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Motivation 

•  Wanted 
–  understanding of gene interactions via gene regulatory networks 
–  optimization of phenotype via optimization of gene interactions  
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Motivation 

•  Wanted 
–  understanding of gene interactions via gene regulatory networks 
–  optimization of phenotype via optimization of gene interactions  

•  Need 
–  infer interaction structure (GRN) from data 

•  systems genetics approach: use segregated population 
•  ... 
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Motivation 

•  Wanted 
–  optimization/control of phenotype via optimization/control of gene 

interactions  
•  Need 

–  understanding of gene interactions via gene regulatory networks 
–  infer interaction structure (GRN) from data 

•  systems genetics approach: use segregated population 
•  ... 
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Challenge 

-  Many (complex) methods 

-  What about simple correlation? 
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Outline 

•  Motivation 
•  Method  

•  Application 

•  Conclusion 
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Overview Method 

1.  Data preprocessing 

2.  Reconstruct interactions between genes 
–  raw perturbation graph G1 (no edge weights nor signs) 
–  raw perturbation graph G2 (edge weights & signs) 
–  identify eQTLs 
–  select ONE candidate gene 

3.  Prune false positive interactions via transitive reduction 
–  remove redundant candidate genes/interactions 
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1. Data Preprocessing 

•  data set from study population: 

 phenotype of genes T 
 genotype of marker P 
 gene-to-marker association A 
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parents	
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g1 g2 g3 g4 g5 g6 g7 g8
RIL1 0.1 0.7 1.2 0.3 0.4 0.2 1.7 0.6

RIL2 0.2 1 0.9 0.8 0.3 0.1 1.5 0.2

        
RILnRIL

0.7 1.1 0.1 1.4 0.6 0.4 0.4 1.4

Gene-to-Marker Associations A	

Gene Phenotypes T	



m1 m2 m3 m4 m5 m6

RIL1 0 0 1 1 0 1

RIL2 1 1 1 1 1 0

      
RILnRIL

1 1 0 0 0 1

Marker Genotypes P	


g1 g2 g3 g4 g5 g6 g7 g8
m3 m1 m4 m2 m2 m5 m5 m6
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1. Data Preprocessing 

•  data set from study population: 

 phenotype of genes T 
 genotype of marker P 
 gene-to-marker association A 

•  Linkage Analysis L 
•  Genotype Assignment Q 
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parents	



selfing 

segregated 
population	



g1 g2 g3 g4 g5 g6 g7 g8
RIL1 0.1 0.7 1.2 0.3 0.4 0.2 1.7 0.6

RIL2 0.2 1 0.9 0.8 0.3 0.1 1.5 0.2

        
RILnRIL

0.7 1.1 0.1 1.4 0.6 0.4 0.4 1.4

Gene-to-Marker Associations A	



Gene Genotypes Q	



Gene Phenotypes T	



m1 m2 m3 m4 m5 m6

m1 + + − − − −

m2 + + − − − −

m3 − − + + − −

m4 − − + + − −

m5 − − − − + −

m6 − − − − − +

+ linked 	

	


- not linked	



g1 g2 g3 g4 g5 g6 g7 g8
RIL1 1 0 1 0 0 0 0 1

RIL2 1 1 1 1 1 1 1 0

        
RILnRIL

0 1 0 1 1 0 0 1

m3 m1 m4 m2 m2 m5 m5 m6

m1 m2 m3 m4 m5 m6

RIL1 0 0 1 1 0 1

RIL2 1 1 1 1 1 0

      
RILnRIL

1 1 0 0 0 1

Marker Genotypes P	



Linkage Map L	



g1 g2 g3 g4 g5 g6 g7 g8
m3 m1 m4 m2 m2 m5 m5 m6
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1. Data Preprocessing 

Linkage Analysis 
•  identify genetic linkage of markers via 

    genotype-genotype correlation rPiPj and threshold dmin 

•  if rPiPj ≥ dmin then 
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mj ∈ µi, with µi  set of markers linked to marker mi

m1 m2 m3 m4 m5 m6

m1 + + − − − −

m2 + + − − − −

m3 − − + + − −

m4 − − + + − −

m5 − − − − + −

m6 − − − − − +

m1 m2 m3 m4 m5 m6

RIL1 0 0 1 1 0 1

RIL2 1 1 1 1 1 0

      
RILnRIL

1 1 0 0 0 1

Marker Genotypes P Linkage Map L 
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1. Data Preprocessing 

Genotype Assignment 

•  nm genotyped markers, ng phenotyped genes for nRIL RILs 

•  gene-to-marker association 
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1. Data Preprocessing 

Genotype Assignment 

•  nm genotyped markers, ng phenotyped genes for nRIL RILs 

•  gene-to-marker association 

•  assign genotype to genes from associated marker genotypes 
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m1 m2 m3 m4 m5 m6

RIL1 0 0 1 1 0 1

RIL2 1 1 1 1 1 0

      
RILnRIL

1 1 0 0 0 1

Marker Genotypes P 

g1 g2 g3 g4 g5 g6 g7 g8
m3 m1 m4 m2 m2 m5 m5 m6

Gene-to-Marker 
Associations A Gene Genotypes Q 

g1 g2 g3 g4 g5 g6 g7 g8
RIL1 1 0 1 0 0 0 0 1

RIL2 1 1 1 1 1 1 1 0

        
RILnRIL

0 1 0 1 1 0 0 1

m3 m1 m4 m2 m2 m5 m5 m6
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2. Reconstruction of Perturbation Graphs 

Raw Perturbation Graph G1 
•  directed edge detection based on genotype-phenotype 

correlation between genes and threshold tQT: 
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2. Reconstruction of Perturbation Graphs 

Raw Perturbation Graph G1 
•  directed edge detection based on genotype-phenotype 

correlation between genes and threshold tQT: 
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2. Reconstruction of Perturbation Graphs 

Raw Perturbation Graph G1 
•  directed edge detection based on genotype-phenotype 

correlation between genes and threshold tQT: 

•  rQiTj is a z-score of deviations  
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rQiTj ≥ tQT
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2. Reconstruction of Perturbation Graphs 

Raw Perturbation Graph G2 
•  sign detection from pheno-phenotype correlation rTiTj 
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g1 g2 g3 g4 g5 g6 g7 g8
RIL1 0.1 0.7 1.2 0.3 0.4 0.2 1.7 0.6

RIL2 0.2 1 0.9 0.8 0.3 0.1 1.5 0.2

        
RILnRIL

0.7 1.1 0.1 1.4 0.6 0.4 0.4 1.4

Gene Phenotypes T 
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2. Reconstruction of Perturbation Graphs 

Raw Perturbation Graph G2 
•  sign detection from pheno-phenotype correlation rTiTj 

•  assign edge weights 
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wij = rQiTj + rTiTj( ) 2

g1 g2 g3 g4 g5 g6 g7 g8
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        
RILnRIL

0.7 1.1 0.1 1.4 0.6 0.4 0.4 1.4

Gene Phenotypes T 



Max Planck Institute Magdeburg 17 

2. Reconstruction of Perturbation Graphs 

Raw Perturbation Graph G2 
•  sign detection from pheno-phenotype correlation rTiTj 

•  assign edge weights 

 

Reconstructing Gene Regulatory Networks        R. J. Flassig 

wij = rQiTj + rTiTj( ) 2

g1 g2 g3 g4 g5 g6 g7 g8
RIL1 0.1 0.7 1.2 0.3 0.4 0.2 1.7 0.6

RIL2 0.2 1 0.9 0.8 0.3 0.1 1.5 0.2

        
RILnRIL

0.7 1.1 0.1 1.4 0.6 0.4 0.4 1.4

Gene Phenotypes T 



Max Planck Institute Magdeburg 18 

2. Reconstruction of Perturbation Graphs 

Raw Perturbation Graph G2 
•  sign detection from pheno-phenotype correlation rTiTj 

•  assign edge weights 
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wij = rQiTj + rTiTj( ) 2

g1 g2 g3 g4 g5 g6 g7 g8
RIL1 0.1 0.7 1.2 0.3 0.4 0.2 1.7 0.6

RIL2 0.2 1 0.9 0.8 0.3 0.1 1.5 0.2

        
RILnRIL

0.7 1.1 0.1 1.4 0.6 0.4 0.4 1.4

Gene Phenotypes T 
= weighted signed digraph 

•  candidate regulator selection, 
identify one regulator-target edge 
from each eQTL 

Final Perturbation Graph (G4) 
 weighted signed digraph 

eQTL Graph (G3) 
 digraph with eQTLs 
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2. Reconstruction of Perturbation Graphs 

eQTL Perturbation Graph G3 
•  eQTLs are derived from candidate regulators and marker linkage 

map 
•  e.g., {g2, g4, g5} form an eQTL for target g3, due to linkage of their 

associated markers m1 and m2. 
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G3 
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2. Reconstruction of Perturbation Graphs 

eQTL Perturbation Graph G3 
•  eQTLs are derived from candidate regulators and marker linkage 

map 
•  e.g., {g2, g4, g5} form an eQTL for target g3, due to linkage of their 

associated markers m1 and m2. 

Final Perturbation Graph G4 
•  from each eQTL, pick the regulator gene with highest edge weight 
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3. Transitive Reduction 

Reconstructing Gene Regulatory Networks        R. J. Flassig 

•  Input: final perturbation graph G4 
•  remove indirect path effects via transitive reduction using 

TRANSWESD  final graph G5 

•  optionally: sorted edge list 
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Application DREAM 5/3A 

•  100, 300, 999 RILs 
•  1000 genes on 20 chromosomes 

•  G2 unpruned PG 
•  G4 final PG (pruned eQTLs) 
•  G5 final graph after TRANSWESD 
•  G5* averaged over tQT on [0.05...0.6] 
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[Flassig et al., Bioinformatics, 2013] 
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Application DREAM 5/3A 

•  100, 300, 999 RILs 
•  1000 genes on 20 chromosomes 

•  much more effective in terms of AUPR and AUROC at all sample 
sizes 

•  especially at small sample sizes good performance wrt. best 
performer DREAM5/3A 
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[Flassig et al., Bioinformatics, 2013] 
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Application S. cerevisiae 

•  data from 112 segregants obtained from a yeast cross (Brem and 
Kruglyak, PNAS, 2005) 

•  only 1573 of all 2956 markers were associated to at least one of 
the 5736 expression-profiled genes 

•  much less data than in DREAM5/3A 
•  compare to DREAM5/4.4 submissions 

•  good performance for 112 samples vs. 536 microarrays with well 
defined perturbations 
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[Flassig et al., Bioinformatics, 2013] 
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Summary 

•  framework for reconstructing GRN from systems genetics data 
•  simple correlation analysis for PG (just sums, no optimization, 

no matrix operation, no regularization,...)  large scale GNR 
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Summary 
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no matrix operation, no regularization,...)  large scale GNR 
•  performs especially well on small sample sizes 
 

Reconstructing Gene Regulatory Networks        R. J. Flassig 



Max Planck Institute Magdeburg 27 

Summary 

•  framework for reconstructing GRN from systems genetics data 
•  simple correlation analysis for PG (just sums, no optimization, 
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•  modular, generate final PG in a different way, then TRANSWESD 
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Summary 

•  framework for reconstructing GRN from systems genetics data 
•  simple correlation analysis for PG (just sums, no optimization, 

no matrix operation, no regularization,...)  large scale GNR 
•  performs especially well on small sample sizes 
•  modular, generate final PG in a different way, then TRANSWESD 
•  robust wrt. tuning parametrs dmin and tQT  
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Summary 

•  framework for reconstructing GRN from systems genetics data 
•  simple correlation analysis for PG (just sums, no optimization, 

no matrix operation, no regularization,...)  large scale GNR 
•  performs especially well on small sample sizes 
•  modular, generate final PG in a different way, then TRANSWESD 
•  robust wrt. tuning parametrs dmin and tQT  

References 

•  Flassig RJ, Heise S, Sundmacher K, Klamt S (2013) An effective framework for reconstructing gene regulatory networks 
from genetical genomics data. Bioinformatics 29 (2): 246-254 

•  Klamt S, Flassig R, Sundmacher K (2010) TRANSWESD: inferring cellular networks with transitive reduction. 
Bioinformatics 26, 2160-2168 

•  Brem RB and Kruglyak L. (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. 
PNAS 102(5), 1572-1577 
 

Reconstructing Gene Regulatory Networks        R. J. Flassig 


