

Statistics and learning

Regression

Emmanuel Rachelson and Matthieu Vignes

ISAE SupAero

Wednesday 6th November 2013

The regression model

- ▶ expresses a random variable Y as a function of random variables $X \in \mathbb{R}^p$ according to:

$$Y = f(X; \beta) + \epsilon,$$

where functional f depends on **unknown parameters** β_1, \dots, β_k and the **residual** (or **error**) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y .

The regression model

- ▶ expresses a random variable Y as a function of random variables $X \in \mathbb{R}^p$ according to:

$$Y = f(X; \beta) + \epsilon,$$

where functional f depends on **unknown parameters** β_1, \dots, β_k and the **residual** (or **error**) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y .

- ▶ Goal: from n experimental observations (x_i, y_i) , we aim at

The regression model

- ▶ expresses a random variable Y as a function of random variables $X \in \mathbb{R}^p$ according to:

$$Y = f(X; \beta) + \epsilon,$$

where functional f depends on **unknown parameters** β_1, \dots, β_k and the **residual** (or **error**) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y .

- ▶ Goal: from n experimental observations (x_i, y_i) , we aim at
 - ▶ **estimating** unknown $(\beta_l)_{l=1 \dots k}$,

The regression model

- ▶ expresses a random variable Y as a function of random variables $X \in \mathbb{R}^p$ according to:

$$Y = f(X; \beta) + \epsilon,$$

where functional f depends on **unknown parameters** β_1, \dots, β_k and the **residual** (or **error**) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y .

- ▶ Goal: from n experimental observations (x_i, y_i) , we aim at
 - ▶ **estimating** unknown $(\beta_l)_{l=1 \dots k}$,
 - ▶ evaluating the **fitness** of the model

The regression model

- ▶ expresses a random variable Y as a function of random variables $X \in \mathbb{R}^p$ according to:

$$Y = f(X; \beta) + \epsilon,$$

where functional f depends on **unknown parameters** β_1, \dots, β_k and the **residual** (or **error**) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y .

- ▶ Goal: from n experimental observations (x_i, y_i) , we aim at
 - ▶ **estimating** unknown $(\beta_l)_{l=1 \dots k}$,
 - ▶ evaluating the **fitness** of the model
 - ▶ if the fit is acceptable, tests on parameters can be performed and the model can be used for **predictions**

Simple linear regression

- A single **explanatory variable** X and an affine relationship to the **dependant variable** Y :

$$E[Y | X = x] = \beta_0 + \beta_1 x \text{ or } Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where β_1 is the slope of the adjusted regression line and β_0 is the intercept.

Simple linear regression

- ▶ A single **explanatory variable** X and an affine relationship to the **dependant variable** Y :

$$E[Y | X = x] = \beta_0 + \beta_1 x \text{ or } Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where β_1 is the slope of the adjusted regression line and β_0 is the intercept.

- ▶ **Residuals** ϵ_i are assumed to be centred (R1), have equal variances ($= \sigma^2$, R2) and be uncorrelated: $\text{Cov}(\epsilon_i, \epsilon_j) = 0, \quad \forall i \neq j$ (R3).

Simple linear regression

- ▶ A single **explanatory variable** X and an affine relationship to the **dependant variable** Y :

$$E[Y | X = x] = \beta_0 + \beta_1 x \text{ or } Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where β_1 is the slope of the adjusted regression line and β_0 is the intercept.

- ▶ **Residuals** ϵ_i are assumed to be centred (R1), have equal variances ($= \sigma^2$, R2) and be uncorrelated: $\text{Cov}(\epsilon_i, \epsilon_j) = 0, \quad \forall i \neq j$ (R3).
- ▶ Hence: $E[Y_i] = \beta_0 + \beta_1 x_i$, $\text{Var}(Y_i) = \sigma^2$ and $\text{Cov}(Y_i, Y_j) = 0, \quad \forall i \neq j$.

Simple linear regression

- A single **explanatory variable** X and an affine relationship to the **dependant variable** Y :

$$E[Y | X = x] = \beta_0 + \beta_1 x \text{ or } Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where β_1 is the slope of the adjusted regression line and β_0 is the intercept.

- **Residuals** ϵ_i are assumed to be centred (R1), have equal variances ($= \sigma^2$, R2) and be uncorrelated: $\text{Cov}(\epsilon_i, \epsilon_j) = 0, \quad \forall i \neq j$ (R3).
- Hence: $E[Y_i] = \beta_0 + \beta_1 x_i$, $\text{Var}(Y_i) = \sigma^2$ and $\text{Cov}(Y_i, Y_j) = 0, \quad \forall i \neq j$.
- Fitting (or adjusting) the model = estimate β_0 , β_1 and σ from the n -sample (x_i, y_i) .

Least square estimate

- Seeking values for β_0 and β_1 minimising the sum of quadratic errors:

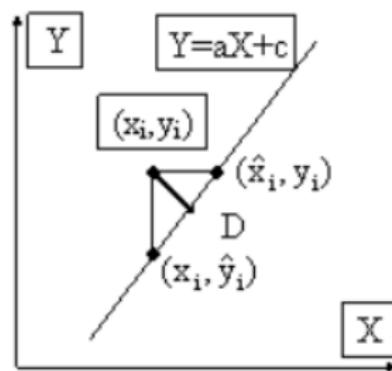
$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin}_{(\beta_0, \beta_1) \in \mathbb{R}^2} \sum [y_i - (\beta_0 + \beta_1 x_i)]^2$$

Least square estimate

- Seeking values for β_0 and β_1 minimising the sum of quadratic errors:

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin}_{(\beta_0, \beta_1) \in \mathbb{R}^2} \sum [y_i - (\beta_0 + \beta_1 x_i)]^2$$

Note that Y and X
do not play a
symetric role !

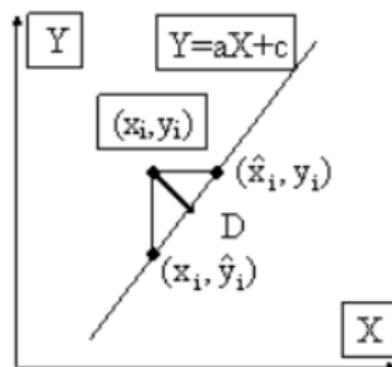


Least square estimate

- Seeking values for β_0 and β_1 minimising the sum of quadratic errors:

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin}_{(\beta_0, \beta_1) \in \mathbb{R}^2} \sum [y_i - (\beta_0 + \beta_1 x_i)]^2$$

Note that Y and X
do not play a
symetric role !



- In matrix notation (useful later): $Y = X.B + \epsilon$, with $Y = ^\top(Y_1 \dots Y_n)$, $B = ^\top(\beta_0, \beta_1)$, $\epsilon = ^\top(\epsilon_1 \dots \epsilon_n)$ and $X = ^\top \begin{pmatrix} 1 & \dots & 1 \\ X_1 & \dots & X_n \end{pmatrix}$.

Estimator properties

- ▶ useful notations: $\bar{x} = 1/n \sum_i x_i$, \bar{y} , s_x^2 , s_y^2 and $s_{xy} = 1/(n - 1) \sum_i (x_i - \bar{x})(y_i - \bar{y})$.

Estimator properties

- ▶ useful notations: $\bar{x} = 1/n \sum_i x_i$, \bar{y} , s_x^2 , s_y^2 and $s_{xy} = 1/(n - 1) \sum_i (x_i - \bar{x})(y_i - \bar{y})$.
- ▶ Linear correlation coefficient: $r_{xy} = \frac{s_{xy}}{s_x s_y}$.

Estimator properties

- ▶ useful notations: $\bar{x} = 1/n \sum_i x_i$, \bar{y} , s_x^2 , s_y^2 and $s_{xy} = 1/(n-1) \sum_i (x_i - \bar{x})(y_i - \bar{y})$.
- ▶ Linear correlation coefficient: $r_{xy} = \frac{s_{xy}}{s_x s_y}$.

Theorem

1. Least Square estimators are $\hat{\beta}_1 = s_{xy}/s_x^2$ and $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$.
2. These estimators are unbiased and efficient.
3. $s^2 = \frac{1}{n-2} \sum_i [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2$ is an unbiased estimator of σ^2 . It is however not efficient.
4. $\text{Var}(\hat{\beta}_1) = \frac{\sigma^2}{(n-1)s_x^2}$ and $\text{Var}(\hat{\beta}_0) = \bar{x}^2 \text{Var}(\hat{\beta}_1) + \sigma^2/n$

Simple Gaussian linear model

- ▶ In addition to R1 (centred noise), R2 (equal variance noise) and R3 (uncorrelated noise), we assume (R3') $\forall i \neq j$, ϵ_i and ϵ_j independent and (R4) $\forall i$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ or equivalently $y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$.

Simple Gaussian linear model

- ▶ In addition to R1 (centred noise), R2 (equal variance noise) and R3 (uncorrelated noise), we assume (R3') $\forall i \neq j$, ϵ_i and ϵ_j independent and (R4) $\forall i$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ or equivalently $y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$.
- ▶ **Theorem:** under (R1, R2, R3' and R4), Least Square estimators = MLE.

Simple Gaussian linear model

- ▶ In addition to R1 (centred noise), R2 (equal variance noise) and R3 (uncorrelated noise), we assume (R3') $\forall i \neq j$, ϵ_i and ϵ_j independent and (R4) $\forall i$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ or equivalently $y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$.
- ▶ **Theorem:** under (R1, R2, R3' and R4), Least Square estimators = MLE.

Theorem (Distribution of estimators)

1. $\hat{\beta}_0 \sim \mathcal{N}(\beta_0, \sigma_{\hat{\beta}_0}^2)$ and $\hat{\beta}_1 \sim \mathcal{N}(\beta_1, \sigma_{\hat{\beta}_1}^2)$, with
 $\sigma_{\hat{\beta}_0}^2 = \sigma^2 \left(\bar{x}^2 / \sum_i (x_i - \bar{x})^2 + 1/n \right)$ and $\sigma_{\hat{\beta}_1}^2 = \sigma^2 / \sum_i (x_i - \bar{x})^2$
2. $(n - 2)s^2 / \sigma^2 \sim \chi_{n-2}^2$
3. $\hat{\beta}_0$ and $\hat{\beta}_1$ are independent of $\hat{\epsilon}_i$.
4. Estimators of $\sigma_{\hat{\beta}_0}^2$ and $\sigma_{\hat{\beta}_1}^2$ are given in 1. by replacing σ^2 by s^2 .

Tests, ANOVA and determination coefficient

- ▶ Previous theorem allows us to build CI for β_0 and β_1 .

Tests, ANOVA and determination coefficient

- ▶ Previous theorem allows us to build CI for β_0 and β_1 .
- ▶ $SST/n = SSR/n + SSE/n$, with $SST = \sum_i (y_i - \bar{y})^2$ (total sum of squares), $SSR = \sum_i (\hat{y}_i - \bar{y})^2$ (regression sum of squares) and $SSE = \sum_i (y_i - \hat{y}_i)^2$ (sum of squared errors).

Tests, ANOVA and determination coefficient

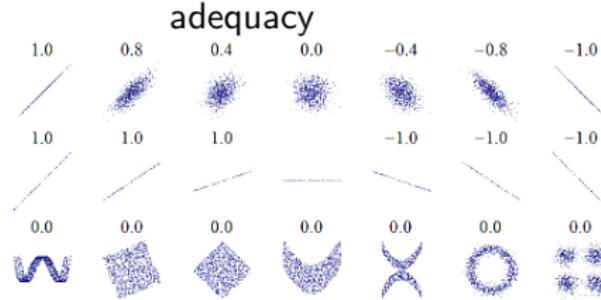
- ▶ Previous theorem allows us to build CI for β_0 and β_1 .
- ▶ $SST/n = SSR/n + SSE/n$, with $SST = \sum_i (y_i - \bar{y})^2$ (total sum of squares), $SSR = \sum_i (\hat{y}_i - \bar{y})^2$ (regression sum of squares) and $SSE = \sum_i (y_i - \hat{y}_i)^2$ (sum of squared errors).
- ▶ **Definition:** Determination coefficient

$$R^2 = \frac{\sum_i (\hat{y}_i - \bar{y})^2}{\sum_i (y_i - \bar{y})^2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = 1 - \frac{\text{Residual Variance}}{\text{Total variance}}.$$

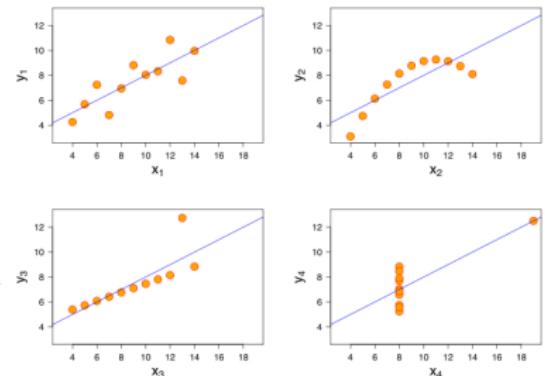
Tests, ANOVA and determination coefficient

- ▶ Previous theorem allows us to build CI for β_0 and β_1 .
- ▶ $SST/n = SSR/n + SSE/n$, with $SST = \sum_i (y_i - \bar{y})^2$ (total sum of squares), $SSR = \sum_i (\hat{y}_i - \bar{y})^2$ (regression sum of squares) and $SSE = \sum_i (y_i - \hat{y}_i)^2$ (sum of squared errors).
- ▶ **Definition:** Determination coefficient
$$R^2 = \frac{\sum_i (\hat{y}_i - \bar{y})^2}{\sum_i (y_i - \bar{y})^2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = 1 - \frac{\text{Residual Variance}}{\text{Total variance}}.$$

→ Always use scatterplots to interpret linear model adequacy



same $R^2 = 0.667$



Prediction

- Given a new x^* , what is the prediction \tilde{y} ?

Prediction

- ▶ Given a new x^* , what is the prediction \tilde{y} ?
- ▶ It's simply $\widehat{y(x^*)} = \hat{\beta}_0 + \hat{\beta}_1 x^*$. But what is its precision ?

Prediction

- ▶ Given a new x^* , what is the prediction \tilde{y} ?
- ▶ It's simply $\widehat{y(x^*)} = \hat{\beta}_0 + \hat{\beta}_1 x^*$. But what is its precision ?
- ▶ Its CI is $\left[\hat{\beta}_0 + \hat{\beta}_1 x^* + / - t_{n-2;1-\alpha/2} s^* \right]$, where

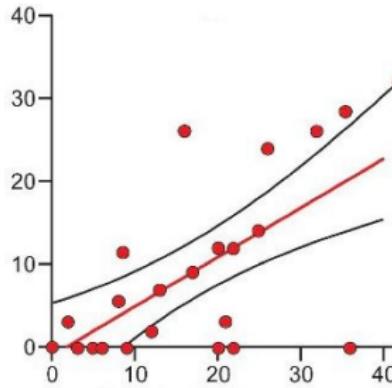
$$s^* = s \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}}.$$

Prediction

- ▶ Given a new x^* , what is the prediction \tilde{y} ?
- ▶ It's simply $\widehat{y(x^*)} = \hat{\beta}_0 + \hat{\beta}_1 x^*$. But what is its precision ?
- ▶ Its CI is $\left[\hat{\beta}_0 + \hat{\beta}_1 x^* + / - t_{n-2;1-\alpha/2} s^* \right]$, where
$$s^* = s \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}}$$
- ▶ Predictions are valid in the range of (x_i) 's.

Prediction

- ▶ Given a new x^* , what is the prediction \tilde{y} ?
- ▶ It's simply $\widehat{y(x^*)} = \hat{\beta}_0 + \hat{\beta}_1 x^*$. But what is its precision ?
- ▶ Its CI is $\left[\hat{\beta}_0 + \hat{\beta}_1 x^* + / - t_{n-2;1-\alpha/2} s^* \right]$, where
$$s^* = s \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}}$$
- ▶ Predictions are valid in the range of (x_i) 's.
- ▶ The precision varies according to the x^* value you want to predict:



Multiple linear regression

- ▶ Natural extension when several $(X_j)_{j=1 \dots p}$ are used to explain Y .

Multiple linear regression

- ▶ Natural extension when several $(X_j)_{j=1 \dots p}$ are used to explain Y .
- ▶ Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.

Multiple linear regression

- ▶ Natural extension when several $(X_j)_{j=1 \dots p}$ are used to explain Y .
- ▶ Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.
- ▶ $x = (x_i^j)_{i,j}$ is the observed **design matrix**.

Multiple linear regression

- ▶ Natural extension when several $(X_j)_{j=1\dots p}$ are used to explain Y .
- ▶ Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.
- ▶ $x = (x_i^j)_{i,j}$ is the observed **design matrix**.
- ▶ Identifiability of β is equivalent to the linear independence of the columns of x i.e. $\text{Rank}(X) = p + 1$. This is equivalent to $X^\top X$ being invertible.

Multiple linear regression

- ▶ Natural extension when several $(X_j)_{j=1 \dots p}$ are used to explain Y .
- ▶ Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.
- ▶ $x = (x_i^j)_{i,j}$ is the observed **design matrix**.
- ▶ Identifiability of β is equivalent to the linear independence of the columns of x i.e. $\text{Rank}(X) = p + 1$. This is equivalent to $X^\top X$ being invertible.
- ▶ Parameter estimation: $\text{argmin}_\beta \sum_{i=1}^n \left(y_i - \sum_{j=1}^p \beta_j x_i^j - \beta_0 \right)^2 \Leftrightarrow \text{argmin}_\beta \sum_i \hat{\epsilon}_i^2 \Leftrightarrow \text{argmin}_\beta \|Y - X\beta\|_2^2$.

Multiple linear regression

- ▶ Natural extension when several $(X_j)_{j=1 \dots p}$ are used to explain Y .
- ▶ Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.
- ▶ $x = (x_i^j)_{i,j}$ is the observed **design matrix**.
- ▶ Identifiability of β is equivalent to the linear independence of the columns of x i.e. $\text{Rank}(X) = p + 1$. This is equivalent to ${}^\top X X$ being invertible.
- ▶ Parameter estimation: $\underset{\beta}{\text{argmin}} \sum_{i=1}^n \left(y_i - \sum_{j=1}^p \beta_j x_i^j - \beta_0 \right)^2 \Leftrightarrow \underset{\beta}{\text{argmin}} \sum_i \hat{\epsilon}_i^2 \Leftrightarrow \underset{\beta}{\text{argmin}} \|Y - X\beta\|_2^2$.
- ▶ **Theorem** The Least Square Estimator of β is $\hat{\beta} = ({}^\top X X)^{-1} {}^\top X Y$.

Properties of the least square estimate

Theorem

The estimator $\hat{\beta}$ previously defined is s.t.

1. $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(\top X X)^{-1})$ and
2. $\hat{\beta}$ efficient: among all unbiased estimator, it has the smallest variance.

Properties of the least square estimate

Theorem

The estimator $\hat{\beta}$ previously defined is s.t.

1. $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(\top X X)^{-1})$ and
2. $\hat{\beta}$ efficient: among all unbiased estimator, it has the smallest variance.

- few control on σ^2 . So the structure of $\top X X$ dictates the quality of estimator $\hat{\beta}$: optimal experimental design subject.

Properties of the least square estimate

Theorem

The estimator $\hat{\beta}$ previously defined is s.t.

1. $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(\top X X)^{-1})$ and
2. $\hat{\beta}$ efficient: among all unbiased estimator, it has the smallest variance.

- few control on σ^2 . So the structure of $\top X X$ dictates the quality of estimator $\hat{\beta}$: optimal experimental design subject.

Theorem

$\hat{Y} = X\hat{\beta}$: predicted values. Then $\hat{Y} = HY$, with $H = X(\top X X)^{-1}\top X$; $\epsilon = Y - \hat{Y} = (Id - H)Y$. Note that H is the orthogonal projection on $\text{Vect}(X) \subset \mathbb{R}^n$. We have:

1. $\text{Cov}(\hat{Y}) = \sigma^2 H$,
2. $\text{Cov}(\epsilon) = \sigma^2(Id - H)$ and
3. $\hat{\sigma}^2 = \frac{\|\epsilon^2\|}{n-p-1}$.

Practical uses

- CI for β_j : $[\hat{\beta}_j \pm t_{n-p-1;1-\alpha/2} \sigma_{\hat{\beta}_j}]$, with $t_{n-p-1;1-\alpha/2}$ a Student-quantile and $\sigma_{\hat{\beta}_j}$ the square root of the j^{th} element of $\text{Cov}(\hat{\beta})$.

Practical uses

- ▶ CI for β_j : $[\hat{\beta}_j + / - t_{n-p-1;1-\alpha/2} \sigma_{\hat{\beta}_j}]$, with $t_{n-p-1;1-\alpha/2}$ a Student-quantile and $\sigma_{\hat{\beta}_j}$ the squareroot of the j^{th} element of $\text{Cov}(\hat{\beta})$.
- ▶ Tests on β_j : the rv $\frac{\hat{\beta}_j - \beta_j}{\sigma_{\hat{\beta}_j}}$ has a Student distribution.

Practical uses

- ▶ CI for β_j : $[\hat{\beta}_j + / - t_{n-p-1;1-\alpha/2} \sigma_{\hat{\beta}_j}]$, with $t_{n-p-1;1-\alpha/2}$ a Student-quantile and $\sigma_{\hat{\beta}_j}$ the squareroot of the j^{th} element of $\text{Cov}(\hat{\beta})$.
- ▶ Tests on β_j : the rv $\frac{\hat{\beta}_j - \beta_j}{\sigma_{\hat{\beta}_j}}$ has a Student distribution.
- ▶ Confidence region for $\beta = (\beta_0 \dots \beta_p)$:

$$R_{1-\alpha}(\beta) = \left\{ z \in \mathbb{R}^{p+1} \mid {}^\top(z - \hat{\beta}) {}^\top X X (z - \hat{\beta}) \leq (p+1)s^2 f_{k; n-p-1; 1-\alpha} \right\}.$$

It is an ellipsoid centred on $\hat{\beta}$ with volume, shape and orientation depending upon ${}^\top X X$.

Practical uses

- ▶ CI for β_j : $[\hat{\beta}_j + / - t_{n-p-1;1-\alpha/2} \sigma_{\hat{\beta}_j}]$, with $t_{n-p-1;1-\alpha/2}$ a Student-quantile and $\sigma_{\hat{\beta}_j}$ the squareroot of the j^{th} element of $\text{Cov}(\hat{\beta})$.
- ▶ Tests on β_j : the rv $\frac{\hat{\beta}_j - \beta_j}{\sigma_{\hat{\beta}_j}}$ has a Student distribution.
- ▶ Confidence region for $\beta = (\beta_0 \dots \beta_p)$:

$$R_{1-\alpha}(\beta) = \left\{ z \in \mathbb{R}^{p+1} \mid {}^\top(z - \hat{\beta}) {}^\top X X (z - \hat{\beta}) \leq (p+1)s^2 f_{k;n-p-1;1-\alpha} \right\}.$$

It is an ellipsoid centred on $\hat{\beta}$ with volume, shape and orientation depending upon ${}^\top X X$.

- ▶ CI for previsions on y^* :

$$[y^* + / - t_{n-p-1;1-\alpha/2} s \left(1 + {}^\top x^* ({}^\top X X)^{-1} \right)^{1/2}].$$

Usual diagnosis

- residual plot: variance homogeneity (weights can be used if not), model validation...

Usual diagnosis

- ▶ residual plot: variance homogeneity (weights can be used if not), model validation...
- ▶ QQ-plots: to detect outliers ...

Usual diagnosis

- ▶ residual plot: variance homogeneity (weights can be used if not), model validation...
- ▶ QQ-plots: to detect outliers ...
- ▶ model selection. R^2 for model with same number of regressors.
$$R_{adj}^2 = \frac{(n-1)R^2 - (p-1)}{n-p}$$
. Maximising R_{adj}^2 is equivalent to maximising the mean quadratic error.

Usual diagnosis

- ▶ residual plot: variance homogeneity (weights can be used if not), model validation...
- ▶ QQ-plots: to detect outliers ...
- ▶ model selection. R^2 for model with same number of regressors.
 $R_{adj}^2 = \frac{(n-1)R^2 - (p-1)}{n-p}$. Maximising R_{adj}^2 is equivalent to maximising the mean quadratic error.
- ▶ test by ANOVA: $F = \frac{SSR/p}{SSE/(n-p-1)}$ has a Fisher distribution with $p, (n - p - 1)$ df. Since testing $(H0) \beta_1 = \dots = \beta_p = 0$ has little interest (rejected asa one of the variable is linked to Y), one can test $(H0') \beta_{i_1} = \dots = \beta_{i_q} = 0$, with $q < p$ and $\frac{(SSR - SSR_q)/q}{SSE/(n-p-1)}$ has a Fisher distribution with $q, (n - p - 1)$ df.

Usual diagnosis

- ▶ residual plot: variance homogeneity (weights can be used if not), model validation...
- ▶ QQ-plots: to detect outliers ...
- ▶ model selection. R^2 for model with same number of regressors.
 $R_{adj}^2 = \frac{(n-1)R^2 - (p-1)}{n-p}$. Maximising R_{adj}^2 is equivalent to maximising the mean quadratic error.
- ▶ test by ANOVA: $F = \frac{SSR/p}{SSE/(n-p-1)}$ has a Fisher distribution with $p, (n - p - 1)$ df. Since testing $(H0) \beta_1 = \dots = \beta_p = 0$ has little interest (rejected asa one of the variable is linked to Y), one can test $(H0') \beta_{i_1} = \dots = \beta_{i_q} = 0$, with $q < p$ and $\frac{(SSR - SSR_q)/q}{SSE/(n-p-1)}$ has a Fisher distribution with $q, (n - p - 1)$ df.
- ▶ Application: variable selection for model interpretation: backward (remove 1 by 1 least significative with t-test), forward (include 1 by 1 most significative with F-test), stepwise (variant of forward).

Collinearity and model selection

- ▶ detecting collinearity between the x_i 's. Inverting ${}^{\top} X X$ if $\det({}^{\top} X X) \approx 0$ is difficult. Moreover, the inverse will have a huge variance !

Collinearity and model selection

- ▶ detecting collinearity between the x_i 's. Inverting ${}^{\top} X X$ if $\det({}^{\top} X X) \approx 0$ is difficult. Moreover, the inverse will have a huge variance !
- ▶ to detect collinearity, compute $VIF(x_j) = \frac{1}{1-R_j^2}$, with R_j^2 the determination coefficient of x_j regressed against $x \setminus \{x_j\}$. Perfect orthogonality is $VIF(x_j) = 1$ and the stronger the collinearity, the larger the value for $VIF(x_j)$.

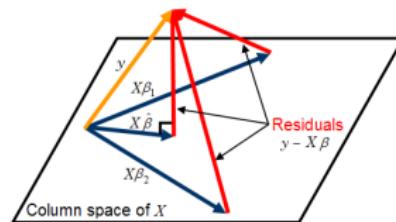
Collinearity and model selection

- ▶ detecting collinearity between the x_i 's. Inverting ${}^{\top} X X$ if $\det({}^{\top} X X) \approx 0$ is difficult. Moreover, the inverse will have a huge variance !
- ▶ to detect collinearity, compute $VIF(x_j) = \frac{1}{1-R_j^2}$, with R_j^2 the determination coefficient of x_j regressed against $x \setminus \{x_j\}$. Perfect orthogonality is $VIF(x_j) = 1$ and the stronger the collinearity, the larger the value for $VIF(x_j)$.
- ▶ Ridge regression introduces a bias but reduces the variance (keeps all variables). Lasso regression does the same but also does a selection on variables. Issue here: penalty term to tune...

Last generalisations

Multiple outputs, curvilinear and non-linear regressions

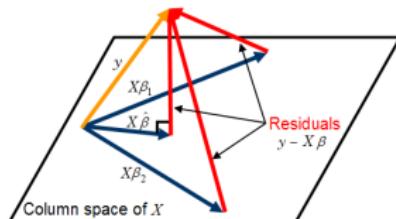
- ▶ Multiple output regression $Y = X B + E$, $Y \in \mathbb{M}(n, K)$ and $X \in \mathbb{M}(n, p)$ so $RSS(B) = \text{Tr}((Y - XB)(Y - XB))$ (column-wise) or $\sum_i (y_i - x_{i,.} B) \epsilon^{-1} (y_i - x_{i,.} B)$, with $\epsilon = \text{Cov}(\epsilon)$ (correlated errors).



Last generalisations

Multiple outputs, curvilinear and non-linear regressions

- ▶ Multiple output regression $Y = X B + E$, $Y \in \mathbb{M}(n, K)$ and $X \in \mathbb{M}(n, p)$ so $RSS(B) = \text{Tr}((Y - XB)(Y - XB))$ (column-wise) or $\sum_i^T (y_i - x_{i,.} B) \epsilon^{-1} (y_i - x_{i,.} B)$, with $\epsilon = \text{Cov}(\epsilon)$ (correlated errors).



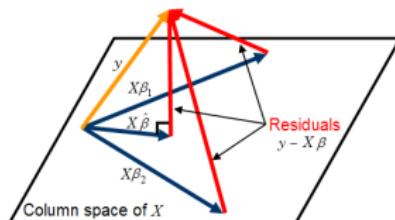
- ▶ Curvilinear models are of the form

$$Y = \beta_0 + \sum_j \beta_j x^j + \sum_{k,l} \beta_{k,l} x^k x^l + \epsilon.$$

Last generalisations

Multiple outputs, curvilinear and non-linear regressions

- ▶ Multiple output regression $Y = X B + E$, $Y \in \mathbb{M}(n, K)$ and $X \in \mathbb{M}(n, p)$ so $RSS(B) = \text{Tr}((Y - XB)(Y - XB))$ (column-wise) or $\sum_i (y_i - x_{i,.} B) \epsilon^{-1} (y_i - x_{i,.} B)$, with $\epsilon = \text{Cov}(\epsilon)$ (correlated errors).



- ▶ Curvilinear models are of the form

$$Y = \beta_0 + \sum_j \beta_j x^j + \sum_{k,l} \beta_{k,l} x^k x^l + \epsilon.$$

- ▶ Non-linear (parametric) regression has the form $Y = f(x; \theta) + \epsilon$. Examples include exponential or logistic models.

Today's session is over

Next time: A practical R session to be studied by
you !