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Introduction

Thesis project
Statistical inference of the gene regulatory network in

Arabidopsis thaliana under climate change

@ Anthropic CO2 emissions are expected to double until 2100

@ Elevated CO2 depletes plants mineral status
@ Key regulators in this response are yet to be identified

Genetic variation is found in mineral status response to elevated CO2
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Introduction

Gene expression to understand regulatory mechanisms

@ Gene expression reprogramming is studied to understand development,
adaptation to environmental constraints in living organisms

@ The rise of NGS techniques and RNA-Seq made available genome-wide
transcripts quantification to researchers

Number of RNA-Seq publications on PubMed
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Analyzing RNA-Seq data

To characterize new signalling pathways

@ Which genes have their expression significantly changed by a
perturbation?

@ Can | distinguish groups of genes with similar behaviors?

@ How to model interactions and dependencies between genes?
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Analyzing RNA-Seq data

To characterize new signalling pathways

@ Which genes have their expression significantly changed by a
perturbation?

@ Can | distinguish groups of genes with similar behaviors?

@ How to model interactions and dependencies between genes?

Standard analysis pipelines require programming and methodological skills:

Bioinformatic pipeline

Quality control, fragments mapping, quantification

Statistical pipeline

Normalization, differential gene expression, ontology enrichment, clustering,
co-expression or regulatory pathways reconstruction
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Introduction

Current user interfaces for facilitating RNA-seq analysis

Available satisfactory possibilities
@ Normalization

Exploration and visualization

°
o Differential Expression
°

Gene Ontology Enrichment

v

See DEBrowser[Kucukural et al., 2019],

DEApp|[Li and Andrade, 2017],

iGEAK[Choi and Ratner, 2019],

DEIVA[Harshbarger et al., 2017],
Shiny-Seq[Sundararajan et al., 2019],

IRIS-DEA[Monier et al., 2019], iDEP[Ge et al., 2018],
TCC-GUI[Su et al., 2019], ShinyBN [Chen et al., 2019],
or GeNeck [Zhang et al., 2019]

DIANE December 8,2020 4/ 28



Introduction

Current user interfaces for facilitating RNA-seq analysis

Available satisfactory possibilities Absent or sub-obtimal features
o Normalization o Model based clustering
Exploration and visualization @ Statistical models or

Machine Learning for

°
o Differential Expression )
o network inference

Gene Ontology Enrichment

o @ Oriented toward regulation
rather than co-expression

See DEBrowser[Kucukural et al., 2019], .
DEAppILi and Andrade, 2017], o Advanced exploration of
iGEAK[Choi and Ratner, 2019], i
DEIVA[Harshbarger et al., 2017], gene clusters or inferred
Shiny-Seq[Sundararajan et al., 2019],
IRIS-DEA[Monier et al., 2019], iDEP[Ge et al., 2018], networks

TCC-GUI[Su et al., 2019], ShinyBN [Chen et al., 2019],
or GeNeck [Zhang et al., 2019]
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Introduction

Multifactorial dataset of nutritional starvation and elevated

CO2

Complete 3 * 2 cross design :
e CO2 (400ppm - 900ppm)
o Nitrate (low - high)

e Iron (Starvation - sufficiency)

8 conditions with triplicates : 24 root Arabidopsis thaliana
transcriptomes
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Normalization and low counts removal

Normalization

@ EdgeR TMM strategy [Robinson and Oshlack, 2010]
@ DESeq2 Median of ratios [Love et al., 2014]
@ Prior removal of DEGs via TCC [Sun et al., 2013]

Filtering

Adjustable threshold
for counts sum
across samples

DIANE - 0

Data filtering and normalisation

Low counts filtering
o
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csv
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& GENERATE HTML REPORT

logCount
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Exploratory transcriptome analysis

@ Genes normalized expression levels
@ PCA, Mutli-Dimensional Scaling plot
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Upstream analy

Exploratory transcriptome analysis

Gene normalized expression levels

PCA, Mutli-Dimensional Scaling plot
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Differential Expression Analysis

Tests performed by EdgeR (Negative Binomial models) [mcCarthy et al., 2012]
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Differential Expression Analysis

Over-representation tests are performed by ClusterProfiler to detect significantly

enriched GO terms [vu et al., 2012]
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Differential Expression Analysis

Venn diagrams to compare lists of differentially expressed genes

Differential expression analysis
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Estimation ofdsperion

varoe v vanar

Oterentay xpres
N e

DETECT DIFFERENTIALLY EXPRESSED GENES

See plots e tabiesfor more detals

rogisted

& DOWNLOAD RESULT TABLE AS .CSV
& GENERATE HTML REPORT & DOWNLOAD GENES SPECIFIC TO THE CNF CNF LIST

e NETBle T DIANE PR A L 5



Co-expression clustering

Poisson or Gaussian Mixture Models allow gene profiles clustering via Coseq
[Rau et al., 2015, Rau and Maugis-Rabusseau, 2018]

DIANE = ‘

Expression based clustering
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Gene behaviors under CO2 and nitrate perturbations

Elevated CO2 the El d CO2 reverses the effect of low nitrate
of nitrate related genes
3 1 5
BT1, BT2, HRS1 . HHO2, HHO3

| Some genes stay
i i é downregulated
$'$ $ under low nitrate

! Reference Low nitrate _Elevated Reference Low nitrate _Elevated and elevated CO2

Elevated CO2 CO2 Elevated CO2  CO2
L Reference Low nitrate _Elevated
Elevated CO2  CO2 6 2
4
NRT2.1, AMT1.3, NLP2, NIR, CEP9, » lons transport (metal, zinc, iron)
G6PD3

NRT1.1, AMT1.2

Reference Low nitrate _Elevated Low Reference  Lownitrate Elevated Reference Low nitrate _Elevated
Elevated CO2  CO2 itrate Elevated CO2  CO2 at Elevated CO2  CO2

How does elevated CO2 alters the response to nitrate starvation?

Either lessens, cancels or inverses the regulation observed in low nitrate only
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Gene regulatory network inference Context

Gene Regulatory Network Inference

@ How to capture transcriptionnal dependencies and causality between genes ?

Gene 1
\
. MRNA 1
Protein 3
T \ 9
Protein 1 N
MRNA 3 R SUL —> / o
e Y Gene2 Oy <
Gerte 3 ' 7777777 h at
; Gene regulatory
Profe|n<2_ MRNA 2 network

[Sanguinetti and Huynh-Thu, 2019]
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SGICENISIN \Why Random Forests?

Random Forests inference with GENIE3 (uynnthu et al, 2010]

@ Non-linear approach, captures regulators cooperation for gene regulation
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Why Random Forests?

Random Forests inference with GENIE3 (uynnthu et al, 2010]

Non-linear approach, captures regulators cooperation for gene regulation
Non-parametric procedure, with very few parameters and no modelling assumptions
Easily scalable to large datasets

Best performer on DREAM4 and DREAMS challenges
[Greenfield et al., 2010, Marbach et al., 2016]

DREAMS challenge results
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Why Random Forests?

Random Forests inference with GENIE3 (uynnthu et al, 2010]

Non-linear approach, captures regulators cooperation for gene regulation
Non-parametric procedure, with very few parameters and no modelling assumptions
Easily scalable to large datasets

Best performer on DREAM4 and DREAMS challenges
[Greenfield et al., 2010, Marbach et al., 2016]

DREAMS challenge results
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@ Oriented edges from regulators to other genes
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latory network inference Algorithm

Random Forests inference with GENIE3 (uynnthu et al, 2010]

Ranking the regulators according to their relevance for predicting the other
genes expression

Response Predictors

Targe
ge! I

Experimental conditions
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< inference Algorithm

Random Forests inference with GENIE3 (uynnthu et al, 2010]

Ranking the regulators according to their relevance for predicting the other
genes expression

Response Predictors Collection of regression trees
- p
Bootstrap sampling
TFi > k1 %

Experimental conditions
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etwork inference Algorithm

Random Forests inference with GENIE3 (uynnthu et al, 2010]

Ranking the regulators according to their relevance for predicting the other
genes expression

Response Predictors Collection of regression trees
Target e
gene Bootstrap sampling
TFi > k1 %
g [ J
= Target
T gene =
5 k3
o
E
g ¢ o0 o |/
E - ’
= .
g_ e Average target variance
3 reduction due to the split
w Importance on TFi
(TFi, Targe?) o [Prediction error on out of

the Bag examples when
TFi randomized

Ranking of each TF on its
predictive power for the target
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ork infere

Algorithm

Random Forests inference with GENIE3 (uynnthu et al, 2010]

Ranking the regulators according to their relevance for predicting the other

genes expression

Response Predictors Collection of regression trees

Target o e
gene Bootstrap sampling

TFi is randomized

Ranking of each TF on its
predictive power for the target

TFi > k1

g [ J
= Target
k= gene =
5 k3
o
|
5 ¢ o0 o |/
E ’
=
g_ e Average target variance
3 reduction due to the split
w Importance on TFi

(TFi, Target) o [Prediction error on out of

the Bag examples when

)
—

Q Each gene in the input list becomes the target

NETBIO DIANE
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ork inference GENIE3 extension

Testing regulator-gene pairs

Selecting meaningful importances from Random Forests with rfPermute [archer, 2020]
GENIE3 regulatory Empirical p-values Final network
ranking estimation by permutations Edges over the FDR threshold (in red) are discarded

g .
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E Null
strongest distribution
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DIANE's interface for network inference

Network inference

Inference Settings

opsis THALANA & GENERATE HTML REPOR]

s e
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Network exploration

@ Gene connectivity ranking
@ Individual nodes information, targets and regulators
@ In and out degree distributions

DIANE = :
Network analysis

T eerge | e

sesrn | )
e asscroon aenetpe aeares common ey
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Network exploration

@ Gene connectivity ranking
@ Individual nodes information, targets and regulators
@ In and out degree distributions

Normalized expression lovels.
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Network exploration

@ Gene connectivity ranking
@ Individual nodes information, targets and regulators

@ In and out degree distributions

DIANE - :

Network analysis
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Communities discovery

@ Louvain community detection [Blondel et al., 2008]
@ Module expression profiles
@ Module GO enrichment analysis

DIANE - :

Network analysis
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_ Results on elevated CO2 and nutritional starvation dataset
GRN under to elevated CO2 and low nitrate

1550 differentially expressed genes by elevated CO2 under low nitrate, 12
experimental samples
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_ Results on elevated CO2 and nutritional starvation dataset
GRN under to elevated CO2 and low nitrate

1550 differentially expressed genes by elevated CO2 under low nitrate, 12
experimental samples

- Validation of known genes interactions
@ Confirmed associations between nitrate

assimilation genes (BT1-BT2-HRS1,
NRT2.1-NAR2.1...)
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GRN under to elevated CO2 and low nitrate

1550 differentially expressed genes by elevated CO2 under low nitrate, 12
experimental samples

- Validation of known genes interactions
@ Confirmed associations between nitrate

assimilation genes (BT1-BT2-HRS1,
NRT2.1-NAR2.1...)

Candidate genes discovery

@ The most connected genes are
potential key regulators of the response

@ Mutant plants are programmed for root
system and shoots mineral status
phenotyping
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_ Results on elevated CO2 and nutritional starvation dataset
GRN under to elevated CO2 and low nitrate

1550 differentially expressed genes by elevated CO2 under low nitrate, 12
experimental samples

Validation of known genes interactions

@ Confirmed associations between nitrate
assimilation genes (BT1-BT2-HRS1,
NRT2.1-NAR2.1...)

Candidate genes discovery

@ The most connected genes are
potential key regulators of the response

@ Mutant plants are programmed for root
system and shoots mineral status
phenotyping

Promising leads to explain the depletion of
plants mineral status under elevated CO2
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Conclusion

Highlights
@ Accessible online or local user interface
@ Interactive, efficient and reproducible analyses

@ Strong methodological frameworks with parameterization help for clustering
and network inference

@ Annotations for model organisms, or custom files upload for other
organism
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Conclusion

Highlights
@ Accessible online or local user interface
@ Interactive, efficient and reproducible analyses

@ Strong methodological frameworks with parameterization help for clustering
and network inference

@ Annotations for model organisms, or custom files upload for other
organism

Perspectives
@ Adapt inference methodology to time series RNA-Seq

@ Integrate external databases or other -omics data (Chip-Seq, ATAC-Seq...)
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Discussion

Conclusion

O Project links

Online version : https://diane.bpmp.inrae.fr
GitHub : https://github.com/0OceaneCsn/DIANE
Documentation : https://oceanecsn.github.io/DIANE/
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Discussion

Conclusion

O Project links

Online version : https://diane.bpmp.inrae.fr
GitHub : https://github.com/0OceaneCsn/DIANE
Documentation : https://oceanecsn.github.io/DIANE/

Merci!
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