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Summary

� Gene regulatory networks (GRNs) govern phenotypic adaptations and reflect the trade-offs

between physiological responses and evolutionary adaptation that act at different time-scales.

To identify patterns of molecular function and genetic diversity in GRNs, we studied the

drought response of the common sunflower, Helianthus annuus, and how the underlying

GRN is related to its evolution.
� We examined the responses of 32 423 expressed sequences to drought and to abscisic acid

(ABA) and selected 145 co-expressed transcripts. We characterized their regulatory relation-

ships in nine kinetic studies based on different hormones. From this, we inferred a GRN by

meta-analyses of a Gaussian graphical model and a random forest algorithm and studied the

genetic differentiation among populations (FST) at nodes.
� We identified two main hubs in the network that transport nitrate in guard cells. This sug-

gests that nitrate transport is a critical aspect of the sunflower physiological response to

drought. We observed that differentiation of the network genes in elite sunflower cultivars is

correlated with their position and connectivity.
� This systems biology approach combined molecular data at different time-scales and identi-

fied important physiological processes. At the evolutionary level, we propose that network

topology could influence responses to human selection and possibly adaptation to dry envi-

ronments.

Introduction

Phenotype is shaped during an organism’s life by its physiological
and developmental responses to environmental conditions and
across generations through evolutionary genetic adjustments to
new environments. On the time-scale of individual organisms,
the phenotype can change rapidly as a consequence of gene regu-
latory networks (GRNs), which translate environmental and
internal signals into physiological and developmental modifica-
tions. On an evolutionary time-scale, such phenotypic modifica-
tions are based on changes in the genes composing the network
that may alter this network at the structural or functional level.

Relating phenotypic modifications occurring at physiological
and evolutionary time-scales has been a major focus of evolution-
ary biologists for more than a century (Osborn, 1896) and
Waddington (1942) as well as more recently Queitsch et al.
(2002); Milo et al. (2007). Researchers have theorized (and later

demonstrated) that physiological adaptation (e.g. via regulation
of gene expression or biochemical characteristics) can be replaced
by an evolutionary change that becomes constitutive and allevi-
ates the fitness costs associated with plasticity. This paradigm can
be revisited in the context of a gene network. While gene regula-
tory networks are products of evolution, similar to other biologi-
cal objects, GRNs also shape and constrain the evolvability of
phenotypic responses to the environment.

Systems biology approaches, such as GRN inference, provide a
global view of the different pathways that respond to environ-
mental variation. A GRN is a genetic network based on gene
expression levels (Wilkins, 2005). It describes transcriptional
interactions and dynamics in response to environmental stressors,
and therefore the GRN is key to understanding how organisms
such as plants adapt to their environment.

Responses to environmental signals are often mediated through
hormones. For example, in plants, abscisic acid (ABA) is produced
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during water stress in the vasculature and in the guard cells of the
vegetative part of the plant (Boursiac et al., 2013). Accordingly,
the application of ABA induces the expression of genes involved in
the response to dehydration and mimics drought stress. This inter-
pretation has been confirmed by promoter analyses, which have
demonstrated that these pathways share many targets (Shinozaki
& Yamaguchi-Shinozaki, 1997). The signals of different hor-
mones interact and are integrated to convey environmental signals
through the plant (Wilkinson et al., 2012), suggesting that hor-
mones should share transcriptomic targets.

Drought stress is a major abiotic factor that drives dramatic
phenotypic changes in plants, including Helianthus, in which
drought stress appears to constrain the colonization of new envi-
ronments in the arid regions of the southwestern USA (Seiler &
Rieseberg, 1997). Therefore, the drought-stress GRN represents
a tool for studying the interactions between organismal acclima-
tion on the physiological time-scale and population adaptation
on the evolutionary time-scale.

Several hormones mediate drought-stress responses; thus, the
utilization of multiple hormonal treatments can elucidate the
underlying GRN and highlight possible relationships between
the genes involved. However, there are practical difficulties asso-
ciated with the study of genetic networks. For example, the GRN
identified could be biased toward interactions that have been pre-
viously detected in model species (Wilkins, 2005). To date, sys-
tems biology approaches, such as GRN inference, have been
mostly restricted to model species, such as yeast (Dikicioglu
et al., 2011), Drosophila (Crombach et al., 2012), or Arabidopsis
(Ma et al., 2007), and are typically performed under laboratory
conditions. However, modeling dynamic biological processes
requires time-series gene expression data that are relevant both to
the biological process of interest and to the species targeted by
the study. To understand genome function and evolutionary pro-
cesses in an organism such as the sunflower (Helianthus annuus),
it is important to infer the GRN for the gene sets that are actually
involved in the responses to a given environmental stress and to
avoid the pitfall of using nonadapted model species data.

In this study, we used inference methods on sunflower data
complemented with knowledge from Arabidopsis. These meth-
ods were specifically designed for time-series gene expression data
and allowed us to reconstruct a sunflower GRN. The inferred
GRN provides us with a global view of the main physiological
functions involved in the drought-stress responses occurring in
the leaf, as well as their chronology.

On the evolutionary time-scale, studying the underlying GRN
for responses to environmental stresses such as drought can help
explain how plants evolved to become better suited to their envi-
ronments. Knowledge of a gene’s position in the GRN and its
topological characteristics provides useful information about
likely evolutionary constraints. For example, a highly connected
gene is likely to be subject to many trade-offs, which would limit
the accumulation of genetic diversity. Here, we identify correla-
tions between network topology and genetic divergence between
elite lines and landraces of sunflower and propose a mechanism
to explain how sunflower genetic differentiation could be con-
strained in response to selective forces.

Materials and Methods

Plant material and growth conditions

Transcriptome interactions and dynamics were studied using
the sunflower (Helianthus annuus L.) genotype XRQ. Plantlets
were grown under hydroponic conditions in the previously
described growth medium (Neumann et al., 2000) in a growth
chamber. After 14 d, the plantlets were treated by adding either
mock solution (DMSO only in controls) or one of the follow-
ing hormonal solutions: auxin (IAA); ethylene (ACC), gibberel-
lic acid (GA3), salicylic acid (SA), methyl-jasmonate (MeJA),
kinetin, ABA strigolactone (Stri) or Brassinol (Bras). Details of
the hormonal solutions are provided in Supporting Informa-
tion Methods S1. The first pair of leaves of each plant was
harvested at 0 (just before treatment), 1, 3, 6, 9, 24 or 48h
after treatment, immediately frozen in liquid nitrogen, and
stored at �80°C. The whole procedure was repeated three
times for ACC, Bras, GA3, IAA, kinetin, SA, and Stri and four
times for ABA and MeJA.

Gene selection

To identify genes that are likely to play a role in the drought
GRN, a global transcriptomic approach was employed using an
Affymetrix chip (Affymetrix, Santa Clara, CA, USA) containing
32 423 probe sets corresponding to sequences expressed in H.
annuus (Rengel et al., 2012). Three different global transcriptom-
ic data sets were analyzed and used to select genes. We selected
genes that responded to at least two of the following conditions:
drought stress under field conditions; drought stress under glass-
house conditions; and 10 lM ABA application under hydroponic
conditions.

The microarray data and analyses of the field and glasshouse
conditions were previously reported by Rengel et al. (2012).
Under field conditions, plants of the Melody genotype were har-
vested at the post-flowering stage at a stress intensity level of 0.63
and 0.22 (ratio between evapotranspiration and maximal evapo-
transpiration) for irrigated and nonirrigated plants, respectively.
Under glasshouse conditions, we recorded data from Melody
pre-flowering plants at a fraction of transpirable soil water
(FTSW) of 0.83 and 0.03 for the irrigated and nonirrigated
plants, respectively.

The global transcriptomic data for the application of 10 lM
ABA are new results and were obtained using the 6-h treatment
with ABA in the hydroponic experiment on the genotype XRQ
(CATdb: AFFY_ABA_Sunflower or GEO accession:
GSE22519). RNA quality verification, cDNA synthesis, and chip
hybridization and washing were all performed using the Affyme-
trix platform at the INRA-URGV (Institut National de
Recherche Agronomique –Unit�e de Recherches en G�enomiques
V�eg�etales) in Evry, France, following the protocol described in
Rengel et al. (2012). To identify the sunflower transcripts that
were differentially regulated by ABA under our hydroponic con-
ditions, the Affymetrix data were treated as previously described
in Bazin et al. (2011).
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This list was extended to 181 genes with genes known to
respond to the application of ABA or other hormones (literature
(Pastori & Foyer, 2002; Wang et al., 2003; Bray, 2004; Kawagu-
chi et al., 2004; Boudsocq & Lauriere, 2005; Li et al., 2006;
Rook et al., 2006; Valliyodan & Nguyen, 2006; Seki et al., 2007;
Shinozaki & Yamaguchi-Shinozaki, 2007; Wasilewska et al.,
2008; Miller et al., 2009; Sirichandra et al., 2009; Hirayama &
Shinozaki, 2010; Umezawa et al., 2010) or gene ontology (GO)
analysis).

Molecular analysis

The extraction of total RNA and cDNA synthesis were per-
formed as described in Rengel et al. (2012). The expression levels
of the 181 selected genes were analyzed in all samples by q-RT-
PCR using the BioMark system (Fluidigm Corporation, San
Francisco, CA, USA) as previously described (Spurgeon et al.,
2008). The q-RT-PCR results were analyzed following the 2ddCt

method (Livak & Schmittgen, 2001). Gene expression levels were
normalized to the mean of previously validated reference genes
(Rengel et al., 2012) and to the corresponding control sample
with the mock treatment. A detailed description of the calcula-
tion of expression levels is provided in Methods S1.

Genetic differentiation among populations

Genetic polymorphisms of drought GRN genes were character-
ized in five different Helianthus populations, as described in a
previous study (Renaut et al., 2013): Helianthus argophyllus
(N = 28), Helianthus petiolaris (N = 25), H. annuus elite lines
(N = 9), H. annuus landrace lines (N = 11), and wild H. annuus
(N = 11). Briefly, transcript sequences were obtained from young
leaf tissues with two RNAseq technologies (Roche 454 FLX (454
Life Sciences, Roche, Brandford, CT, USA) and GAII Illumina
(Illumina, San Diego, CA, USA) pair-end sequencing
29 100 bp). The transcript sequences were then aligned to the
reference transcriptome using the Burros Wheeler Aligner (Li &
Durbin, 2009). Single nucleotide polymorphisms (SNPs) were
called using the program SAMTOOLS (Li et al., 2009) with a mini-
mum with Phred scaled genotype likelihoods of 30, correspond-
ing to a genotyping accuracy of at least 99.9%. The population
genetics statistic FST was calculated between these populations for
89 of the 181 candidate genes using the R package HIERSTAT

(Goudet, 2005). FST is a widely used measure of genetic differen-
tiation among populations.

GRN reconstruction

Missing values of gene expression (expressed as DDCt) at time
t = 0 were imputed as values of 1. Other missing values (< 1%
of the values) were imputed with the R package IMPUTE by
10-nearest neighboring genes (Troyanskaya et al., 2001).

After log transformation of the data, we performed an arithme-
tic mean over replicates to obtain a robust DDCt expression value
for each gene under each condition (time9 treatment). We
obtained nine data sets corresponding to the nine hormonal

treatments and containing expression values for 145 genes with
robust expression data at seven different time-points. From these
nine data sets, we inferred 10 GRNs: one GRN from each hor-
monal treatment and a global GRN taking into account all treat-
ments. Two complementary inference methods were used to
achieve GRN predictions. The first method represents an exten-
sion of GENIE3 (Huynh-Thu et al., 2010) and was based on the
random forest method (RF; Breiman, 2001). In summary, each
gene expression at time t + 1 was successively considered as a tar-
get, and the method sought regulators of that gene via their
expression at time t. Several regulator inclusion steps were succes-
sively performed: according to a variance reduction criterion in a
regression tree framework, each step resulted in the inclusion in
the model of the best regulator. The process was repeated on a
randomized ensemble of trees, which made up the so-called
random forest. This method allowed us to derive a ranking of the
importance of all regulator expressions for the target by averaging
the scores over all the trees of the random forest. The randomized
subset of regulators allowed us to avoid the local minima of the
global score, and the random subsample of the data used for each
tree avoided over-fitting of the data and hence permitted more
robust estimates. We tested on simulated data whether including
auto-loops in the model improved the performance. Results are
presented in Methods S1 and they show that no gain was
obtained with such a modified version of our RF algorithm.
Compared with previously developed tree ensemble methods,
our method is novel because our modeling explicitly accounted
for the dynamical and multi-condition aspects of the data.

The second method used a Gaussian graphical modeling
(GGM) approach. In the GGM paradigm, an edge was inferred
when a significant partial correlation was detected between the
expressions profiles of two genes. Namely, the partial correlation
between two genes is the correlation between the residuals of the
expressions of these two genes after accounting for all other gene
expressions patterns. A unique aspect of our approach is the com-
bination of a temporal approach with a multiple graph structure
inference scheme. The dynamic nature of the data allowed us to
obtain directed edges between two genes (i.e. changes in the
expression of gene p induced changes in the expression of gene q
and not the converse). In addition, the multiple graph framework
drove the inference of condition-specific networks. However,
each of these hormonal networks took into account information
from the others and therefore accounted for a coupled function-
ing of the biological mechanisms that they encoded. The details
of the RF and GGM approaches are provided in Methods S1.
For each of the ten GRNs, we selected only edges confirmed by
both methods. The union of the nine hormonal consensus net-
works and the global consensus network formed a final unified
network with hormone-specific edges and global edges.

Topological parameters

The topology of a GRN depicts the relative positions of the genes
in the network and their importance in the structure of the net-
work. The topological parameters for each node therefore repre-
sent quantitative measures of gene connectivity and network
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position; these parameters are calculated from the oriented edges
that connect one gene with another. The edge count, the indegree
and the outdegree are three correlated parameters indicating the
total number of edges (in and out) and the number of outgoing
and ingoing edges, respectively. The average shortest path length
of a node p is the average length of the shortest path between p
and any other node. The closeness centrality is the reciprocal of
the average shortest path length. The eccentricity is the maximum
noninfinite length of the shortest path between p and another
node in the network. As the network is directed, if p is a node
without outgoing edges, the values of the average shortest path
length, the closeness centrality, and the eccentricity could not be
calculated. The betweenness centrality of a node p is the number
of shortest paths from a node q to a node r (differents from p)
divided by the number of shortest paths from q to r that pass
through p. It reflects the amount of control that the node p exerts
over the interactions of other nodes in the network. The stress
centrality of a node p is the number of shortest paths passing
through p. Finally, the neighborhood connectivity of a node p is
the average connectivity of all neighbors of p. These different
metrics were calculated for all genes with the NETWORKANALYZER

plugin for CYTOSCAPE (Assenov et al., 2008).

Correlation between topological parameters and genetic
differentiation

First, we performed a principal component analysis (PCA) on the
topological parameters of the GRN to study the dependence of
those parameters, with the function princomp. This allowed us to
identify the components explaining the most variability of the
parameters. From these PCA results, we selected the most repre-
sentative topological parameters in order to avoid redundancy.
The FST values were grouped into five subsets, each of them
expressing the FST between one Helianthus population (wild
H. annuus, landraces, elite, H. argophyllus and H. petiolaris) and
the other populations. We performed a canonical correlation
analysis (R function cancor) in order to identify the canonical cor-
relations between the selected topological parameters on one side
and each FST subset on the other side. We tested their signifi-
cance with the test of Wilks as provided by the function p.perm
of the R package CCP with 10 000 permutations.

Results

Gene selection to infer the drought GRN

Gene identification using a global transcriptomic approach To
identify genes that play a role in the drought GRN, a global tran-
scriptomic approach was employed using an Affymetrix chip con-
taining 32 423 probe sets, which corresponded to sequences
expressed in H. annuus. The differential analysis identified 337
genes that responded to drought stress under field conditions and
447 genes that responded to drought stress under glasshouse con-
ditions (Rengel et al., 2012). Because ABA is the major plant hor-
mone involved in the drought-stress response, we also identified
genes displaying differential expression 6 h after ABA treatment

at the plantlet stage under hydroponic conditions, using a similar
global transcriptomic analysis. A total of 463 sunflower tran-
scripts were found to be differentially expressed after ABA appli-
cation (Table S1). The 463 ABA-regulated sunflower genes were
validated by comparison with the expression of 226 homologues
in Arabidopsis based on expression data from the Bio-Array
Resource database or in projects from the AtGenExpress Consor-
tium retrieved from the website http://www.weigelworld.org/
resources/microarray/AtGenExpress/AtGe_Abiostress_gcRMA.
zip. The authors employed a kinetic analysis of three time-points
to assess the transcriptomic response to abiotic stresses such as
cold, osmotic, salt, drought or heat stress in leaves using the Ara-
bidopsis Affymetrix ATH1 microarray. This study was of partic-
ular interest because its kinetic approach imparts greater
statistical power and avoids the issue of differences in kinetic
parameters between sunflower and Arabidopsis. The Arabidopsis
homologs of the sunflower genes in this study are all BLAST
reciprocal best hits between H. annuus and Arabidopsis ESTs.
The covariance analysis (ANCOVA) showed that the expression
modulation by abiotic stresses over time of 27% of these Arabid-
opsis homologs (60 genes) exhibited a treatment effect or a treat-
ment9 time interaction effect. This proportion of Arabidopsis
genes homologous to H. annuus genes responding to ABA corre-
sponds to a significant enrichment in Arabidopsis genes respond-
ing to abiotic stresses (hypergeometric test giving P = 1.10�4).
The ANCOVA analysis, hypergeometric test and results are
described in detail in Methods S1 and Table S2, respectively.
This finding confirms that, at the transcriptomic level, ABA regu-
lation and its role in abiotic stress responses are globally con-
served between Arabidopsis and H. annuus, as has been
documented in many plants; this conservation has occurred even
though sunflowers are a very distantly related lineage separated
by > 90 million yr of evolution (Chinnusamy et al., 2004).

These three lists contain gene groups that respond to two
drought-stress intensities and ABA application (mimicking a
third drought-stress condition) at different developmental stages.
Together, they provide complementary views of the drought-reg-
ulated genes in sunflower.

For inclusion in the GRN for drought stress, we stipulated that
the genes must respond to at least two of the following condi-
tions: drought stress under field conditions; drought stress under
controlled glasshouse conditions; and/or ABA under hydroponic
conditions (Fig. 1). As expected from the large variability of the
biological material used to select the genes, the selected intersec-
tion was robust and should comprise the genes composing the
core GRN for drought stress.

In addition to these groups of genes, we selected 56 genes that
are known from the literature or GO analysis to be regulated in
response to ABA or one of the other main plant hormones used
for the treatment in our hydroponic experiment.

In all, 181 genes were selected (see complete list of sunflower
transcripts, Arabidopsis homologs and annotations in Table S3).

Dissection of transcriptional regulation in the drought GRN by
application of hormonal treatments The GRN of these
drought-regulated genes was reconstructed from their expression
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levels measured by q-RT-PCR. To perturb the network and iden-
tify regulatory relationships, leaf samples were harvested at seven
different times after hormone treatment from hydroponically
grown plants. A total of nine different hormones representing the
main plant hormone groups were used. From the 181 selected
candidate genes, we retained 145 robust genes based on technical
filtering (efficiency equal to one, no missing data or only imput-
able missing data). The expression levels (expressed as DDCt in
reference to five control genes and the mock control) before and
after imputation of missing data are shown in Tables S4 and S5,
respectively.

Inference of the drought GRN using the GGM and RF
methods

Inferences of a global GRN and nine hormonal GRNs lead to
the identification of a robust unified drought GRN To identify
the final regulatory network between the 145 genes shown to be
co-expressed during drought stress, we studied their regulation
after several hormonal applications. This strategy was chosen
because the environmental signal is transduced by different hor-
mones whose regulatory pathways are very connected. The appli-
cation of different hormones can reveal hormone-specific and
global regulatory connections. Because we selected genes shown
to respond to drought, the revealed regulatory connections are
probably involved in drought-stress responses. We generated nine
data sets corresponding to the nine hormonal treatments and
containing expression values for the 145 robust genes at seven
different time-points. From these nine data sets, we established
10 GRNs: one GRN from each hormonal treatment and one
global GRN, which represents a consensus array of all hormonal
treatments. The GRNs were inferred using two different infer-
ence methods: GGM and RF. These two approaches produce

complementary predictions (Allouche et al., 2013), and merging
their results was shown to yield more reliable predictions than
predictions obtained by any single method (Marbach et al.,
2012).

With the GGM method, we obtained between 112 and 158
edges for each hormonal network and a global network with 95
edges (Fig. 2).

With the RF method, the number of edges for each hormonal
network was very different and varied from 11 to 174 edges. The
global GRN with the RF inference was composed of 242 edges
(Fig. 2).

Given the diversity in the inferred edges, we employed a very
stringent approach to retain the core, most robust GRN. First,
we discarded the results of SA treatment because the RF method
inferred 629 edges. This number was far higher than that for the
other hormones (49, 115, 38, 36, 94, 134, 147 and 16 when
including SA). We chose not to take into account the SA edges in
the final GRN to avoid an over-representation (> 25%) of spe-
cific edges for this hormone instead of drought edges. Secondly,
for each GRN (hormonal or global), we considered an edge to be
robust if it was selected by both the GGM and RF methods. This
is a conservative approach that leads to high-quality edges; we
chose to focus on a network with very reliable edges at the
expense of potentially missing some weaker associations that
might be relevant. This trade-off was confirmed in very different
scenarios based on both simulated and real data sets (Vignes
et al., 2011; Marbach et al., 2012). We validated both our models
using simulated data that had the specific features of the data
being studied (see Methods S1). Note that the numbers of robust
edges were very different depending on the focal GRN. The final
unified network, hereafter called the drought GRN, was formed
by the union of all these robust edges (Fig. 2) and comprised 69
connected nodes, representing the genes linked by 79 unique
edges. Among the 69 genes, 49 were differentially expressed in
one of the three global transcriptomic experiments using the
Helianthus Affymetrix chip, and only 20 came from the literature
or GO analyses using BLAST reciprocal best hits to infer homol-
ogy. Fig. S1 summarizes the origins of the 69 final genes of the
network.

The number of shared edges between the hormonal GRNs var-
ied from 0 to 18 (Fig. S2, Table S6). The ethylene, cytokinin and
auxin networks shared the largest number of edges, whereas the
ABA, brassinosteroid, and strigolactone networks had no edges in
common with the other hormonal networks.

Comparison of the drought GRN to Arabidopsis data and prior
knowledge of biological networks We compared our sunflower
drought GRN to the model plant Arabidopsis using expression
data from the AtGenExpress Consortium (Goda et al., 2008)
(GEO accession: GSE39384 from AtGenExpress Consortium).
This Arabidopsis data set was similar to the Helianthus data and
includes seven hormonal treatments but is limited to only three
time-points. As a consequence of this difference in the sampling
frequency, we were unable to define a network from these data
using the inference methods described in the section above.
Therefore, we searched for gene expression correlations that were

Fig. 1 Selection of genes likely to be involved in the drought gene
regulatory network (GRN). Genes that responded to drought stress under
field conditions, drought stress under glasshouse conditions, and abscisic
acid (ABA) application under hydroponic conditions are indicated in blue,
red, and green, respectively. The genes that were responsive under at least
two of the different conditions were selected as part of the inferred GRN
for drought-stress responses.
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consistent (or inconsistent) with the sunflower data. Among the
116 Arabidopsis genes that were homologous to the 145 sun-
flower genes that were initially used to develop the consensus
drought GRN, significant correlations between gene pairs were
more frequent for pairs corresponding to the network edges,
according to an exact hypergeometric test (P = 0.005). The corre-
lation analysis and hypergeometric test are described in Methods
S1. This result demonstrated that the gene expression correlations
identified from the Arabidopsis data were similar to the correla-
tions identified in our sunflower drought GRN.

The topology of the drought GRN is consistent with what is
known about biological networks. The degree distribution of the
sunflower drought GRN followed a power law y = 20.57x�1.98

with an R ² of 0.72 (Fig. S3). This means that a few nodes had
many connections and that the majority of the nodes had few
edges, a finding that is a typical feature of the scale-free topology
of biological networks (Barabasi & Oltvai, 2004).

Node connectivity defines different gene classes

Identification of two hubs sharing common targets The aver-
age value for the connectivity of a node (i.e. the number of outgo-
ing or ingoing edges connecting a node to the others) in the
inferred drought GRN was 2.3. However, we identified nodes
with important connectivity; in particular, two nodes had the
highest number of outgoing edges: eight and 32 (with a connec-
tivity of nine and 32, respectively). These two genes were identi-
fied as important hubs in the inferred GRN. In addition, these
genes shared seven common targets, while no common sources
(i.e. a gene q that targets the studied gene p) between these genes
were identified.

Relationship between connectivity and gene function Gene
ontology annotations of the Arabidopsis genes homologous to
the 69 Helianthus genes connected in the unified drought GRN
were retrieved from TAIR (The Arabidopsis Information
Resource) based on protein homology using the sunflower tran-
scriptome web portal (www.heliagene.org/HaT13l). We observed
that genes in the GO metabolism category accounted for the
majority of the genes with low connectivity values: 40%, 80%
and 60% of the genes with a connectivity of one, two and three,
respectively; however, there was no significant enrichment using
a hypergeometric test (P = 0.190). More interestingly, genes
annotated as transcription factors and as having DNA-binding
properties exhibited medium connectivity (i.e. four to five edges;
P = 0.002), with the exception of one gene that had a single edge,
possibly because its targets were filtered out during our analysis.
Finally, the most highly connected genes were anion transporters.
While the GO transporter included 20–30% of the genes with
low connectivity, it also contained all the genes with high connec-
tivity, including both hubs, which had nine and 32 edges (Fig. 3).
The test showed that, despite the very low number of highly con-
nected genes, this trend was significant (P = 0.059).

Canonical correlations between the topological parameters
of the drought GRN and genetic differentiation statistics

To examine how the drought GRN might be related to the evolu-
tion of wild and domesticated sunflower populations, we looked
for canonical correlations between nonredundant network topol-
ogy parameters and the genetic differentiation statistics of the
drought GRN nodes or genes. The topological parameters for
each node represent quantitative measures of the gene position

(a)

(c)

(b)

(d)

(f)

(e)

(g) (j)

(i)

(h)

Fig. 2 Drought gene regulatory network (GRN) and selection of its edges. (a–i) The Venn diagrams for each hormonal GRN and global GRN represent the
edges selected by the random forest (RF) method (dotted line) and the Gaussian graphical modeling (GGM) method (solid line). (a) Abscisic acid (ABA); (b)
ethylene (ACC); (c) brassinosteroid (Bras.); (d) gibberellins (GA3); (e) auxin (IAA); (f) kinetin; (g) methyl-jasmonate (MeJA); (h) strigolactone (Stri.); (i)
global; (j) unified drought GRN representation. Gray circles represent the genes. Arrows represent the relationships between two genes (oriented edges),
and their color represents the hormonal treatment that led to their identification: Red, ABA; orange, ethylene; dark blue, brassinosteroid; light blue,
gibberellin; light green, IAA; dark green, kinetin; violet, MeJA; pink, strigolactone; black, global or non-hormone-specific edges.
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and relationships to others in the network. They are calculated
from the number of oriented edges that connect one gene with
another and are not independent by construction. In our GRN,
edges are oriented; thus, we only considered genes with outgoing
edges to compare the predictive values of the topological parame-
ters. In addition, we were able to calculate FST for 15 of these
genes among five populations of Helianthus: wild H. annuus,
landrace lines of H. annuus, elite lines of H. annuus, H. petiolaris
and H. argophyllus.

In a first step we used results from the PCA (cf Fig. S4 and
Table S7) with topological parameters to reduce dimensionality
and to obtain independent variables. The first and second com-
ponents explained 67% of the variance. Regarding their loadings
on the first two principal components, we selected ASPL and
EdgeCount (cf Table S7). Genetic differentiation was analyzed
using five distinct FST subsets, each of them expressing the FST

between one Helianthus population and the other populations.
Canonical correlation analysis (Tables 1, S8) between each of
these five FST subsets on one side, and the two topological
variables selected on the other side allowed us to detect
significant canonical correlations only for the elite FST subset
(Wilks’s test, P = 2.009 10�3) and for the landrace FST subset
(P = 1.009 10�4). As the intersection between these two subsets
was FST between elite and landrace, this suggests that this variable
in particular is correlated to the topological properties of the
GRN. This was confirmed by the comparison of the canonical
correlation analyses including only the FST value between land-
races and elite lines (Wilks’s test, P = 1.909 10�3) or the FST
value between landraces and wild (Wilks’s test, P = 0.26). More
specifically, we found a significant Pearson correlation between
the FST value between landraces and elite lines and ASPL
(R = 0.74, P = 0.003).

(a)

(b)

(c)

Fig. 3 Percentage of gene ontology (GO)
terms for each connectivity class of genes in
the drought gene regulatory network (GRN),
where the GOs are represented by different
colors. (a) Metabolism; (b) transcription
factor or DNA binding; (c) transporters. The
number of genes in each connectivity class is
indicated in brackets. Note that a unique
gene belongs to the connectivity class of 8.
This gene does not belong to any of the three
main classes of GO represented here
(metabolism, transcription factor and
transporters).
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Discussion

In this study, we reconstructed a GRN based on gene expression
that represents the transcriptional regulations that occur within a
plant organ in response to environmental cues. As such, this
drought GRN is not based on physical interactions between gene
products and promoters and thus is not a molecular cell biology
model. Instead, this GRN provides a more physiological view
based on transcriptional events involved in drought-stress
responses, similarly to the study of Hannah et al. (2006) on freez-
ing tolerance in Arabidopsis. In addition, as a consequence of the
temporal approach, the network edges are oriented and can be
interpreted as dependent relationships. Together, these character-
istics produce a network based on molecular regulations that also
integrates physiological processes with their chronology at the
organ level. This provides a representation of plant physiological
responses to dry conditions and therefore of the fitness in such an
environment.

Network inference highlights the importance of nitrate
transport in guard cells

Drought GRN hubs are nitrate transporters and drive transcrip-
tional regulation In the inferred network, two genes had many
outgoing connections compared with other genes and could
therefore be considered hubs. The first hub (HaT13l030730) is
homologous to the transcript of the Arabidopsis gene chloride
channel A (CLC-A; AT5G40890). CLC family members are
involved in anion compartmentalization in intracellular organ-
elles and in stomatal guard cell vacuoles (Jossier et al., 2010).
More precisely, CLC-A and CLC-C are expressed in stomata and
control their opening through translocation of NO3

� and Cl�,
respectively. This difference in anion selectivity among the CLC
family members is a result of an amino acid change in the selec-
tivity filter (Wege et al., 2010). The sunflower transcript
HaT13l030730, which is homologous to Arabidopsis CLC-A,

possesses the same amino acid conferring nitrate specificity. This
suggests that the main hub identified in the drought GRN is
probably a nitrate channel involved in stomatal aperture control
and, therefore, transpiration.

The second hub (HaT13l003541) is homologous to the tran-
script of the Arabidopsis gene nitrate transporter 1 (NRT1.1;
AT1G12110), which encodes a dual-affinity nitrate transporter
in Arabidopsis. Guo et al. (2003) demonstrated that this gene is
expressed in guard cells of stomata and that transpiration is
affected in mutants in an ABA-independent manner. The reduc-
tion of the stomatal aperture in mutants appeared to be attribut-
able to nitrate uptake in guard cells. The control of stomatal
transpiration by anion channels and transporters in guard cells
was further confirmed (De Angeli et al., 2013) in Arabidopsis.

Our approach identified the key role of two sunflower homo-
logs of Arabidopsis anion transporters. This strongly suggests that
this process is important for the regulation of the sunflower
drought response. However, the two hubs do not directly regulate
the expression of their target as transcription factors do; instead,
the hubs drive downstream signaling cascades through indirect
physiological and distant regulation.

The drought GRN identifies connections between ABA-depen-
dent and ABA-independent pathways In the inferred network,
both hubs had seven common targets but no common source.
This suggests that the NRT1.1 and CLC-A sunflower homologs
could represent two pathways controlling drought stress
responses. However, we could not exclude cross-talk between
NRT1.1 and CLC-A with an upstream regulator absent from our
initial data set. By inferring sunflower gene function based on Ara-
bidopsis homology and the analogous expression response to
drought, we could tentatively investigate the molecular pathways
characterized in the sunflower drought GRN. Functional annota-
tion of the targets of the two hubs revealed genes that are
directly involved in cell protection and stress tolerance, such as the
reactive oxygen species (ROS) scavenger (ascorbate peroxidase 1
(APX1)) and two enzymes involved in synthesis of an osmo-pro-
tectant, choline (phosphoethanolamine n-methyltransferase
(PMEAMT) and phosphorylcholine cytidylyltransferase2
(CCT2)). Interestingly, we also identified genes involved in signal
transduction, such as kinases (HaT13l074901 and embryo defec-
tive 1075 (emb1075)), phosphatases (hypersensitive to ABA-defi-
cient 1 (HAB1)), calmodulin-binding proteins (calmodulin-
domain protein kinase 5 (CPK5)), and transcriptional regulators
(MYC2 and arm repeat protein interacting with ABF2 (ARIA)),
downstream of the anion transporters, as described in Fig. 4.

CLC-A and NRT1.1 define an ABA-dependent and an ABA-
independent, respectively, pathway in our experimental results, as
well as in Arabidopsis (Guo et al., 2003; Jossier et al., 2010). Both
sources of CLC-A, sulfate transporter 1 (SULTR1) and ABF2
(ABRE-binding bZip factor), are regulated by ABA in Arabidopsis
(Fujita et al., 2005; Ernst et al., 2010) and also in our experiment
for ABF2. In addition, specific targets of CLC-A are part of the
ABA signaling cascade in Arabidopsis. HAB1 is a protein phos-
phatase that is strongly up-regulated by ABA (Rodriguez, 1998)
and functions in ABA signaling. ABA1 is known to catalyze the

Table 1 Coefficients of canonical correlations between, on the one hand,
topological parameter values of the drought gene regulatory network
(GRN) nodes and, on the other hand, their genetic differentiation
measured as FST and grouped into five subsets

Rho correlation
coefficient 1

Rho correlation
coefficient 2

FST subset of
H. argophyllus

0.672 (P-value = 0.299) 0.524 (P-value: ns)

FST subset of
H. petiolaris

0.493 (P-value = 0.818) 0.369 (P-value: ns)

FST subset of
H. annuus wild

0.728 (P-value = 0.362) 0.292 (P-value: ns)

FST subset of
H. annuus landraces

0.976 (P-value = 19 10�4) 0.299 (P-value: ns)

FST subset of
H. annuus elite lines

0.946 (P-value = 0.002) 0.280 (P-value: ns)

Each subset of FST compares genetic differentiation of one Helianthus pop-
ulation to the four other populations of Helianthus. Correlations were
tested for significance with Wilks’s test with the function p.perm of the R
software computing 10 000 permutations. ns, nonsignificant.
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first step of ABA synthesis (Rock & Zeevaart, 1991), and ARIA is
an armadillo repeat protein that is known to interact with the tran-
scription factor ABF2 (Kim et al., 2004). Together, these

regulatory connections identified in Arabidopsis form a loop
involving ABA synthesis (in vascular cells) (Boursiac et al., 2013)
and a signaling pathway across the different cell types (including

(a) (b)

Fig. 5 (a) Representation of genetic differentiation between Helianthus annuus landraces and H. annuus elite lines in function of the gene positions, i.e.
central or peripheral genes, in a schematic gene regulatory network. The colors of the genes in the schematic gene regulatory network (GRN) represent the
difference in heterozygocity between the two populations for the considered gene. The node color represents differentiation between elite and landrace
sunflowers: darker nodes appeared more differentiated compared with lighter nodes. Canonical coefficients (q) and P-values of Wilks’s test for the
correlations between network topological parameters and FST values of one population compared with the others are indicated for elite lines and landraces.
(b) Hypothesis concerning differences in genetic differentiation between the five Helianthus populations. Note that only the five comparisons representing
the selective history of the sunflower are shown. Black edges indicate no variability in the genetic differentiation within genes network between the two
populations. White edges indicate changes in the genetic differentiation between populations as observed for the 15 genes in the drought GRN analyzed in
the canonical correlation analysis (CCA). The coefficient of the Pearson’s correlation between the topological parameter average shortest path length
(ASPL) and FST between H. annuus elite lines and landraces is indicated.

Fig. 4 Functional network involving the two hubs of the inferred drought gene regulatory network (GRN), their sources, and their targets. Blank edges
represent the abscisic acid (ABA)-dependent pathway, including chloride channel A (CLC-A). Solid edges represent the ABA-independent pathway,
including nitrate transporter 1 (NRT1.1). Common targets involved in signal transduction are indicated in red, those involved in transcriptional regulation
are shown in orange, and those involved in cell protection are shown in blue. PLDa2, phospholipase D alpha2; MYC2, MYC-related transcriptional
activator; PMEAMT, phosphoethanolamine n-methyltransferase; APX1, ascorbate peroxidase 1; CCT2, phosphorylcholine cytidylyltransferase2; GUN5,
genomes uncoupled 5; CPK5, calmodulin-domain protein kinase 5; emb1075, embryo defective 1075; HAB1, hypersensitive to ABA1; ARIA, arm repeat
protein interacting with ABF2; ABA1, ABA-deficient 1; SULTR1, sulfate transporter 1; JA, jasmonate.

� 2014 INRA

New Phytologist� 2014 New Phytologist Trust
New Phytologist (2014)

www.newphytologist.com

New
Phytologist Research 9



guard cells) throughout the leaf (Fig. 4). In the drought GRN, we
were able to partially identify the corresponding regulatory loop
between sunflower homologs. These results suggest that the same
ABA regulatory loop exists in the sunflower drought GRN and
therefore could be largely shared across the plant kingdom.

Similar to the shared targets of CLC-A and NRT1.1,
specific targets of NRT1.1 are also involved in cell protection
(phospholipase D alpha2 (PLDa2)) and signal transduction
(HaT13l028104). An interesting downstream target is MYC2,
which is a central regulator of the hormone jasmonate, which is
mostly involved in plant defense and the development and inte-
gration of many hormonal signals (Kazan & Manners, 2013).

Across the sunflower drought GRN, several different pathways
show some conservation across plant species, such as Arabidopsis.
Therefore, the GRN inference approach developed in this study
appears to be robust, and we can propose the reasonable hypothe-
sis that the main regulatory pathways and hubs identified in the
drought GRN are conserved among distant plant species and
therefore also across the Helianthus genus. Although from our
data we were not able to demonstrate network conservation
across the Helianthus populations (this would require inferring
the network for each one, which would be too laborious with the
present technologies), this hypothesis allows us to explore new
questions about how the GRN could constrain plant adaptation
to dry environments.

Drought GRN topology and Helianthus evolution

Network topology constrains genetic variation of the gene net-
work Gene networks are the products of evolution, like other
biological objects, but gene network relationships can also con-
strain evolutionary changes, such as adaptations to new environ-
ments and responses to selective pressure during domestication
or breeding. For example, Rausher et al. (1999) demonstrated
different evolutionary histories for upstream and downstream
genes in the anthocyanin biosynthetic pathway.

The evolution of the GRN architecture can lead to new nodes,
potentially introducing new functions and new edges between
these nodes. Previous researchers (Hinman et al., 2003) examined
GRN evolution in echinoderms and demonstrated that some fea-
tures of developmental GRNs were conserved and that others were
specific to each taxon. Network architecture is known to affect
evolutionary rates (Ramsay et al., 2009), and we expect evolution-
ary changes to the nodes to be constrained by their connectivity
and the number of neighbors. A hub in the network is involved in
several pathways. The functional trade-offs for such genes are
higher than those for peripheral genes that are involved neither in
regulatory processes nor in the interaction with partners.

To understand how populations and species evolve and adapt
to a new environment, we examined the putative constraints of
the network architecture on the genetic differentiation between
populations of H. annuus, and two wild species that are cross-
compatible with H. annuus: H. argophyllus and H. petiolaris.

No evidence of network topology constraints during the diver-
gence of H. argophyllus and H. petiolaris Helianthus argophyllus

is native to the dry, sandy soils of southern Texas, an arid envi-
ronment that imposes strong selection for tolerance to drought
stress. Indeed, H. argophyllus is considered the most drought-tol-
erant sunflower species because its pubescent leaves reflect sun-
light, reduce water loss, and exhibit low transpiration (Seiler &
Rieseberg, 1997). However, network topology and FST values
between H. argophyllus and other populations were not signifi-
cantly correlated. This could be because the adaptation of
H. argophyllus to dry environments involved physiological mecha-
nisms that are not captured in our GRN or because the network
topology has itself evolved and the topological parameters in
H. argophyllus are too dissimilar to those in H. annuus. Interest-
ingly, the highest value of FST between H. argophyllus and other
populations was for the network hub, NRT1.1, which is involved
in transpiration. This result is consistent with positive selection
acting on NRT1.1 during adaptation of H. argophyllus to dry
environments. Keeping in mind the overall nonsignificant corre-
lation, the high value of FST suggests that NRT1.1 could be an
example of the fore-mentioned hypothesis, i.e. the positive
selection.

In H. petiolaris, we observed no correlation between the GRN
topology and FST for comparisons with other populations.
Because H. petiolaris has a large geographic range that overlaps
with that of H. annuus in the Great Plains of the USA, drought
stress might not be the major selective force separating these spe-
cies. This could explain the similar divergence patterns within the
drought network genes between these two populations, as illus-
trated in Fig. 5b.

Genetic diversity within the GRN was modified during modern
breeding The network topological parameters and the FST
between the landraces and elite lines of H. annuus were correlated
(Fig. 5a). This reflects a difference in genetic differentiation
between these two populations between the center and the periph-
ery of the network. We did not observe this correlation for FST
between wild H. annuus and landraces. This suggests that the
position and connectivity of genes in the drought GRN influenced
the response to selection during the last century of genetic
improvement but not during the initial domestication of
H. annuus. This difference in selective responses could be attribut-
able to the fact that highly connected genes are subjected to more
trade-offs as they are master regulators with involvement in several
genetic pathways, in contrast to less connected terminal genes
(Fig. 5a). Drought tolerance is considered to be a long-standing
goal of sunflower breeders. We would expect that the selection
they exert had led to a global reduction of genetic diversity in the
drought GRN. However, we observed a higher divergence of ter-
minal genes compared with central ones, which implies a stabiliz-
ing selection acting on the network hubs. Interestingly, our FST
studies in H. argophyllus suggest that a different selective pressure
acted on one of the network hubs (Fig. 5b). This highlights our lack
of global understanding of how evolutionary forces and functional
relationships interacted to produce contemporary phenotypic
diversity and suggests a potentially important way of improving the
breeders’ methods, through the integration of regulatory networks
in quantitative genetics models such as genomic selection.
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In conclusion, this work investigated the interaction between
physiological and evolutionary processes in the context of a
genetic network for the drought-stress response. Interactions
between physiological and evolutionary time-scales could be
revealed in the future through global transcriptomic studies,
although some limitations of network inference methods remain
to be overcome. This type of work will facilitate the study of
responses to other environmental factors and clarify whether
physiological mechanisms and evolutionary adaptation, which
are reciprocally constrained in the gene regulatory network, are
similar in abiotic and biotic interactions.
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