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The regression model

I expresses a random variable Y as a function of random variables
X ∈ Rp according to:

Y = f(X;β) + ε,

where functional f depends on unknown parameters β1, . . . , βk and
the residual (or error) ε is an unobservable rv which accounts for
random fluctuations between the model and Y .

I Goal: from n experimental observations (xi, yi), we aim at

I estimating unknown (βl)l=1...k,
I evaluating the fitness of the model
I if the fit is acceptable, tests on parameters can be performed and the

model can be used for predictions
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Simple linear regression

I A single explanatory variable X and an affine relationship to the
dependant variable Y :

E[Y | X = x] = β0 + β1x or Yi = β0 + β1Xi + εi,

where β1 is the slope of the adjusted regression line and β0 is the
intercept.

I Residuals εi are assumed to be centred (R1), have equal variances
(= σ2, R2) and be uncorrelated: Cov(εi, εj) = 0, ∀i 6= j (R3).

I Hence: E[Yi] = β0 + β1xi, Var(Yi) = σ2 and
Cov(Yi, Yj) = 0, ∀i 6= j.

I Fitting (or adjusting) the model = estimate β0, β1 and σ from the
n-sample (xi, yi).
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Least square estimate
I Seeking values for β0 and β1 minimising the sum of quadratic errors:

(β̂0, β̂1) = argmin(β0,β1)∈R2

∑
[yi − (β0 + β1xi)]

2

Note that Y and X
do not play a
symetric role !

I

I In matrix notation (useful later): Y = X.B + ε, with
Y = >(Y1 . . . Yn), B = >(β0, β1), ε = >(ε1 . . . εn) and

X = >
(

1 · · · 1
X1 · · · Xn

)
.
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Estimator properties

I useful notations: x̄ = 1/n
∑

i xi, ȳ, s2
x, s2

y and
sxy = 1/(n− 1)

∑
i(xi − x̄)(yi − ȳ).

I Linear correlation coefficient: rxy =
sxy
sxsy

.

Theorem

1. Least Square estimators are β̂1 = sxy/s
2
x and β̂0 = ȳ − β̂1x̄.

2. These estimators are unbiased and efficient.

3. s2 = 1
n−2

∑
i

[
yi − (β̂0 + β̂1xi)

]2
is an unbiased estimator of σ2. It is

however not efficient.

4. Var(β̂1) = σ2

(n−1)s2x
and Var(β̂0) = x̄2Var(β̂1) + σ2/n
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Simple Gaussian linear model

I In addition to R1 (centred noise), R2 (equal variance noise) and R3
(uncorrelated noise), we assume (R3’) ∀i 6= j, εi and εj independent
and (R4) ∀i, εi ∼ N (0, σ2) or equivalently yi ∼ N (β0 + β1xi, σ

2).

I Theorem: under (R1, R2, R3’ and R4), Least Square estimators =
MLE.

Theorem (Distribution of estimators)

1. β̂0 ∼ N (β0, σ
2
β̂0

) and β̂1 ∼ N (β0, σ
2
β̂1

), with

σ2
β̂0

= σ2
(
x̄2/

∑
i(xi − x̄)2 + 1/n

)
and σ2

β̂1
= σ2/

∑
i(xi − x̄)2

2. (n− 2)s2/σ2 ∼ χ2
n−2

3. β̂0 and β̂1 are independent of ε̂i.

4. Estimators of σ2
β̂0

and σ2
β̂1

are given in 1. by replacing σ2 by s2.
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Tests, ANOVA and determination coefficient
I Previous theorem allows us to build CI for β0 and β1.

I SST/n = SSR/n+ SSE/n, with SST =
∑

i(yi − ȳ)2 (total sum of
squares), SSR =

∑
i(ŷi − ȳ)2 (regression sum of squares) and

SSE =
∑

i(yi − ȳi)2 (sum of squared errors).
I Definition: Determination coefficient
R2 =

∑
i(ŷi−ȳ)2∑
i(yi−ȳ)2

= SSR
SST = 1− SSE

SST = 1− Residual Variance
Total variance .

→ Always use scatterplots to

interpret linear model

adequacy

same R2 = 0.667
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i(yi − ȳi)2 (sum of squared errors).

I Definition: Determination coefficient
R2 =

∑
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Prediction

I Given a new x∗, what is the prediction ỹ ?

I It’s simply ŷ(x∗) = β̂0 + β̂1x
∗. But what is its precision ?

I Its CI is
[
β̂0 + β̂1x

∗ + /− tn−2;1−α/2s
∗
]
, where

s∗ = s
√

1 + 1
n + (x∗−x̄)2∑

i(xi−x̄)2
.

I Predictions are valid in the range of (xi)’s.

I The precision varies according to the x∗ value you want to predict:
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Multiple linear regression

I Natural extension when several (Xj)j=1...p are used to explain Y .

I Model simply writes: Y = β0 +
∑p

j=1 βjXj + ε. In matrix notations
with obvious generalisation: Y = Xβ + ε.

I x = (xji )i,j is the observed design matrix.

I Identifiability of β is equivalent to the linear independence of the
columns of x i.e. Rank(X) = p+ 1. This is equivalent to >XX
being invertible.

I Parameter estimation: argminβ
∑n

i=1

(
yi −

∑p
j=1 βjx

j
i − β0

)2
⇔

argminβ
∑

i ε̂i
2 ⇔ argminβ‖Y −Xβ‖22.

I Theorem The Least Square Estimator of β is β̂ = (>XX)−1 >X Y .
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Properties of the least square estimate

Theorem

The estimator β̂ previously defined is s.t.

1. β̂ ∼ N (β, σ2(>XX)−1) and

2. β̂ efficient: among all unbiased estimator, it has the smallest variance.

I few control on σ2. So the structure of >XX dictates the quality of
estimator β̂: optimal experimental design subject.

Theorem

Ŷ = Xβ̂: predicted values. Then Ŷ = H Y , with H = X (>XX)−1 >X;
ε = Y − Ŷ = (Id−H)Y . Note that H is the orthogonal projection on
Vect(X) ⊂ Rn. We have:

1. Cov(Ŷ ) = σ2H,

2. Cov(ε) = σ2(Id−H) and

3. σ̂2 = ‖ε2‖
n−p−1 .
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Theorem

The estimator β̂ previously defined is s.t.

1. β̂ ∼ N (β, σ2(>XX)−1) and
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I few control on σ2. So the structure of >XX dictates the quality of
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Ŷ = Xβ̂: predicted values. Then Ŷ = H Y , with H = X (>XX)−1 >X;
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Practical uses

I CI for βj : [β̂j + /− tn−p−1;1−α/2σβ̂j ], with tn−p−1;1−α/2 a

Student-quantile and σβ̂j the squareroot of the jth element of

Cov(β̂).

I Tests on βj : the rv
β̂j−βj
σβ̂j

has a Student distribution.

I Confidence region for β = (β0 . . . βp):

R1−α(β) =
{
z ∈ Rp+1|>(z − β̂)>XX (z − β̂) ≤ (p+ 1)s2fk;n−p−1;1−α

}
.

It is an ellipsoid centred on β̂ with volume, shape and orientation
depending upon >XX.

I CI for previsions on y∗:

[y∗ + /− tn−p−1;1−α/2s
(

1 +> x∗(>XX)−1
)1/2

].
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Usual diagnosis

I residual plot: variance homogeneity (weights can be used if not),
model validation. . .

I QQ-plots: to detect outliers . . .

I model selection. R2 for model with same number of regressors.

R2
adj = (n−1)R2−(p−1)

n−p . Maximising R2
adj is equivalent to maximising

the mean quadratic error.

I test by ANOVA: F = SSR/p
SSE/(n−p−1) has a Fisher distribution with

p, (n− p− 1) df. Since testing (H0) β1 = . . . = βp = 0 has little
interest (rejected asa one of the variable is linked to Y ), one can test

(H0’) βi1 = . . . = βiq = 0, with q < p and
(SSR−SSRq)/q
SSE/(n−p−1) has a Fisher

distribution with q, (n− p− 1) df.

I Application: variable selection for model interpretation: backward
(remove 1 by 1 least significative with t-test), forward (include 1 by 1
most significative with F-test), stepwise (variant of forward).
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Collinearity and model selection

I detecting colinearity between the xi’s. Inverting >XX if
det(>XX) ≈ 0 is difficult. Moreover, the inverse will have a huge
variance !

I to detect collinearity, compute V IF (xj) = 1
1−R2

j
, with R2

j the

determination coefficient of xj regressed againt x \ {xj}. Perfect
orthogonality is V IF (xj) = 1 and the stronger the collinearity, the
larger the value for V IF (xj).

I Ridge regression introduces a bias but reduces the variance (keeps all
variables). Lasso regression does the same but also does a selection
on variables. Issue here: penalty term to tune...
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Last generalisations
Multiple outputs, curvilinear and non-linear regressions

I Multiple output regression Y = X B + E, Y inM(n,K) and
X ∈ M(n, p) so RSS(B) = Tr

(>(Y −XB)(Y −XB)
)

(column-wise) or
∑

i
>(yi − xi,.B)ε−1(yi − xi,.B), with ε = Cov(ε)

(correlated errors).

I Curvilinear models are of the form

Y = β0 +
∑
j

βjx
j +

∑
k,l

βk,lx
kxl + ε.

I Non-linear (parametric) regression has the form Y = f(x; θ) + ε.
Examples include exponential or logistic models.
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Today’s session is over

Next time: A practical R session to be studied by
you !
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