case, is simply the mean between the different
conditions. The different networks are forced toward this consensus by a L, -penalty whilst
the sparsity of the solution is handled by an additional L, penalty. The solution proposed
in this paper can be reformulated as a LASSO problem similar to the ones described in [8,
18] and the method is implemented in the R package therese. Experiments were conducted,
using a bootstrapped approach based on the cLasso method and showed that this method is
reliable.

Future work should address the issue of unbalanced sample sizes between conditions,
and of the choice of x: a naive selection based on out-of-bag MSE has been proven
inefficient so far for selecting the best value. However, this parameter can also be useful for
the biologist to include prior knowledge about how similar the condition-specific networks
should be: using different u provides a family of solutions with different fractions of
common edges, among which the biologist is free to choose.
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