

STATSEQ: Gene Network Inference Meeting 2013 Paris, 28-29 March

Robert J. Flassig¹, Sandra Heise¹, Kai Sundmacher^{1,2}, Steffen Klamt¹

¹Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

²Chair for Process Systems Engineering, Otto-von-Guericke University Magdeburg, Germany

An Effective Framework for Reconstructing Gene Regulatory Networks From Genetical Genomics Data

Motivation

- Wanted
 - understanding of gene interactions via gene regulatory networks
 - optimization of phenotype via **optimization of gene interactions**

Motivation

- Wanted
 - understanding of gene interactions via gene regulatory networks
 - optimization of phenotype via optimization of gene interactions
- Need
 - infer interaction structure (GRN) from data
 - systems genetics approach: use segregated population

Motivation

- Many (complex) methods
- What about simple correlation?

Outline

- Motivation
- Method
- Application
- Conclusion

Overview Method

- 1. Data preprocessing
- 2. Reconstruct interactions between genes
 - raw perturbation graph G1 (no edge weights nor signs)
 - raw perturbation graph G2 (edge weights & signs)
 - identify eQTLs
 - select ONE candidate gene
- 3. Prune false positive interactions via transitive reduction
 - remove redundant candidate genes/interactions

- data set from study population:
- > phenotype of genes T
- genotype of marker P
- gene-to-marker association A

		G	ene I	Pheno	otype	s T				Marl	ker (Geno	types	s P		C	dene-	to-M	arker	Asso	ociati	ons A	l
	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8		m_1	m_2	m_3	m_4	m_5	m_6	g_1	g_2	<i>g</i> ₃	g_4	<i>g</i> ₅	g_6	g_7	g_8
RIL ₁	0.1	0.7	1.2	0.3	0.4	0.2	1.7	0.6	RIL ₁	0	0	1	1	0	1	m_3	m_1	m_4	m_2	m_2	m_5	m_5	m_6
RIL_2	0.2	1	0.9	0.8	0.3	0.1	1.5	0.2	RIL_2	1	1	1	1	1	0		1						
÷	:	÷	÷	÷	÷	÷	÷	÷	÷	1:	÷	÷	÷	÷	÷								
$RIL_{n_{RIL}}$	0.7	1.1	0.1	1.4	0.6	0.4	0.4	1.4	$\operatorname{RIL}_{n_{\operatorname{RIL}}}$	1	1	0	0	0	1								

Marker Genotypes P

RIL,

RIL,

÷

 $m_1 m_2 m_3 m_4 m_5 m_6$

0

- data set from study population:
- phenotype of genes T
- genotype of marker P

RIL,

RIL,

RIL

gene-to-marker association A

Gene Phenotypes T

0.2 1 0.9 0.8 0.3 0.1 1.5 0.2

0.7 1.1 0.1 1.4 0.6 0.4 0.4 1.4

.

Genotype Assignment Q

selfing

Gene-to-Marker Associations A

 $g_4 \ g_5$

parents

 $g_2 = g_3$

 $m_A m_2 m_2$

Linkage Analysis

- identify genetic linkage of markers via genotype-genotype correlation $r^{P_iP_j}$ and threshold d_{min}
- if $r^{P_iP_j} \ge d_{min}$ then $m_j \in \mu_i$, with μ_i set of markers linked to marker m_i

Marker Genotypes P

Genotype Assignment

- $n_{\rm m}$ genotyped markers, $n_{\rm g}$ phenotyped genes for $n_{\rm RIL}$ RILs
- gene-to-marker association

MAX-PLANCK-GESELLSCHAF

Genotype Assignment

- $n_{\rm m}$ genotyped markers, $n_{\rm g}$ phenotyped genes for $n_{\rm RIL}$ RILs
- gene-to-marker association
- assign genotype to genes from associated marker genotypes

Raw Perturbation Graph G1

• directed edge detection based on genotype-phenotype correlation between genes and threshold t^{QT} : $|r^{Q_iT_j}| \ge t^{QT}$

2. Reconstruction of Perturbation Graphs

Raw Perturbation Graph G2

• sign detection from pheno-phenotype correlation $r^{T_i T_j}$

Gene Phenotypes T

	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8
RIL ₁	0.1	0.7	1.2	0.3	0.4	0.2	1.7	0.6
RIL ₂	0.2	1	0.9	0.8	0.3	0.1	1.5	0.2
:	÷	÷	÷	÷	÷	÷	÷	÷
$\operatorname{RIL}_{n_{\operatorname{RIL}}}$	0.7	1.1	0.1	1.4	0.6	0.4	0.4	1.4

Max Planck Institute Magdeburg Reconstructing Gene Regulatory Networks

Raw Perturbation Graph G2

sign detection from pheno-phenotype correlation r^{T_iT_j}

Gene Phenotypes T

	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8
RIL ₁	0.1	0.7	1.2	0.3	0.4	0.2	1.7	0.6
RIL ₂	0.2	1	0.9	0.8	0.3	0.1	1.5	0.2
÷	÷	÷	:	:	÷	÷	÷	:
$\operatorname{RIL}_{n_{\operatorname{RIL}}}$	0.7	1.1	0.1	1.4	0.6	0.4	0.4	1.4

assign edge weights

Max Planck Institute Magdeburg Reconstructing Gene Regulatory Networks

assign edge weights

Gene Phenotypes T

RIL,

RIL₂

 $\operatorname{RIL}_{n_{\operatorname{PH}}}$

0.2 1

.

0.7 1.1 0.1 1.4 0.6 0.4 0.4 1.4

0.9 0.8 0.3 0.1 1.5 0.2

sign detection from pheno-phenotype correlation r^{T_iT_j}

Raw Perturbation Graph G2

= weighted signed digraph

eQTL Graph (G3) → digraph with eQTLs

 candidate regulator selection, identify one regulator-target edge from each eQTL

Max Planck Institute Magdeburg Reconstructing Gene Regulatory Networks

2. Reconstruction of Perturbation Graphs

eQTL Perturbation Graph G3

- eQTLs are derived from candidate regulators and marker linkage map
- e.g., {g₂, g₄, g₅} form an eQTL for target g₃, due to linkage of their associated markers m₁ and m₂.

Edge	weights	of regulator	gene \rightarrow	target gene
------	---------	--------------	--------------------	-------------

	eQTL for g_6		еQТ	L for g_3	eQTL for g_8		
	g_1	g_3	g_2	g_4	85	g_6	g_7
g_3	-	-	0.64	0.93	0.58	-	-
g_6	0.41	0.92	-	0.87	0.67	-	-
g_8	-	-	-	-	-	0.91	0.79

2. Reconstruction of Perturbation Graphs

eQTL Perturbation Graph G3

- eQTLs are derived from candidate regulators and marker linkage map
- e.g., {g₂, g₄, g₅} form an eQTL for target g₃, due to linkage of their associated markers m₁ and m₂.

Edge weights of regulator gene \rightarrow target gene

	eQTL	for g_6	eQT	L for g_3	3 / g ₆	eQTL	for g_8		(g ₄)	\bigotimes		
	g_1	g_3	g_2	g_4	g_5	g_6	g_7		O	×3		
g_3	-	-	0.64	0.93	0.58	-	-		(g_4)	\bigotimes	$(g_3) \downarrow (g_3)$	g_8
g_6	0.41	0.92	-	0.87	0.67	-	-			\sim	_ ↓ ≯	7
g_8	-	-	-	-	-	0.91	0.79	\bigotimes	g_3	86 (

Final Perturbation Graph G4

• from each eQTL, pick the regulator gene with highest edge weight

3. Transitive Reduction

- Input: final perturbation graph G4
- remove indirect path effects via transitive reduction using TRANSWESD → final graph G5

Max Planck Institute Magdeburg Reconstructing Gene Regulatory Networks

Application DREAM 5/3A

- 100, 300, 999 RILs
- 1000 genes on 20 chromosomes

DREAM5	G2	G4	G5	G5*	best performer DREAM5/3A
100/aupr auroc	0.140 0.802	0.186 0.806	0.191 0.807	0.166 0.807	0.061 0.703
300/aupr auroc	0.215 0.883	0.342 0.887	0.346 0.887	0.250 0.887	0.148 0.786
999/aupr auroc	0.243 0.924	0.447 0.930	0.458 0.930	0.294 0.928	0.234 0.859
100/TP/FP	1138/35651	828/7829	765/3891		
300/TP/FP	1682/34153	1328/4450	1271/3504		
999/TP/FP	2371/51644	1844/3368	1734/2860		
100/score	193.77	231.61	236.22	214.89	81.87
300/score	170.54	237.72	239.03	189.42	89.40
999/score	172.67	250.25	251.81	193.49	140.56

- G2 unpruned PG
- G4 final PG (pruned eQTLs)
- G5 final graph after TRANSWESD
- G5* averaged over t^{QT} on [0.05...0.6]

[Flassig et al., Bioinformatics, 2013]

Application DREAM 5/3A

- 100, 300, 999 RILs
- 1000 genes on 20 chromosomes

DREAM5	G2	G4	G5	G5*	best performer DREAM5/3A
100/aupr auroc	0.140 0.802	0.186 0.806	0.191 0.807	0.166 0.807	0.061 0.703
300/aupr auroc	0.215 0.883	0.342 0.887	0.346 0.887	0.250 0.887	0.148 0.786
999/aupr auroc	0.243 0.924	0.447 0.930	0.458 0.930	0.294 0.928	0.234 0.859
100/TP/FP	1138/35651	828/7829	765/3891		
300/TP/FP	1682/34153	1328/4450	1271/3504		
999/TP/FP	2371/51644	1844/3368	1734/2860		
100/score	193.77	231.61	236.22	214.89	81.87
300/score	170.54	237.72	239.03	189.42	89.40
999/score	172.67	250.25	251.81	193.49	140.56

- much more effective in terms of AUPR and AUROC at all sample sizes
- especially at small sample sizes good performance wrt. best performer DREAM5/3A

[Flassig et al., Bioinformatics, 2013]

Application S. cerevisiae

- data from 112 segregants obtained from a yeast cross (Brem and Kruglyak, PNAS, 2005)
- only 1573 of all 2956 markers were associated to at least one of the 5736 expression-profiled genes
- much less data than in DREAM5/3A
- compare to DREAM5/4.4 submissions

	G2	G4	G5
aupr/paupr/rank	0.0274 / 5.7e-11 / 4	0.0293 / 2.34e-14 / 3	0.0293 / 1.89e-14 / 3
auroc/pauroc/rank	0.5396 / 6.7e-28 / 1	0.5407 / 6.14e-30 / 1	0.5407 / 6.4e-30 / 1

 good performance for 112 samples vs. 536 microarrays with well defined perturbations

[Flassig et al., Bioinformatics, 2013]

- framework for reconstructing GRN from systems genetics data
- simple correlation analysis for PG (just sums, no optimization, no matrix operation, no regularization,...) → large scale GNR

- framework for reconstructing GRN from systems genetics data
- simple correlation analysis for PG (just sums, no optimization, no matrix operation, no regularization,...) → large scale GNR
- performs especially well on small sample sizes

- framework for reconstructing GRN from systems genetics data
- simple correlation analysis for PG (just sums, no optimization, no matrix operation, no regularization,...) → large scale GNR
- performs especially well on small sample sizes
- modular, generate final PG in a different way, then TRANSWESD

- framework for reconstructing GRN from systems genetics data
- simple correlation analysis for PG (just sums, no optimization, no matrix operation, no regularization,...) → large scale GNR
- performs especially well on small sample sizes
- modular, generate final PG in a different way, then TRANSWESD
- robust wrt. tuning parametrs d_{min} and t^{QT}

- framework for reconstructing GRN from systems genetics data
- simple correlation analysis for PG (just sums, no optimization, no matrix operation, no regularization,...) → large scale GNR
- performs especially well on small sample sizes
- modular, generate final PG in a different way, then TRANSWESD
- robust wrt. tuning parametrs d_{min} and t^{QT}

References

- Flassig RJ, Heise S, Sundmacher K, Klamt S (2013) An effective framework for reconstructing gene regulatory networks from genetical genomics data. *Bioinformatics* 29 (2): 246-254
- Klamt S, Flassig R, Sundmacher K (2010) TRANSWESD: inferring cellular networks with transitive reduction. *Bioinformatics* 26, 2160-2168
- Brem RB and Kruglyak L. (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. PNAS **102**(5), 1572-1577