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Remote Sensing

Nature of remote sensing images
A remote sensing image is a sampling of a spatial, spectral and temporel process
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Classification of hyperspectral imagery

Hyperspectral Imagery 1/3
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Pixels are represented by random vector x ∈ Rd with d large, associated to a
random variable x that represents the class/label.

Classification: predict the membership y of x, y = f (x).
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Classification of hyperspectral imagery

Hyperspectral Imagery 2/3

Instrument Range (nm) # Bands Bandwidth (nm) Spatial resolution (m)

AVIRIS 400-2500 224 10 20/1-4
HYDICE 400-2500 210 10 1-4
ROSIS-03 400-900 115 4 1
Hyspec 400-2500 427 3 1
HyMAP 400-2500 126 10-20 5
CASI 380-1050 288 2.4 1-2

HYPERION 400-2500 200 10 30
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Classification of hyperspectral imagery

Hyperspectral Imagery 3/3

Definition of more classes with finer resolution:
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Classification of hyperspectral imagery

Image classification in high dimensional space
High number of measurements but limited number of training samples.

Curse of dimensionality: Statistical, geometrical and computational issues.
Conventional method failed [Jimenez and Landgrebe, 1998].

Kernel methods have shown great potential in many situations.

Pixelwise classification not adapted [Fauvel et al., 2013].

Need to incorporate spatial information in the classification process: additional
complexity.
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Spatial-spectral classification

Kernel methods VS Parametric methods

1. Kernel methods [Camps-Valls and Bruzzone, 2009]:
I Good abilities for classification,
I Spatial information included through kernel function or additional features.

ks(xi ,xj) =
∑
m∼i
n∼j

k(xm ,xn)

2. Parametric methods [Solberg et al., 1996]:
I Markov Random Field: able to model spatial relationship between pixels,
I Problem of the estimation of the spectral energy term.

3. Parametric kernel methods: probabilistic models in the kernel feature space.
I Allow to get probability membership, with robust classifier
I Allow to use the MRF modelization
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Spatial-spectral classification

Kernel methods and MRF
Maximum a posteriori: maxY (Y |X)

When Y is MRF: P(Y |X) ∝ exp(−U (Y |X))
where U (Y |X) =

∑n
i=1 U (yi |xi ,Ni) with

U (yi |xi ,Ni) = Ω(xi , yi) + ρ E(yi ,Ni)

Spectral term: − log[p(xi |yi)]
I SVM outputs [Farag et al., 2005, Tarabalka et al., 2010, Moser and Serpico, 2013]
I Kernel-probabilistic model [Dundar and Landgrebe, 2004]

Spatial term
I Potts model: E(yi ,Ni) =

∑
j∈Ni

[1− δ(yi , yj)]

y6 y7 y8

y1 y2 y3

y4 y5yi
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Spatial-spectral classification

(Kernel) Gaussian mixture models

Quadratic decision rule in the input space

Dc(xi) = (xi − µc)>Σ−1
c (xi − µc) + log(det(Σc))− 2 ln(πc)

Quadratic decision rule in the feature space [Dundar and Landgrebe, 2004]:

Dc
(
φ(xi)

)
= φ̄c(xi)>K−1

c φ̄c(xi) + log(det(Kc))− 2 ln(πc)

Problem: K is badly conditioned (and non-invertible).

Unlike SVM, there is no regularization for K−1
c and log(det(Kc)) in the estimation

process.

So it needs to be included in the model.

Enforce parsimony in the model
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Gaussian process in the feature space

Kernel induced feature space
φ

Gaussian kernel: k(xi ,xj) = exp
(
−γ‖xi − xj‖2

Rd

)
From Mercer theorem: k(xi ,xj) = 〈φ(xi), φ(xj)〉F which can be written

k(xi ,xj) =
dF∑

m=1

λmqm(xi)qm(xj)

where dF = dim(F).

φ : x 7→ [. . . ,
√
λmqm(x), . . .], m = 1, 2, . . . , dF

For the Gaussian kernel, dF = +∞
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Gaussian process in the feature space

Gaussian process

Let us assume that φ(x), conditionally on y = c, is a Gaussian process with mean
µc and covariance function Σc.

The projection of φ(x) on the eigenfunction qcj is noted φ(x)j :

〈φ(x),qcj〉 =
∫

J
φ(x)(t)qcj(t)dt.

The random vector [φ(x)1, . . . , φ(x)r ] ∈ Rr is, conditionally on y = c, a
multivariate normal vector.

Gaussian mixture model (Quadratic Discriminant) decision rules:

Dc
(
φ(xi)

)
=

r∑
j=1

[
〈φ(xi)− µc,qcj〉2

λcj
+ ln(λcj)

]
− 2 ln(πc)
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The random vector [φ(x)1, . . . , φ(x)r ] ∈ Rr is, conditionally on y = c, a
multivariate normal vector.

Gaussian mixture model (Quadratic Discriminant) decision rules: rc = min(nc, r)

Dc(φ(xi)) =
rc∑

j=1

[
〈φ(xi)− µc,qcj〉2

λcj
+ ln(λcj)

]
− 2 ln(πc)

+
r∑

j=rc+1

[
〈φ(xi)− µc,qcj〉2

λcj
+ ln(λcj)

]

M. Fauvel, DYNAFOR - INRA DYNAFOR - INRA
Parsimonious Gaussian process models 18 of 41



Introduction Parsimonious Gaussian process models Experimentals results Conclusions and perspectives

Parsimonious Gaussian process

Introduction
Remote Sensing
Classification of hyperspectral imagery
Spatial-spectral classification

Parsimonious Gaussian process models
Gaussian process in the feature space
Parsimonious Gaussian process
Model inference
Link with existing models

Experimentals results
Data sets and protocol
Results

Conclusions and perspectives

M. Fauvel, DYNAFOR - INRA DYNAFOR - INRA
Parsimonious Gaussian process models 19 of 41



Introduction Parsimonious Gaussian process models Experimentals results Conclusions and perspectives

Parsimonious Gaussian process

Definitions
Definition (Parsimonious Gaussian process with common noise)
pGP is a Gaussian process φ(x) for which, conditionally to y = c, the
eigen-decomposition of its covariance operator Σc is such that

A1. It exists a dimension r < +∞ such that λcj = 0 for j ≥ r and for all c = 1, . . . ,C .

A2. It exists a dimension pc < min(r ,nc) such that λcj = λ for pc < j < r and for all
c = 1, . . . ,C .

Definition (Parsimonious Gaussian process with class specific noise)

A3. It exists a dimension rc < r such that λcj = 0 for all j > rc and for all
c = 1, . . . ,C . When r = +∞, it is assumed that rc = nc − 1.

A4. It exists a dimension pc < rc such that λcj = λc for j > pc and j ≤ rc, and for all
c = 1, . . . ,C .

A1 and A3 are motivated by the quick decay of the eigenvalues of Gaussian kernels.

A2 and A4 express that the data of each class lives in a specific subspace of size pc.
M. Fauvel, DYNAFOR - INRA DYNAFOR - INRA
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Parsimonious Gaussian process

pGP models: List of sub-models

Model Variance inside Fc qcj pc

Variance outside Fc: Common

pGP0 Free Free Free
pGP1 Free Free Common
pGP2 Common within groups Free Free
pGP3 Common within groups Free Common
pGP4 Common between groups Free Common
pGP5 Common within and between groups Free Free
pGP6 Common within and between groups Free Common

Variance outside Fc: Free

npGP0 Free Free Free
npGP1 Free Free Common
npGP2 Common within groups Free Free
npGP3 Common within groups Free Common
npGP4 Common between groups Free Common

M. Fauvel, DYNAFOR - INRA DYNAFOR - INRA
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Parsimonious Gaussian process

F1

λ11

λ12

λ1

F2
λ21

λ22

λ2

Figure: Visual illustration of model npGP1. Dimension of Fc is common to both classes, they
have specific variance inside Fc and they have specific noise level.
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Parsimonious Gaussian process

Decision rules for pGP0

Proposition
For pGP0, the decision rule can be written:

Dc
(
φ(xi)

)
=

pc∑
j=1

λ− λcj

λcjλ
〈φ(xi)− µc,qcj〉2 − 2 ln(πc) + ‖φ(x)− µc‖2

λ

+
pc∑

j=1

ln(λcj) + (pM − pc) ln(λ) + γ

where γ is a constant term that does not depend on the index c of the class.

Proofs are given in [Bouveyron et al., 2014].

Decompose the sum:
∑pc

j=1 λcj +
∑r

j=pc+1 λ

Use the property:
∑r

j=1〈φ(x)− µc,qcj〉2 = ‖φ(x)− µc‖2

M. Fauvel, DYNAFOR - INRA DYNAFOR - INRA
Parsimonious Gaussian process models 23 of 41



Introduction Parsimonious Gaussian process models Experimentals results Conclusions and perspectives

Model inference

Introduction
Remote Sensing
Classification of hyperspectral imagery
Spatial-spectral classification

Parsimonious Gaussian process models
Gaussian process in the feature space
Parsimonious Gaussian process
Model inference
Link with existing models

Experimentals results
Data sets and protocol
Results

Conclusions and perspectives

M. Fauvel, DYNAFOR - INRA DYNAFOR - INRA
Parsimonious Gaussian process models 24 of 41



Introduction Parsimonious Gaussian process models Experimentals results Conclusions and perspectives

Model inference

Estimation of the parameters

Centered Gaussian kernel function according to class c:

k̄c(xi ,xj) = k(xi ,xj) + 1
n2

c

nc∑
l,l′=1

yl ,y′
l =c

k(xl ,xl′ )−
1
nc

nc∑
l=1
yl=c

(
k(xi ,xl) + k(xj ,xl)

)
.

and Kc of size nc × nc : (Kc)l,l′ = k̄c(xl ,xl′ )
nc

.

λ̂cj is the jth largest eigenvalue of Kc, and βcj is its associated normalized
eigenvector.

λ̂ = 1∑C
c=1 π̂c(rc − p̂c)

∑C
c=1 π̂

(
trace(Kc)−

∑p̂c
j=1 λ̂cj

)
.

π̂c = nc/n.

p̂c: percentage of cumulative variance.
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Model inference

Computable decision rule

Proposition
The decision rule can be computed as:

Dc
(
φ(xi)

)
= 1

nc

p̂c∑
j=1

λ̂− λ̂cj

λ̂2
cjλ̂

( nc∑
l=1
yl=c

βcjl k̄c(xi ,xl)
)2

+ k̄c(xi ,xi)
λ̂

+
p̂c∑

j=1

ln(λ̂cj) + (p̂M − p̂c) ln(λ̂)− 2 ln(π̂c)

Proofs are given in [Bouveyron et al., 2014].

Use of the property that the eigenfunction of the covariance function is a linear
combination of φ(xi)− µc

〈φ(xi)− µc, φ(xj)− µc〉 = k̄c(xi ,xj)
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Model inference

Numerical considerations
The proposed model allow a safe computation of K−1

c and log
(

det(Kc)
)
that

appears in the kernel quadratic decision rule.

Only the pc first eigenvector/eigenvalue are used

Eigenvectors corresponding to small eigenvalues are not used

If pcs are not too large, log(λ̂) is stable.

Proof: Kc is pdf so it can be decomposed into QcΛcQ>c =
∑r

j=1 λcjqcjq>cj

K−1
c = QcΛ−1

c Q>c =
r∑

j=1

λ−1
cj qcjq>cj =

pc∑
j=1

λ−1
cj qcjq>cj + λ−1

r∑
j=pc+1

qcjq>cj

=
pc∑

j=1

λ−1
cj qcjq>cj + λ−1

(
Inc −

pc∑
j=1

qcjq>cj

)
=

pc∑
j=1

λ− λcj

λλcj
qcjq>cj + λ−1Inc

log
(

det(Kc)
)

=
pc∑

j=1

log(λcj) + (r − pc) log(λ)
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Link with existing models

Existing models
[Dundar and Landgrebe, 2004]
Equal covariance matrix assumption and ridge regularization. Complexity: O(n3).
Similar to pGP4 with equal eigenvectors.

[Pekalska and Haasdonk, 2009]
Ridge regularization, per class. Complexity: O(n3

c ).

[Xu et al., 2009]
The last nc − p − 1 eigenvalues are equal to λcp. Complexity: O(n3

c ).
Similar to pGP1.
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Data sets and protocol

Data sets

University of Pavia: 103 spectral bands,
9 classes and 42,776 referenced pixels.

Kennedy Space Center: 224 spectral
bands, 13 classes and 4,561 referenced
pixels.

Heves: 252 spectral bands, 16 classes
and 360,953 pixels.
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Data sets and protocol

Protocol

[Fauvel et al., 2015]

50 training pixels for each class have been randomly selected from the samples.

The remaining set of pixels has been used for validation to compute the correct
classification rate.

Repeated 20 times.

Variables have been scaled between 0 and 1.

Competitive methods
I SVM
I RF
I Kernel-DA (M. Dundar and D. A. Landgrebe, 2004)

Hyperparameters learn by 5-CV.
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Results

Classification accuracy
Kappa coefficient Processing time (s)

University KSC Heves University KSC Heves

pGP0 0.768 0.920 0.664 18 31 148
pGP1 0.793 0.922 0.671 18 33 151
pGP2 0.617 0.844 0.588 18 31 148
pGP3 0.603 0.842 0.594 19 33 152
pGP4 0.661 0.870 0.595 19 34 152
pGP5 0.567 0.820 0.582 18 32 148
pGP6 0.610 0.845 0.583 19 34 152

npGP0 0.730 0.911 0.640 17 31 148
npGP1 0.792 0.921 0.677 18 33 151
npGP2 0.599 0.838 0.573 18 31 148
npGP3 0.578 0.817 0.585 19 33 152
npGP4 0.578 0.817 0.585 19 33 152

KDC 0.786 0.924 0.666 98 253 695
RF 0.646 0.853 0.585 3 3 18
SVM 0.799 0.928 0.658 10 28 171
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Results

pGPMRF
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Family of parsimonious Gaussian process models.

Good performances wrt SVM and KDA

Faster computation than previous KDA.

(n)pGP1 perform the best.

MRF extension.

https://github.com/mfauvel/PGPDA

Extension:
I Non numerical data
I Binary data
I Unsupervised learning
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