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The regression model

» expresses a random variable Y as a function of random variables
X € R? according to:

Y =f(X;8) +e

where functional f depends on unknown parameters i, ..., ;. and
the residual (or error) € is an unobservable rv which accounts for
random fluctuations between the model and Y.
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The regression model

» expresses a random variable Y as a function of random variables
X € R? according to:

Y =f(X;8) +e

where functional f depends on unknown parameters i, ..., ;. and
the residual (or error) € is an unobservable rv which accounts for
random fluctuations between the model and Y.
» Goal: from n experimental observations (z;,y;), we aim at

» estimating unknown (5;)i=1. .k,

» evaluating the fitness of the model

» if the fit is acceptable, tests on parameters can be performed and the

model can be used for predictions
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Simple linear regression

» A single explanatory variable X and an affine relationship to the
dependant variable Y':

ElY | X =zx] = o+ iz or Y; = By + 1.Xi + €,

where (1 is the slope of the adjusted regression line and 3y is the
intercept.
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ElY | X =] = o + f1z or Y; = o + B1.X; + €,
where (1 is the slope of the adjusted regression line and 3y is the

intercept.

» Residuals ¢; are assumed to be centred (R1), have equal variances
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Simple linear regression

» A single explanatory variable X and an affine relationship to the
dependant variable Y':

ElY | X =zx] = o+ iz or Y; = By + 1.Xi + €,

where (1 is the slope of the adjusted regression line and 3y is the
intercept.

» Residuals ¢; are assumed to be centred (R1), have equal variances
(= 0%, R2) and be uncorrelated: Cov(e;,e;) =0, Vi#j (R3).

» Hence: E[Y;] = By + Siz;, Var(Y;) = o2 and
Cov(Y;,Y;) =0, Vi#j.

» Fitting (or adjusting) the model = estimate [y, $1 and o from the
n-sample (z;, ;).
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L east square estimate

» Seeking values for 8y and 1 minimising the sum of quadratic errors:

(Bo, B1) = argmin g g,)er? Z lyi — (Bo + Biz:)]”
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L east square estimate

» Seeking values for Sy and 1 minimising the sum of quadratic errors:
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Note that Y and X
do not play a
symettric role !
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L east square estimate

» Seeking values for 8y and 1 minimising the sum of quadratic errors:

(Bo, B1) = argmin g g,)er? Z lyi — (Bo + Biz:)]”

Note that Y and X
do not play a
symettric role !

|

» In matrix notation (useful later): Y = X.B + ¢, with
Y=T(Vi...Y,), B

T(Bo,P1), €= "(e1...€,) and
1

e 1
_ T
(1
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Estimator properties

» useful notations: Z =1/nY", z;, ¥, s, SZ and

Sey = 1/(n = 1) 3 (2 — 2)(yi — 9)

«O> «F>r «=» «E» Q>



Estimator properties

2

» useful notations: Z=1/n), z;, ¥, s,

Sey = 1/(n = 1) 3 (i — 2)(yi — 9).

» Linear correlation coefficient: r;, =

2
Sy and
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Sz Sy "
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Estimator properties

2

» useful notations: Z=1/n), z;, ¥, s,

Sy = 1/(n—1) 3 (2 — 2)(y; — ).

» Linear correlation coefficient: r;, =

2
Sy and

Say
Sz Sy "

Theorem

1. Least Square estimators are ﬁl = sxy/s?v and ﬁo =9y — Bljj.

2. These estimators are unbiased and efficient.

3.82=_L%, [yi — (Bo + Brzs) ’ is an unbiased estimator of o2. It is
however not efficient.

4. Var(B;) = —2_ and Var(fo) = z2Var(f1) + o2/n

(n—1)s3
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Simple Gaussian linear model

» In addition to R1 (centred noise), R2 (equal variance noise) and R3
(uncorrelated noise), we assume (R3') Vi # j, €; and €; independent
and (R4) Vi, ¢; ~ N'(0,02) or equivalently y; ~ N'(Bo + frzi, 02).
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Simple Gaussian linear model

» In addition to R1 (centred noise), R2 (equal variance noise) and R3
(uncorrelated noise), we assume (R3') Vi # j, €; and €; independent
and (R4) Vi, ¢; ~ N'(0,02) or equivalently y; ~ N'(Bo + frzi, 02).

» Theorem: under (R1, R2, R3" and R4), Least Square estimators =
MLE.

Theorem (Distribution of estimators)

1. By~ N(ﬁo,ff%o) and f NN(ﬁo,UZ;I), with
0'%0 = 0% (%)Y ;(xzi — ) + 1/n) and UZ;I =02)> . (x; — )2
2. (n—2)s*/0 ~ X7,
3. ,30 and BI are independent of ;.
4. Estimators of (7; and UZ? are given in 1. by replacing o® by s>.
0 1
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Tests, ANOVA and determination coefficient

» Previous theorem allows us to build Cl for 8y and ;.
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Tests, ANOVA and determination coefficient

» Previous theorem allows us to build Cl for 8y and ;.

» SST/n = SSR/n+ SSE/n, with SST = >".(y; — 9)* (total sum of
squares), SSR = Y,(4; — §)? (regression sum of squares) and
SSE =Y",(yi — 4:)* (sum of squared errors).

» Definition: Determination coefficient
R2 — > @i—9)?* _ SSR _ ] — SSE _ | _ Residual Variance

= Y wi—y)? T SST T SST Total variance
2 _

— Always use scatterplots to same R” = 0.667
interpret linear model . gl B =
adequacy e .
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Prediction

» Given a new x*, what is the prediction 7

» It's simply y(z*) = By + fia*. But what is its precision ?
» lts Cl is [Bo + Bra* + / — tn,z;l,aﬂs*], where

_ L
3\/” R SReTE= L
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Prediction

\4

Given a new z*, what is the prediction g 7
It's simply y/(g-c\*) = Bo + le*. But what is its precision ?
Its Cl is [Bo + Bra* + / — tn,z;l,aﬂs*], where
_ (z*—x)°
P=syTh ot

Predictions are valid in the range of (z;)'s.

\4

v

v
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Prediction

\4

Given a new z*, what is the prediction g 7

—

\4

It's simply y(x*) = Bo + Bix*. But what is its precision ?
Its Cl is [Bo + Bra* + / — tn,z;l,aﬂs*], where
_ (z*—2)?
Tyl S

Predictions are valid in the range of (z;)'s.

v

v

v

The precision varies according to the x* value you want to predict:
40
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Multiple linear regression

» Natural extension when several (X;);=1.., are used to explain Y.
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Multiple linear regression

v

Natural extension when several (X;);—1.., are used to explain Y.

Model simply writes: Y = g + Z?:l BjX; + €. In matrix notations
with obvious generalisation: ¥ = X + €.

v

\4

x = (7);j is the observed design matrix.

\4

Identifiability of 5 is equivalent to the linear independence of the
columns of = i.e. Rank(X) = p+ 1. This is equivalent to ' X X
being invertible.
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» Natural extension when several (X)) 1., are used to explain Y.

» Model simply writes: Y = g + Z?:l BjX; + €. In matrix notations
with obvious generalisation: ¥ = X + €.

> = (:c{)” is the observed design matrix.

» Identifiability of 5 is equivalent to the linear independence of the
columns of = i.e. Rank(X) = p+ 1. This is equivalent to ' X X
being invertible.

. 2
> Parameter estimation: argming Y " (yi — Z?Zl Bzl — Bg) &
argming ) _; & o argming||Y" — X 3|[3.
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Multiple linear regression

» Natural extension when several (X)) 1., are used to explain Y.

» Model simply writes: Y = g + Z?:l BjX; + €. In matrix notations
with obvious generalisation: ¥ = X + €.

> = (:c{)” is the observed design matrix.

» Identifiability of 5 is equivalent to the linear independence of the
columns of = i.e. Rank(X) = p+ 1. This is equivalent to ' X X
being invertible.

. 2
> Parameter estimation: argming "' <yz — Z?Zl Bzl — Bg) &
argming ) _; &2 = argming||Y" — XB3.
» Theorem The Least Square Estimator of Bis 3= (T XX) 1 TXY.
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Properties of the least square estimate

Theorem
The estimator B previously defined is s.t.
1. B~N(B,02(TXX)" 1) and
2. [ efficient: among all unbiased estimator, it has the smallest variance.
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» few control on 2. So the structure of ' X X dictates the quality of
estimator 3: optimal experimental design subject.
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Properties of the least square estimate
Theorem
The estimator B previously defined is s.t.

1. B~N(B,02(TXX) 1) and

2. [ efficient: among all unbiased estimator, it has the smallest variance.

» few control on 2. So the structure of T X X dictates the quality of
estimator 3: optimal experimental design subject.

Theorem

Y = Xj: predicted values. Then Y = HY, with H = X ("X X)~' T X,
e=Y —-Y =(Id— H)Y. Note that H is the orthogonal projection on
Vect(X) C R™. We have:

1. Cov(Y) = o%H,

2. Cov(e) = o?(Id — H) and

3 g2 — €l

n—p—1-
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Practical uses

» Cl for B] [ﬂ] + / — tn—p—l;l—a/ZJBj]v with tn—p—l;l—a/Q a
Student-quantile and o4 the squareroot of the jt" element of
J

~

Cov(p).
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» Tests on 3;: the rv % has a Student distribution.
i
» Confidence region for 5 = (5. ..[p):
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It is an ellipsoid centred on B with volume, shape and orientation
depending upon TX X.
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Practical uses

» Cl for B] [ﬂ] + / — tn—p—l;l—a/ZJBj]v with tn—p—l;l—a/Q a
Student-quantile and o4 the squareroot of the jt" element of
J

~

Cov(p).

» Tests on 3;: the rv ﬁJ[f;ﬁj has a Student distribution.
Fj

» Confidence region for 5 = (5. ..[p):
Rioa(8) = {2 € R (2= H)TX X (2 = §) < 0+ D5 frn—p10-a -

It is an ellipsoid centred on B with volume, shape and orientation
depending upon TX X.
» Cl for previsions on y*:

* * —1\ /2
[y + / - tn—p—l;l—a/Qs (1 +T xr (TXX) 1) }
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Usual diagnosis

» residual plot: variance homogeneity (weights can be used if not),
model validation. ..
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Usual diagnosis

» residual plot: variance homogeneity (weights can be used if not),
model validation. . .

» QQ-plots: to detect outliers . ..

» model selection. R? for model with same number of regressors.
R2 _ (n—l)R2—(p—1) Maximisi R2 . ivalent t .

adj = n—p - Maximising R, ;; is equivalent to maximising
the mean quadratic error.
.o SSR/p : . .

» test by ANOVA: F' = SSE/(nep=T) has a Fisher distribution with
p, (n —p — 1) df. Since testing (HO) 51 = ... = B, = 0 has little
interest (rejected asa one of the variable is linked to Y'), one can test
(HO") Bi, = ... = Bi, =0, with ¢ < p and (SSR-55Ra)/4 o 5 Fisher

SSE/(n—p—1)
distribution with ¢, (n — p — 1) df.
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Usual diagnosis

>

residual plot: variance homogeneity (weights can be used if not),
model validation. ..

QQ-plots: to detect outliers . ..

model selection. R? for model with same number of regressors.
R2, = =D —0=1) \aimising R2, is equivalent to maximisin

adj — n—p : g g q g
the mean quadratic error.

test by ANOVA: F = % has a Fisher distribution with
p, (n —p — 1) df. Since testing (HO) 51 = ... = B, = 0 has little
interest (rejected asa one of the variable is linked to Y'), one can test
(HO") Bi, = ... = Bi, =0, with ¢ < p and W has a Fisher
distribution with ¢, (n — p — 1) df.

Application: variable selection for model interpretation: backward
(remove 1 by 1 least significative with t-test), forward (include 1 by 1
most significative with F-test), stepwise (variant of forward).
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Collinearity and model selection

» detecting colinearity between the z;'s. Inverting ' X X if
det(T X X) ~ 0 is difficult. Moreover, the inverse will have a huge
variance !
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Collinearity and model selection

» detecting colinearity between the z;'s. Inverting ' X X if
det(T X X) ~ 0 is difficult. Moreover, the inverse will have a huge

variance !
> to detect collinearity, compute VIF(z;) = — R2, with R2 the
J

determination coefficient of z; regressed againt x \ {z;}. Perfect
orthogonality is VIF(z;) = 1 and the stronger the collinearity, the
larger the value for VIF(z;).
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Collinearity and model selection

» detecting colinearity between the z;'s. Inverting ' X X if
det(T X X) ~ 0 is difficult. Moreover, the inverse will have a huge
variance !

> to detect collinearity, compute VIF () = =z, with R? the
J

determination coefficient of z; regressed agalnt x\ {z;}. Perfect
orthogonality is VIF(z;) = 1 and the stronger the collinearity, the
larger the value for VIF(z;).

» Ridge regression introduces a bias but reduces the variance (keeps all
variables). Lasso regression does the same but also does a selection
on variables. Issue here: penalty term to tune...
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Last generalisations
Multiple outputs, curvilinear and non-linear regressions
» Multiple output regression Y = X B+ E, Y inM(n, K) and
X € M(n,p) so RSS(B) =Tr (" (Y — XB)(Y — XB))
(column-wise) or >°. T (y; — x; B)e (y; — x;_B), with € = Cov(e)
(correlated errors).

Residuals
y-X

Column space of X
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» Multiple output regression Y = X B+ E, Y inM(n, K) and
X € M(n,p) so RSS(B) =Tr (" (Y — XB)(Y — XB))
(column-wise) or >°. T (y; — x; B)e (y; — x;_B), with € = Cov(e)
(correlated errors).

Residuals
v-Xp

Column space of X

» Curvilinear models are of the form

Y =060+ Z ﬂjwj + Z ﬂk71$k:ﬁl + €.
J

k.l
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Last generalisations
Multiple outputs, curvilinear and non-linear regressions
» Multiple output regression Y = X B+ E, Y inM(n, K) and
X € M(n,p) so RSS(B) =Tr (" (Y — XB)(Y — XB))
(column-wise) or >°. T (y; — x; B)e (y; — x;_B), with € = Cov(e)
(correlated errors).

Residuals
y-X

Column space of X

» Curvilinear models are of the form
Y =050+ Z szj + Z ﬂk71$k:ﬁl + €.
j k,l

» Non-linear (parametric) regression has the form Y = f(z;0) + ¢.
Examples include exponential or logistic models.
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Today's session is over

Next time: A practical R session to be studied by
you !
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