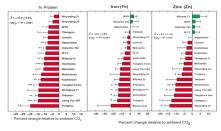
# DIANE

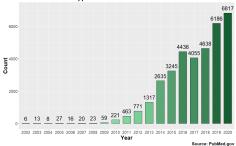

#### Dashboard for the Inference and Analysis of Networks from Expression data



### **Thesis project**

Statistical inference of the gene regulatory network in Arabidopsis thaliana under climate change

- Anthropic CO2 emissions are expected to double until 2100
- Elevated CO2 depletes plants mineral status
- Key regulators in this response are yet to be identified




#### Genetic variation is found in mineral status response to elevated CO2

Zhu 2018 Science Advances

#### Gene expression to understand regulatory mechanisms

- Gene expression reprogramming is studied to understand **development**, **adaptation** to environmental constraints in living organisms
- The rise of NGS techniques and **RNA-Seq** made available genome-wide transcripts quantification to researchers



Number of RNA-Seg publications on PubMed

# Analyzing RNA-Seq data

To characterize new signalling pathways

- Which genes have their **expression significantly changed** by a perturbation?
- Can I distinguish groups of genes with similar behaviors?
- How to model interactions and dependencies between genes?

# Analyzing RNA-Seq data

To characterize new signalling pathways

- Which genes have their **expression significantly changed** by a perturbation?
- Can I distinguish groups of genes with similar behaviors?
- How to model interactions and dependencies between genes?

Standard analysis pipelines require programming and methodological skills:

#### **Bioinformatic pipeline**

Quality control, fragments mapping, quantification

# Analyzing RNA-Seq data

To characterize new signalling pathways

- Which genes have their **expression significantly changed** by a perturbation?
- Can I distinguish groups of genes with similar behaviors?
- How to model interactions and dependencies between genes?

#### Standard analysis pipelines require programming and methodological skills:

#### **Bioinformatic pipeline**

Quality control, fragments mapping, quantification

#### Statistical pipeline

Normalization, differential gene expression, ontology enrichment, clustering, co-expression or regulatory pathways reconstruction

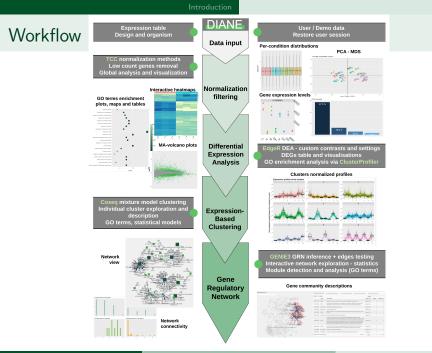
# Current user interfaces for facilitating RNA-seq analysis

#### Available satisfactory possibilities

- Normalization
- Exploration and visualization
- Differential Expression
- Gene Ontology Enrichment

See DEBrowser[Kucukural et al., 2019], DEApp[Li and Andrade, 2017], iGEAk[Choi and Ratner, 2019], DEIVA[Harshbarger et al., 2017], Shiny-Seq[Sundararajan et al., 2019], IRIS-DEA[Monier et al., 2019], DEP[Ge et al., 2018], TCC-GUI[Su et al., 2019], ShinyBN [Chen et al., 2019], or GeNeck [Zhang et al., 2019]

# Current user interfaces for facilitating RNA-seq analysis


#### Available satisfactory possibilities

- Normalization
- Exploration and visualization
- Differential Expression
- Gene Ontology Enrichment

See DEBrowser[Kucukural et al., 2019], DEApp[Li and Andrade, 2017], iGEAk[Choi and Ratner, 2019], DEIVA[Harshbarger et al., 2017], Shiny-Seq[Sundararajan et al., 2019], IRIS-DEA[Monier et al., 2019], DEP[Ge et al., 2018], TCC-GUI[Su et al., 2019], ShinyBN [Chen et al., 2019], or GeNeck [Zhang et al., 2019]

#### Absent or sub-obtimal features

- Model based clustering
- Statistical models or Machine Learning for network inference
- Oriented toward regulation rather than co-expression
- Advanced exploration of gene clusters or inferred networks



NETBIC

DIANE

December 8, 2020 5 / 28

# Multifactorial dataset of nutritional starvation and elevated CO2

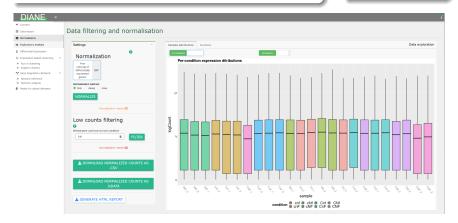
Complete 3 \* 2 cross design :

- CO2 (400ppm 900ppm)
- Nitrate (low high)
- Iron (Starvation sufficiency)

8 conditions with triplicates : 24 root transcriptomes



Arabidopsis thaliana


### Normalization and low counts removal

#### Normalization

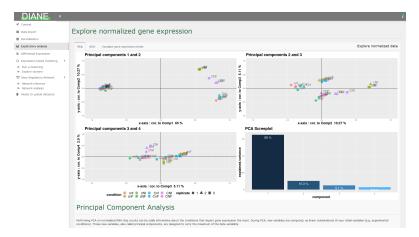
- EdgeR TMM strategy [Robinson and Oshlack, 2010]
- DESeq2 Median of ratios [Love et al., 2014]
- Prior removal of DEGs via TCC [Sun et al., 2013]

#### Filtering

Adjustable threshold for counts sum across samples

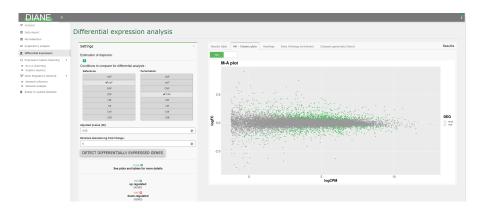


# Exploratory transcriptome analysis


#### • Genes normalized expression levels

• PCA, Mutli-Dimensional Scaling plot

| DIANE =                                       |                  |                                   |              |            |              |               |                |               |           |               |              |              |       |       |       |       |     |            |               |
|-----------------------------------------------|------------------|-----------------------------------|--------------|------------|--------------|---------------|----------------|---------------|-----------|---------------|--------------|--------------|-------|-------|-------|-------|-----|------------|---------------|
| Context                                       |                  |                                   |              |            |              |               |                |               |           |               |              |              |       |       |       |       |     |            |               |
| Data import                                   | Explore          | norm                              | nalize       | d ger      | ne ex        | pres          | sion           |               |           |               |              |              |       |       |       |       |     |            |               |
| Normalisation                                 |                  |                                   |              |            |              |               |                |               |           |               |              |              |       |       |       |       |     |            |               |
| Exploratory analysis                          | PCA HDS          | Visualize                         | gene express | ion levels |              |               |                |               |           |               |              |              |       |       |       |       |     | Explore no | ormalized dat |
| Differential Expression                       |                  | d condition                       |              |            |              |               |                |               |           |               |              |              |       |       |       |       |     |            |               |
| Expression based clustering                   |                  |                                   |              |            |              |               |                |               |           |               |              |              |       |       |       |       |     |            |               |
| Run a dustering                               |                  | ot, as identifie<br>0.AT3G16470.A |              |            | spression da | its. For seve | ral genes, the | in must be co | отта нера | ated, without | space, as in | the example: |       |       |       |       |     |            |               |
| Explore clusters<br>Gene Reculatory Network 4 |                  | to include to th                  |              |            |              |               |                |               |           |               |              |              |       |       |       |       |     |            |               |
| Network inference                             |                  | ✓ cHF                             |              | √ cal'     |              | 1             | 3NF            |               | ✔ CnF     |               | 1            | M            |       | ✔ cat |       | 🖌 Cef |     | 1          | CM            |
| Network analysis                              |                  |                                   | -            |            |              |               |                |               |           |               |              |              |       |       |       |       |     |            |               |
| Ready to upload datasets                      |                  |                                   |              |            |              |               |                |               |           |               |              |              |       |       |       |       |     |            |               |
|                                               |                  |                                   |              |            |              |               |                | N             | ormaliz   | ed expres     | ssion lev    | els          |       |       |       |       |     |            |               |
|                                               | 2300             |                                   |              |            | AT1G         | 69220         |                |               |           |               |              |              |       | AT3G  | 16470 |       |     |            |               |
|                                               | 400              |                                   |              |            |              |               | •              |               |           | 1000          |              |              |       |       | •     |       |     |            |               |
|                                               | 500              |                                   |              |            |              |               |                |               |           |               |              |              |       |       |       |       |     |            |               |
|                                               | 2100             |                                   |              | •          |              |               | •              |               |           | 9000          |              |              |       |       |       |       |     |            |               |
|                                               | 5000             | - 1                               |              | •          |              |               |                |               |           |               |              |              |       |       |       |       |     |            |               |
|                                               | 1900             |                                   |              |            |              | - <b>1</b> -  |                | •             |           | 5000          |              |              | - * · |       |       |       |     |            |               |
|                                               | \$20             |                                   |              |            |              |               |                |               |           | 80            |              |              |       |       |       |       | - 1 | •          |               |
|                                               | Nognalzed counts | ð                                 | đ            | <i>60</i>  | il.          | cið.          | citt           | 66            | الاران    | *000          | •            | d€           | d0    | N.    | ćA.   | c/#   | ché | de         | replicate     |
|                                               | pez              | 0.                                | 0.           | Q.,        | ~            | 21770         | V              | 0.            | 0         |               | ų.,          | 0.0          | 0.1   | AT3G  |       | 0.0   | 01- | 0-         | 1 2           |
|                                               | Tel Bo           |                                   |              |            | - A13G       | 21770         |                |               |           | ∞.            |              |              |       | Alba  | 36140 |       |     |            | 23            |
|                                               | 2%               |                                   |              |            |              |               |                |               |           | 86            |              | •            | - t-  |       |       |       |     |            |               |
|                                               | 2000             |                                   |              |            |              |               |                |               | •         |               |              |              |       |       |       | :     |     | - :        |               |
|                                               |                  |                                   |              |            | - 1          |               |                |               |           | °₽            |              |              |       | :     |       |       |     |            |               |
|                                               | °900             |                                   |              |            | •            |               |                |               |           |               |              |              |       |       |       |       | 1   |            |               |
|                                               |                  |                                   |              |            |              |               |                |               |           | 30            |              |              |       |       | 1     |       | 1   |            |               |
|                                               | 5000 ·           | •                                 |              |            |              | •             |                |               |           | 30            |              |              |       |       |       |       |     |            |               |
|                                               |                  | ġ4                                | đ            | 34         | ġ6           | ća.           | dit            | ەن            | ¢i∉       |               | dit.         | jł.          | de.   | dill. | 6A    | Ċ.F   | ché | 66         |               |


# Exploratory transcriptome analysis

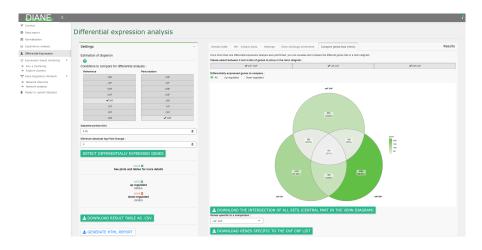
- Gene normalized expression levels
- PCA, Mutli-Dimensional Scaling plot



# Differential Expression Analysis

#### Tests performed by EdgeR (Negative Binomial models) [McCarthy et al., 2012]




# Differential Expression Analysis

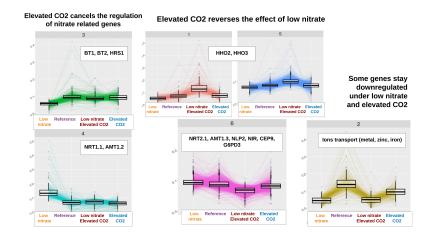
Over-representation tests are performed by ClusterProfiler to detect significantly enriched GO terms  $_{\rm [Yu\ et\ al.,\ 2012]}$ 

| NE =           |                                       |                                   |                                                                                                        |                                                     |                                  |
|----------------|---------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------|
|                |                                       |                                   |                                                                                                        |                                                     |                                  |
|                | Differential expres                   | sion analysis                     |                                                                                                        |                                                     |                                  |
|                | billion billion billion               | Sion analysis                     |                                                                                                        |                                                     |                                  |
|                |                                       |                                   |                                                                                                        |                                                     |                                  |
| nahata         | Settings                              | -                                 | Results table MA - Vulcano plots Heatmap                                                               | Gene Ontology enrichment Compare genes lists (Venn) |                                  |
| presaion       | Estimation of disperion               |                                   |                                                                                                        |                                                     |                                  |
| sed clustering | Θ                                     |                                   | START GO ENRICHMENT ANALYSIS                                                                           |                                                     | ✓ Biological process             |
| 10             | Conditions to compare for differentia | l analysis :                      |                                                                                                        | Enrichment map                                      | Cellular component               |
| 8              | Reference                             | Perturbation                      |                                                                                                        | Data table                                          | Molecular function               |
| y Network 🔹    | CNF                                   | OF                                |                                                                                                        |                                                     | Top number of GD terms to plot : |
| ance<br>also   | ✓ cnl <sup>2</sup>                    | crif                              |                                                                                                        |                                                     | 40 (0)                           |
|                | CMP                                   | CNF                               | Facility                                                                                               | ed ontologies and their gene count                  |                                  |
| d datasets     | CrF                                   | ✓ CnF                             |                                                                                                        | ed ontologies and their gene count                  |                                  |
|                | CNF                                   | cM                                | tosin metabolic process-<br>sulfur compound metabolic process-                                         | •                                                   |                                  |
|                | ont                                   | (11                               | suffur compound broay-theme process-<br>secondary mesobolite biosynthesis process-                     | ••                                                  | •                                |
|                | Cat                                   | Cal                               | tecondary metabolic process<br>ribonucleotide metabolic process                                        |                                                     | •                                |
|                | CM                                    | CM                                | ritionucleocide diphosphate metabolic process-                                                         | •                                                   |                                  |
|                | Adjusted pvalue (fdr)                 |                                   | response to water deprivation<br>response to water-                                                    |                                                     |                                  |
|                | 0.05                                  | 8                                 | -slevel regyo of earogen<br>-bewegnes regories at excepter                                             |                                                     |                                  |
|                |                                       |                                   | reporte to hamilio-<br>reporte to humilio-                                                             | •                                                   |                                  |
|                | Minimum absolute log Fold Change :    |                                   | response to fungue-<br>response to decreased angen levels-                                             |                                                     | •                                |
|                | 0                                     |                                   | response to shifty-                                                                                    | •                                                   |                                  |
|                | DETECT DIFFERENTIALLY E               | VRREESED GENIES                   | response to add chemical-<br>pume ribonucieotide metabolic process-                                    | •                                                   |                                  |
|                | DETECT DIFFERENTIACET E               | AFREDGED GENES                    | parine ritorcalectule dphosphate metabolic process-<br>parine scalectule dphosphate metabolic process- | :                                                   |                                  |
|                |                                       |                                   | phenylproparaid metabolic process-<br>suchoode phosphorylation-                                        |                                                     |                                  |
|                | See plots and                         | Done D<br>tables for more details | nucleosade diphosphara phosphorylation-<br>reservoirationylis and metabolic process-                   | •                                                   |                                  |
|                |                                       |                                   | severation of ornaurour metabolities and exerci-                                                       | •                                                   |                                  |
|                |                                       | 905 🖬                             | flavorol metabolic process-                                                                            |                                                     | •                                |
|                |                                       | p regulated<br>GENES              | Exercic biosynthesis processone<br>fevoroid metabolic processone                                       |                                                     |                                  |
|                |                                       | 645 D                             | flavoroid bizaynthetic process-<br>flavore metabolic process-                                          | •                                                   |                                  |
|                | do                                    | wn-regulated                      | Feveral biosynthesis process<br>defense response to fungue-                                            |                                                     |                                  |
|                |                                       | GENES                             | cellular response to organ levels-                                                                     |                                                     |                                  |
|                |                                       |                                   | cellular response to depressed oxygen levels-                                                          |                                                     |                                  |
|                |                                       |                                   | tarbohydrate tatabolit protess-<br>ATP metabolit protess-                                              |                                                     |                                  |
|                | 🛓 DOWNLOAD RESULT TAB                 | LE AS .CSV                        | ATP generation from ACP-<br>ACP metabolic process-                                                     | :                                                   |                                  |
|                |                                       |                                   |                                                                                                        |                                                     | ió ió                            |
|                | & GENERATE HTML REPORT                |                                   |                                                                                                        | Court                                               |                                  |

# Differential Expression Analysis

#### Venn diagrams to compare lists of differentially expressed genes




## Co-expression clustering

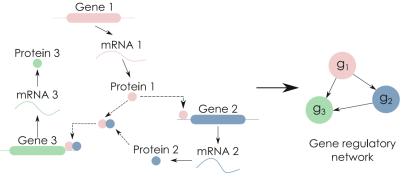
#### Poisson or Gaussian Mixture Models allow gene profiles clustering via Coseq [Rau et al., 2015, Rau and Maugis-Rabusseau, 2018]

| DIANE =                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                  | 1                  |
|-------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Y Context                                                               |                                                   |                                                                                                                                                                                                                                                                                                                  |                    |
| Data import                                                             | Expression based clustering                       |                                                                                                                                                                                                                                                                                                                  |                    |
| D Normalisation                                                         |                                                   |                                                                                                                                                                                                                                                                                                                  |                    |
| M Exploratory analysis                                                  | Settings -                                        | Guster profiles Gustering quality Goseq summary                                                                                                                                                                                                                                                                  | Results            |
| ≥ Offerental Expression                                                 | Moture models clustering                          | *                                                                                                                                                                                                                                                                                                                |                    |
| O Expression based dustering                                            |                                                   |                                                                                                                                                                                                                                                                                                                  |                    |
| Ron a clustering                                                        | Input genes for clustering :                      |                                                                                                                                                                                                                                                                                                                  |                    |
| >> Explore clusters                                                     | ✓ crif Crif 1550 genes                            |                                                                                                                                                                                                                                                                                                                  |                    |
| <ul> <li>Gene Regulatory Network </li> <li>Network inference</li> </ul> | Conditions to perform clustering on :             |                                                                                                                                                                                                                                                                                                                  | Max<br>Centrol     |
| <ul> <li>Network analysis</li> </ul>                                    | ✓ 0#                                              | 2 mm                                                                                                                                                                                                                                                                                                             | probability<br>100 |
| Ready to upload datasets                                                | <b>√</b> ca#<br><b>√</b> CaF                      |                                                                                                                                                                                                                                                                                                                  | - 11               |
|                                                                         | ≠ Cit                                             |                                                                                                                                                                                                                                                                                                                  |                    |
|                                                                         | <ul> <li>€11</li> <li>✓ (11)</li> </ul>           |                                                                                                                                                                                                                                                                                                                  |                    |
|                                                                         | <ul> <li>Interview</li> </ul>                     |                                                                                                                                                                                                                                                                                                                  |                    |
|                                                                         | ✓ Crit                                            |                                                                                                                                                                                                                                                                                                                  |                    |
|                                                                         | ✓CM                                               |                                                                                                                                                                                                                                                                                                                  |                    |
|                                                                         | Min number of clusters : Max number of clusters : | Clustering quality descriptors                                                                                                                                                                                                                                                                                   |                    |
|                                                                         | 6 B 9 B                                           | The coseq package tests a range of different clusters in order to give the best fit to the data.                                                                                                                                                                                                                 |                    |
|                                                                         |                                                   | For each number of cluster, the KCL (Integrated Completed Likelihood) is computed. It combines two elements :<br>• The clobal <b>Resilineed</b> of the clustering. It superfiltes how accurate the duatering seems, reparding the payleter probability of each element to belong the far predicted cluster. It c | en he              |
|                                                                         | Notare<br>Nodel Normal arcsin +                   | computed using the horison probability denotes resulting from the proposed clustering, for all the genes. The number of clusters, as the likelihood tends to grow monotonously with the number of dusters, resulting in a very big number of groups, that would not be very informative                          |                    |
|                                                                         | to use                                            | Thus, the ICL penalizes the dustering quality criteria with the number of clusters.                                                                                                                                                                                                                              | for the use.       |
|                                                                         | LAUNCH CLUSTERING                                 | This is why the maximal value of ICL can be interpreted as an approximation of the ideal number of clusters.                                                                                                                                                                                                     |                    |
|                                                                         | Done D                                            |                                                                                                                                                                                                                                                                                                                  |                    |
|                                                                         | See Coseq summary tab for more details            |                                                                                                                                                                                                                                                                                                                  |                    |
|                                                                         | L GENERATE HTML REPORT                            |                                                                                                                                                                                                                                                                                                                  |                    |
|                                                                         |                                                   |                                                                                                                                                                                                                                                                                                                  |                    |

Clustering gene profiles

#### Gene behaviors under CO2 and nitrate perturbations




#### How does elevated CO2 alters the response to nitrate starvation?

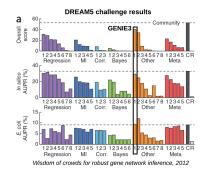
Either lessens, cancels or inverses the regulation observed in low nitrate only

NETBIO

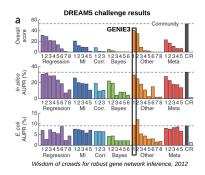
# Gene Regulatory Network Inference

• How to capture transcriptionnal dependencies and causality between genes ?



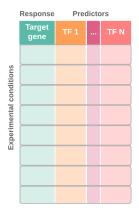

[Sanguinetti and Huynh-Thu, 2019]

• Non-linear approach, captures regulators cooperation for gene regulation


- Non-linear approach, captures regulators cooperation for gene regulation
- Non-parametric procedure, with very few parameters and no modelling assumptions

- Non-linear approach, captures regulators cooperation for gene regulation
- Non-parametric procedure, with very few parameters and no modelling assumptions
- Easily scalable to large datasets

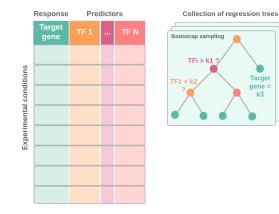
- Non-linear approach, captures regulators cooperation for gene regulation
- Non-parametric procedure, with very few parameters and no modelling assumptions
- Easily scalable to large datasets
- Best performer on DREAM4 and DREAM5 challenges [Greenfield et al., 2010, Marbach et al., 2016]



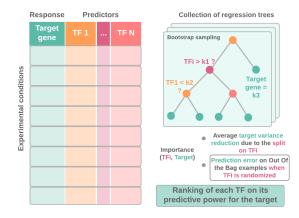

- Non-linear approach, captures regulators cooperation for gene regulation
- Non-parametric procedure, with very few parameters and no modelling assumptions
- Easily scalable to large datasets
- Best performer on DREAM4 and DREAM5 challenges [Greenfield et al., 2010, Marbach et al., 2016]



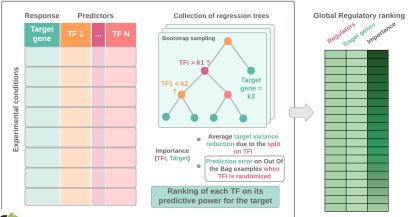
Oriented edges from regulators to other genes


Ranking the regulators according to their relevance for predicting the other genes expression




Target gene = k3

# Random Forests inference with GENIE3 [Huynh-Thu et al., 2010]


**Ranking the regulators** according to their **relevance for predicting** the other genes expression

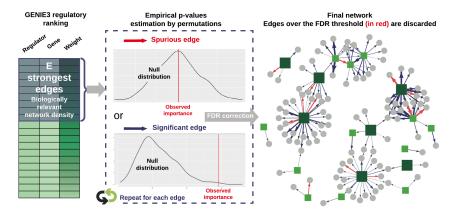


Ranking the regulators according to their relevance for predicting the other genes expression



Ranking the regulators according to their relevance for predicting the other genes expression



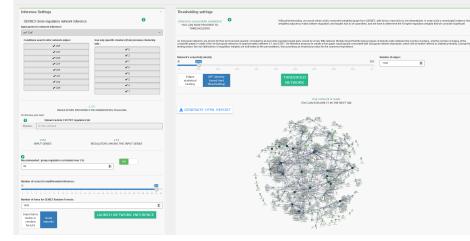

ach gene in the input list becomes the target <sup>-</sup>

NETBIO

#### GENIE3 extension

# Testing regulator-gene pairs

#### Selecting meaningful importances from Random Forests with rfPermute [Archer, 2020]




Gene regulatory network inference GENIE

**GENIE3** extension

#### DIANE's interface for network inference

#### Network inference



NETBIO

#### Network exploration

#### Gene connectivity ranking

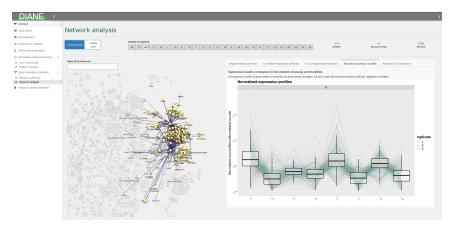
- Individual nodes information, targets and regulators
- In and out degree distributions

| DIANE =                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |                                                                                                                                                                                                                                                                                 |                       |          |               |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|---------------|
| etwork analysis                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |                                                                                                                                                                                                                                                                                 |                       |          |               |
| todes Gene type                                                                                               | Chaster to explore           ✔Ai         15         6         1         5         90         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 2 4                        | 5 12                      | 9 11 14 05M65 REDUCE                                                                                                                                                                                                                                                            | ans                   |          | 1801<br>EDGES |
| ne ID to focus on :                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Degree-ranked gene la        | t Correlated reg          | ulators network in-Out degree distributions. Hodules expression profiles. Modules GD en                                                                                                                                                                                         | chroent               |          |               |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$100 28                     |                           |                                                                                                                                                                                                                                                                                 | Sear                  | et:      |               |
|                                                                                                               | and a second sec |                              | lated 0                   | description                                                                                                                                                                                                                                                                     | gene_type (           | degree ( | community (   |
|                                                                                                               | and a state of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AT4022680                    | MYB85                     | Encodes a transcriptional regulator that directly activates lignin biosynthesis genes and phenelalaning biosynthesis genes during secondary well formation.                                                                                                                     | Regulator             | 71       | 2             |
|                                                                                                               | A CARLER AND A CAR | AT3023250                    | NV815                     | Member of the R2R3 factor gene family.                                                                                                                                                                                                                                          | Regulator             | 64       | 2             |
| - She wash                                                                                                    | A State of the second sec                                                                                                                                                                                                                                             | A13G25730                    | 6063                      | ethylene response DNA binding factor 3                                                                                                                                                                                                                                          | Regulator             | 56       | 2             |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT3023660                    | W0X11                     | Encodes a WUSCHEL-related homeobox game family member with 65 amino acids in its<br>homeodomain. Proteins in this family contain a sequence of sight residues (TLPL/PHH) downstream<br>of the homeodomain called the WWS box.                                                   | Regulator             | 52       | 2             |
| the Al                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT3019580                    | m                         | Encodes zinc freger protein. mRNA levels are uprepulated in response to ABA, high salt, and mild desicution. The protein is localized to the nucleus and acts as a transcriptional represent.                                                                                   | Regulator             | 48       | -             |
|                                                                                                               | Not 11 years I to start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AT4G11880                    | AGL14                     | AGL32, AGL34, and AGL37 are all preferentially expressed in root tissues and therefore represent<br>the only characterized MADS box genes expressed in roots. The mRNA is cell-to-cell mobile.                                                                                  | Regulator             | 47       |               |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mean_AT2021900-<br>AT3046600 | mean_WRXY59-<br>AT3046600 |                                                                                                                                                                                                                                                                                 | crouped<br>Regulators | 42       | -             |
|                                                                                                               | A state of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AT5G43175                    | A75043175                 | basic holo-loop-holix (bHLH) DNA-binding superfamily protein                                                                                                                                                                                                                    | Regulator             | 40       | 1             |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT5067060                    | HECI                      | Encodes a bHLH transcription factor that is involved in transmitting tract and stigms development<br>and acts as a local modulator of axon and cytokinin responses to control generation development.<br>HEC3 affects auno transport by acting as a transport of HSC3 and HSC3. | Regulator             | 29       | -             |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT1673650                    | TRFLG                     | Arabidopsis thalana myb family transcription factor (Attg72650)                                                                                                                                                                                                                 | Regulator             | 22       |               |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT1058100                    | тсрв                      | tricodes TCPR, beings to the TCP transception factor family known to bind site II elements in<br>promoter regions. Modulates GN-dependent stament Binnert elongation by direct activation of<br>SAUGG audiemity genes through conserved target tables in their promoters.       | Regulator             | 32       | -             |
| The frage                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A14000390                    | A74000390                 | DNA- binding storekeeper protein-related transcriptional regulator                                                                                                                                                                                                              | Regulator             | 25       |               |
| 24                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT1G57560                    | NY050                     | Member of the R2R3 factor gene family.                                                                                                                                                                                                                                          | Regulator             | 25       |               |
| PBRAD<br>Bread<br>D<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT5066700                    | H853                      | troodes a homeodomain protein. Member of HD-22P 1 family, most disedy related to HBS. AD4553 is<br>awar-inducible and its induction is inhibited by cytolinin, especially in roots therefore may be<br>invelved in root development.                                            | Regulator             | 25       |               |
|                                                                                                               | "statue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AT3G22830                    | 2750                      | Encodes a zinc finger protein that binds to PORA mRNA in vivo and recruits the PFr form of<br>phytochrome to the S&PE242                                                                                                                                                        | Regulator             | 25       |               |

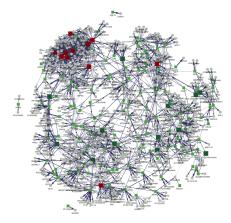
#### Network exploration

- Gene connectivity ranking
- Individual nodes information, targets and regulators
- In and out degree distributions

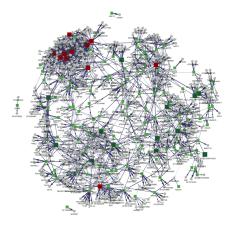
| DIANE =                                                                                               |                       |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             |                        |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                     |             |        |               |
|-------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|---------------|
| 🕈 Contant                                                                                             |                       | Gene description                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             |                        |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                     |             |        |               |
| Data import Hornalization L Exploratory analysis Differential Expression C Expression based chatering | Network analysis      | Common name : mem_W<br>Description :<br>AT2523390 : member of W<br>AT3555490 : Member of W<br>AT35532390 : Member of W<br>AT353590 : Decodes atmo<br>The process is located to t | RKY Transcription Factor                                                                                                                                                                                                                                                                                                    |                        | gh solt, and mild c | dealcoartion. | 1133 1133 40                                                                                                                                                                                                                                                                                                                                                                                        |             |        | 1726<br>EDOES |
| <ul> <li>Run a dustering</li> <li>Explore dusters</li> </ul>                                          | Gene ID to focus on : |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             |                        |                     |               | 31 Out degree distributions Modules expression profil                                                                                                                                                                                                                                                                                                                                               |             |        |               |
| V Gene Regulatory Network ≤                                                                           |                       |                                                                                                                                                                                  | Normalized expression lev                                                                                                                                                                                                                                                                                                   |                        |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                     | Search      |        |               |
| In Antwork Inference                                                                                  |                       | 30                                                                                                                                                                               | :                                                                                                                                                                                                                                                                                                                           |                        |                     |               | kacription                                                                                                                                                                                                                                                                                                                                                                                          | gene_type i | degree | community i   |
| Arcwork analysis     Seady to spload datasets                                                         |                       | fo .                                                                                                                                                                             | 1 a 1 a 1                                                                                                                                                                                                                                                                                                                   | 1                      |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                     |             |        | 19            |
|                                                                                                       |                       | North Strate                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                             | :                      |                     | replicate     |                                                                                                                                                                                                                                                                                                                                                                                                     |             |        | 19            |
|                                                                                                       |                       | -300 ·                                                                                                                                                                           | i i ii                                                                                                                                                                                                                                                                                                                      | ين بز                  |                     |               | codes a WUSCHEL-related homeobox gene family member<br>th 65 annuo adds in its homeodonaes, increase in this family<br>roles a sequence of eight readous (TLUTHR) downstream<br>the homeodomain called the WUS box.                                                                                                                                                                                 |             |        | 19            |
|                                                                                                       |                       |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             |                        |                     |               | volved in gene allencing, Locus-specific regulator of 24et-<br>dsk expression, works together with CLSY1-4 as the master<br>pulators of essentially all Pol-2V-dependent 24et-sit3Mo.                                                                                                                                                                                                               | Regulator   | 26     | 19            |
|                                                                                                       |                       | No regulators four                                                                                                                                                               | d                                                                                                                                                                                                                                                                                                                           |                        |                     |               | igle Mith Historie (SMH) gene family member. Contains<br>minal acide SANT domain.                                                                                                                                                                                                                                                                                                                   |             |        | 19            |
|                                                                                                       |                       | Targets :                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                             |                        |                     |               | y/-activating anzyme 17                                                                                                                                                                                                                                                                                                                                                                             |             |        | 19            |
|                                                                                                       |                       | Show 10 v entries                                                                                                                                                                | description                                                                                                                                                                                                                                                                                                                 | Search:<br>gene_type i |                     | neunity :     | volved in regulation of iron deficiency response genes.<br>encognession results in hyperaccumulation of Fe and Ms.                                                                                                                                                                                                                                                                                  |             |        | 19            |
|                                                                                                       |                       |                                                                                                                                                                                  | Encodes a polycomb proup protein. Forms                                                                                                                                                                                                                                                                                     |                        |                     |               | solved in regulation of iron deficiency response genes.                                                                                                                                                                                                                                                                                                                                             |             |        | 19            |
|                                                                                                       |                       | AT4602020 5WH                                                                                                                                                                    | part of a longe protein consplex that can<br>include VM2 (VERNALIZATION 12), VMO<br>(VMMMALIZATION INNERNISTING 12), VMO<br>(VMMMALIZATION INNERNISTING 12) and<br>polycomb group proteins (PETILIZATION<br>ISDAPFADDAT INNERNISTING 12)<br>ISDAPFADDAT INNERNISTING 1000 A onle<br>in establishing FLC (FLOWERSKI LOCUS C) | Rejulator              | 25                  |               | eodes glutablene transferase belonging to the two class of<br>TR. Namag convectors according to Wagare et al. (2001).<br>Introduction of the environment of polisarie 2.4-6.<br>Introducene. Anabidopes plant over-opressing Ac1g17100<br>on environ ensistant to TRY, menutable division statistic and<br>el-based media, and had reduced levels of glutablene when<br>own in the presente of TRY. |             |        | 19            |
|                                                                                                       |                       |                                                                                                                                                                                  | repression during vernalization. Performs a<br>partially redundent role to HEA in controlling<br>area initiation by helping to suppress<br>central cell nucleusendosperm proliferation<br>within the FG.                                                                                                                    |                        |                     |               | codes a major leaf ferredoxin<br>Provins                                                                                                                                                                                                                                                                                                                                                            |             |        | 19<br>10 Next |
|                                                                                                       |                       | AT1017520 AT1017521                                                                                                                                                              | Single Hyb Hatone (SHH) gene family<br>member. Contains terminal acidic SANT                                                                                                                                                                                                                                                | Regulator              | 5                   | 29            | Dearmite Additional AS CSV TABLE                                                                                                                                                                                                                                                                                                                                                                    |             |        |               |


#### Network exploration

- Gene connectivity ranking
- Individual nodes information, targets and regulators
- In and out degree distributions



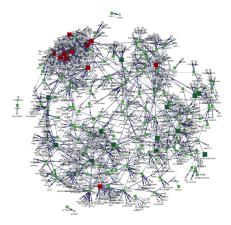

# Communities discovery


- Louvain community detection [Blondel et al., 2008]
- Module expression profiles
- Module GO enrichment analysis



1550 differentially expressed genes by elevated CO2 under low nitrate, 12 experimental samples




1550 differentially expressed genes by elevated CO2 under low nitrate, 12 experimental samples

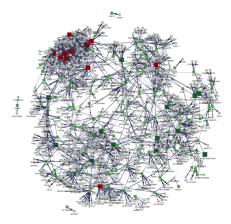


#### Validation of known genes interactions

 Confirmed associations between nitrate assimilation genes (BT1-BT2-HRS1, NRT2.1-NAR2.1...)

1550 differentially expressed genes by elevated CO2 under low nitrate, 12 experimental samples




#### Validation of known genes interactions

 Confirmed associations between nitrate assimilation genes (BT1-BT2-HRS1, NRT2.1-NAR2.1...)

#### Candidate genes discovery

- The most connected genes are potential **key regulators** of the response
- Mutant plants are programmed for root system and shoots mineral status phenotyping

1550 differentially expressed genes by elevated CO2 under low nitrate, 12 experimental samples



#### Validation of known genes interactions

 Confirmed associations between nitrate assimilation genes (BT1-BT2-HRS1, NRT2.1-NAR2.1...)

#### Candidate genes discovery

- The most connected genes are potential **key regulators** of the response
- Mutant plants are programmed for root system and shoots mineral status phenotyping

Promising leads to explain the depletion of plants mineral status under elevated CO2

#### Highlights

- Accessible online or local user interface
- Interactive, efficient and reproducible analyses
- Strong methodological frameworks with parameterization help for clustering and network inference
- Annotations for model organisms, or custom files upload for other organism

#### Highlights

- Accessible online or local user interface
- Interactive, efficient and reproducible analyses
- Strong methodological frameworks with parameterization help for clustering and network inference
- Annotations for model organisms, or custom files upload for other organism

#### Perspectives

- Adapt inference methodology to time series RNA-Seq
- Integrate external databases or other -omics data (Chip-Seq, ATAC-Seq...)

# Project links

Online version : https://diane.bpmp.inrae.fr GitHub : https://github.com/OceaneCsn/DIANE Documentation : https://oceanecsn.github.io/DIANE/

# Project links

Online version : https://diane.bpmp.inrae.fr GitHub : https://github.com/OceaneCsn/DIANE Documentation : https://oceanecsn.github.io/DIANE/



#### Merci!

#### References I

- Archer, E. (2020).
   rfPermute: Estimate Permutation p-Values for Random Forest Importance Metrics.
   R package version 2.1.81.
- Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008).
   Fast unfolding of communities in large networks.
   Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008.
- Chen, J., Zhang, R., Dong, X., Lin, L., Zhu, Y., He, J., Christiani, D. C., Wei, Y., and Chen, F. (2019). shinybn: an online application for interactive bayesian network inference and visualization. *BMC bioinformatics*, 20(1):711.
- Choi, K. and Ratner, N. (2019).
   IGEAK: An interactive gene expression analysis kit for seamless workflow using the R/shiny platform.
   BMC Genomics, 20(1):177.
- ► Ge, S. X., Son, E. W., and Yao, R. (2018).

iDEP: An integrated web application for differential expression and pathway analysis of RNA-Seq data.

BMC Bioinformatics, 19(1):1–24.

#### References II

- Greenfield, A., Madar, A., Ostrer, H., and Bonneau, R. (2010). DREAM4: Combining genetic and dynamic information to identify biological networks and Dynamical Models. *PLoS ONE*, 5(10).
- Harshbarger, J., Kratz, A., and Carninci, P. (2017). DEIVA: A web application for interactive visual analysis of differential gene expression profiles. BMC Genomics, 18(1):47.
- Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. *PLoS ONE*, 5(9):e12776.
- Kucukural, A., Yukselen, O., Ozata, D. M., Moore, M. J., and Garber, M. (2019). DEBrowser: Interactive differential expression analysis and visualization tool for count data 06 Biological Sciences 0604 Genetics 08 Information and Computing Sciences 0806 Information Systems. BMC Genomics, 20(1):6.

#### References III

- Li, Y. and Andrade, J. (2017). DEApp: An interactive web interface for differential expression analysis of next generation sequence data. Source Code for Biology and Medicine, 12(1):10–13.
- Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology*, 15(12):550.
- Marbach, D., Costello, J. C., Küffner, R., Vega, N., Prill, R. J., Camacho, D. M., Allison, K. R., Kellis, M., Collins, J. J., Stolovitzky, G., and Performed, G. S. M. (2016).
   Wisdom of crowds for robust gene network inference the DREAM5 Consortium HHS Public Access.

Nat Methods, 9(8):796-804.

 McCarthy, D. J., Chen, Y., and Smyth, G. K. (2012). Differential expression analysis of multifactor rna-seq experiments with respect to biological variation.

Nucleic Acids Research, 40(10):4288-4297.

#### References IV

- Monier, B., McDermaid, A., Wang, C., Zhao, J., Miller, A., Fennell, A., and Ma, Q. (2019). IRIS-EDA: An integrated RNA-seq interpretation system for gene expression data analysis. *PLoS Computational Biology*, 15(2).
- Rau, A. and Maugis-Rabusseau, C. (2018). Transformation and model choice for RNA-seq co-expression analysis. *Briefings in Bioinformatics*, 19(3):425–436.
- Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., and Celeux, G. (2015). Co-expression analysis of high-throughput transcriptome sequencing data with poisson mixture models.

Bioinformatics, 31(9):1420–1427.

- Robinson, M. D. and Oshlack, A. (2010).
   A scaling normalization method for differential expression analysis of RNA-seq data. *Genome Biology*, 11(3):R25.
- Sanguinetti, G. and Huynh-Thu, V. A. (2019). Gene regulatory networks.

#### References V

 Su, W., Sun, J., Shimizu, K., and Kadota, K. (2019). TCC-GUI: A Shiny-based application for differential expression analysis of RNA-Seq count data.
 *PMC* Research Notes, 12(1):122

BMC Research Notes, 12(1):133.

- Sun, J., Nishiyama, T., Shimizu, K., and Kadota, K. (2013). TCC: An R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics, 14(1):219.
- Sundararajan, Z., Knoll, R., Hombach, P., Becker, M., Schultze, J. L., and Ulas, T. (2019). Shiny-Seq: advanced guided transcriptome analysis. BMC research notes, 12(1):432.
- Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterprofiler: an r package for comparing biological themes among gene clusters. *Omics: a journal of integrative biology*, 16(5):284–287.
- Zhang, M., Li, Q., Yu, D., Yao, B., Guo, W., Xie, Y., and Xiao, G. (2019). Geneck: a web server for gene network construction and visualization. *BMC bioinformatics*, 20(1):1–7.