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Normalization for oligonucleotide array

When running experiments that involve multiple high density
oligonucleotide arrays, it is important to remove sources of
variation between arrays of non-biological origin. Normalization
is a process for reducing this variation. It is common to see
non-linear relations between arrays and the standard normalization
provided by Affymetrix does not perform well in these situations.
Boldstad et al. 2003
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Example
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Curve warping model

The regression model:

Yi ,j = f ?j (tij) + σεi ,j , i = 1,. . ., n, j = 1,. . ., J.

where

f ?j models the j th signal (unknown);

tij the observation points (known).

εi ,j is white noise (unknown), and σ variance (unknown)

Assumption: There exists a common shape of the signal f ? and
warping operators Φj ,

f ?
j = Φj f

?, j = 1, . . . , J.

Aim: Estimation of the deformations and the template f ?

Question : registration procedure ?
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Models for curve warping
Φ = Φθ :
parametric model for deformations =>
Semiparametric statistics

θ = (a, b, υ)
′
, Φθ : f (·)→ af (· − b) + υ

(θ)→ 1

J

J∑
j=1

∥∥∥∥∥∥gj(θ, x)− 1

J

J∑
j ′=1

gj ′(θ, x)

∥∥∥∥∥∥
L2

,

where gj(θ, x) = Φθ ◦ f ?j (x).

M-estimators of the parameters θ̂
well studied in Gamboa JML Maza (2007), Vimond (2009).
Non parametric framework : Random warping process
hj ∼i .i .d H : Ω→ C ([a, b])

i) H(w , ·) is an increasing function,
ii) H(w , a) = a and H(w , b) = b.

fj = f ◦ hj , j = 1, . . . , J
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Structural expectation

Yij = fi (tij) = f ◦ h−1
i (tij), i = 1, . . . , n, j = 1, . . . , J. (1)

mean of the process φ(x) = E[H(w , x)]

Not identiability => f can not be estimated hence problem
= definition of a mean pattern (information) that can be
recovered

either choosing a particular curve ... problem of arbitrary
choice

Structural expectation : takes into account the deformation

fES := f ◦ φ−1.

fi = f ◦ h−1
i = fES ◦ φ ◦ h−1

i

Mean pattern taking into account the mean deformation
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Estimation of Structural expectation
Assumption : f increasing function

fi = f ◦ h−1
i ⇒ f −1

i = hi ◦ f −1 ⇒ E(f −1
i ) = (E(H)) ◦ f −1

∀y , ji (y) = arg min
j∈{1,...,J}

|Yij − y | and Ti (y) := tiji (y).

Empirical estimator of the inverse of the structural expectation

f̂ −1
ES (y) =

1

n

n∑
i=1

Ti (y).

f̂ −1
ES : increasing step function with jumps at K (n, J) points

v1, . . . , vK(n,J) in [f (a), f (b)], such that
f (a) = v0 < v1 < . . . < vK(n,J) < vK(n,J)+1 = f (b).

f̂ −1
ES (y) =

K(n,J)∑
k=0

uk1(vk ,vk+1)(y)
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Estimation of Structural expectation Dupuy JML Maza
(2011)

Construction of estimator by interpolation:

f̂ES(t)=

K(n,J)−1∑
k=0

(
vk +

vk+1 − vk

uk+1 − uk
(t − uk)

)
1[uk ,uk+1)(t)+vK(n,J)1{b}(t).

Theorem (Consistency of structural expectation estimator and
warping individual function J >

√
n)∥∥∥f̂ES − fES

∥∥∥
∞

as−−−−→
n,J→∞

0.∀i0,

∥∥∥∥φ̂ ◦ h−1
i0
− φ ◦ h−1

i0

∥∥∥∥
∞

as−−−−→
n,J→∞

0.

Breaking monotonicity with monotonizing operator conserving
the warping paths

Observations with noise : denoising with kernel estimates
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Model : Extension to points cloud

Xi ,j , i = 1, . . . ,m, j = 1, . . . , ni be a sample of m
independent real valued random variables of size ni with
density function fi : R→ [0,+∞) and distribution function
Fi : R→ [0, 1].

Each distribution function Fi is obtained by warping a
common distribution function F : R→ [0, 1] by an invertible
and differentiable warping function Hi

Fi (t) = Pr(Xi ,j ≤ t) = F◦H−1
i (t), i = 1, . . . ,m, j = 1, . . . , n.
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Model
consider the structural expectation (SE) of the quantile function to
overcome this problem as

qSE (α) := F−1
SE (α) = φ ◦ F−1(α), 0 ≤ α ≤ 1. (2)

Inverting equation leads to

qi (α) = F−1
i (α) = Hi ◦ F−1(α), 0 ≤ α ≤ 1 (3)

where qi (α) is the population quantile function (the left
continuous generalized inverse of Fi ), F−1

i : [0, 1]→ R, given by

qi (α) = F−1
i (α) = inf {xij ∈ R : Fi (xij) ≥ α} , 0 ≤ α ≤ 1. (4)

Hence the natural estimator of the structural expectation (2) is
given by

qm(α) =
1

m

m∑
i=1

qi (α), 0 ≤ α ≤ 1. (5)
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A1. There exists a constant C1 > 0 such that for all
(α, β) ∈ [0, 1]2, we have

E
[∣∣H(α)− EH(α)−

(
H(β)− EH(β)

)∣∣2] ≤ C1 |α− β|2 .

A2. There exists a constant C2 > 0 such that, for all
(α, β) ∈ [0, 1]2, we have

E
[∣∣F−1(α)− F−1(β)

∣∣2] ≤ C2 |α− β|2 .
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Consistency

Theorem

The estimator qm(α) is consistent is the sense that∥∥∥qm(α)− E
(

qm(α)
)∥∥∥
∞

=
∥∥∥qm(α)− qSE (α)

∥∥∥
∞

a.s.−−−−→
m→∞

0.

Moreover, under assumptions [A1] and [A2], the estimator is
asymptotically Gaussian, for any K ∈ N and fixed
(α1, . . . , αK ) ∈ [0, 1]K ,

√
m

 qm(α1)− qSE (α1)
...

qm(αK )− qSE (αK )

 D−−−−→
m→∞

NK (0,Σ)

where Σk,k′ = ϑ
(
q(αk), q(αk′)

)
for all (αk , αk′) ∈ [0, 1]2 with

αk < αk′ .
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Estimation
Consider the order statistics Xi ,1:n ≤ Xi ,2:n ≤, . . . ,≤ Xi ,n:n, hence
the estimation of the quantile functions, qi (α), is obtained by

q̂i ,n(α) = F−1
i ,n (α) = inf {xij ∈ R : Fi ,n(xij) ≥ α}

= Xi ,j :n for
j − 1

n
< α ≤ j

n
, j = 1, . . . , n.

(6)

where F−1
i ,n is the ith empirical quantile function.

Finally, the estimator of the structural quantile is given by

q̂j =
1

m

m∑
i=1

q̂i ,j =
1

m

m∑
i=1

Xi ,j :n, j = 1, . . . , n. (7)

Note that, this procedure corresponds to the so-called quantile
normalization method proposed by Bolstad-03.
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Consistency

Theorem

The quantile normalization estimator q̂j is strongly consistent

q̂j
a.s−−−−−→

m,n→∞
qSE (αj), j = 1, . . . , n,

and under the assumptions of compactly central data,

|Xi ,j :n − E (Xi ,j :n)| ≤ L <∞ for all i and j, and
√

m
n → 0, it is

asymptotically Gaussian. Actually, for any K ∈ N and fixed
(α1, . . . , αK ) ∈ [0, 1]K ,

√
m

 q̂j1 − qSE (α1)
...

q̂jK − qSE (αK )

 D−−−−−→
m,n→∞

NK (0,Σ)

where Σk,k′ = ϑ
(
q(αk), q(αk′)

)
for all (αk , αk′) ∈ [0, 1]2 with

αk < αk′ .
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Asymptotic behavior of the quantile estimator, q̂i ,n(α)

Theorem

Assume Fi is continuously differentiable at the αth population
quantile qi (α) which is the unique solution of
Fi (qi (α)−) ≤ α ≤ Fi (qi (α)), and fi

(
qi (α)

)
> 0 for a fixed

0 < α < 1. Also assume n−1/2(j/n − α) = o(1). Then, for
i = 1, . . . ,m, the estimator q̂i ,n(α) is strongly consistent,

q̂i ,n(α)
a.s.−−−→

n→∞
qi (α)

√
n
(
Xi ,j :n − Hi ◦ q(α)

) D−−−→
n→∞

N

0, α(1−α)(
f ◦H−1

i

(
Hi◦q(α)

)
·
(
H−1

i

)′(
Hi◦q(α)

))2


where

(
H−1

i

)′
(z) =

dH−1
i (z)
dz = 1

H
′
i ◦H

−1
i (z)

.
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Proofs
Xi ,j :n

d
= F−1

i (Ui ,j :n) around the point E(Ui ,j :n) = αj = j/(n + 1),
where Ui ,j :n denotes the jth order statistic in a sample of size n
from the uniform (0, 1) distribution. The approximated means,
variances and covariances of order statistics for i = 1, . . . ,m are
given by

E(Xi ,j :n) = qi ,j +
αj(1− αj)

2(n + 2)
q
′′
i ,j +

αj(1− αj)

(n + 2)2

[
1

3

(
(1− αj)− αj

)
q
′′′
i ,j

+
1

8
αj(1− αj)q

(4)
i ,j

]
+ O

(
1

n2

)
(8)

Var(Xi ,j :n) =
αj(1− αj)

n + 2
q
′2
i ,j +

αj(1− αj)

(n + 2)2

[
2
(
(1− αj)− αj

)
q
′
i ,jq

′′
i ,j

+αj(1− αj)

(
q
′
i ,jq

′′′
i ,j +

1

2
q
′′2
i ,j

)]
+ O

(
1

n2

)
(9)
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Playing with the functions

One of the major issue in registration problem is to find the fitting
criterion which enables to give a sense to the notion of mean of a
sample of points. A natural criterion is in this framework given by
the Wasserstein distance and this problem can be rewritten as
finding a measure µ which minimizes

µ 7→ 1

m

m∑
i=1

W 2
2 (µ, µi ), (10)

where W2 stands for the 2-Wasserstein distance

W 2
2 (µ, µi ) =

∫
|F−1

i (t)− F−1(t)|2dt.
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Extension

for any distance d on the inverse of distribution functions, we can
define a criterion to be minimized

F 7→ 1

m

m∑
i=1

d(F−1,F−1
i ).

Each choice of d implies different properties for the minimizers.
Recall that the choice of the L2 loss corresponds to the
Wasserstein distance between the distributions. Another choice,
when dealing with warping problems, is to consider that the
functional data belong to a non euclidean set, and to look for the
most suitable corresponding distance. Hence, a natural framework
is given by considering that the functions belong to a manifold
using a manifold embedding
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Extension

d̂g , an approximation of the geodesic distance, is provided using an
Isomap-type graph approximation, following Tenenbaum2000. This
gives rise to the criterion

F 7→ 1

m

m∑
i=1

d̂g (F−1,F−1
i ).

Question :

How to choose the manifold embedding (non unique) ?

Is there an (optimal) way to estimate the distance ?

Notions of stability
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Extension : practical implementation
Xi ,j , i = 1, . . . ,m, j = 1, . . . , n random variables. In order to
mimic the geodesic distance between the inverse of the distribution
functions,

1 Estimate F−1
i (t), for k − 1/n < t ≤ k/n by the corresponding

order statistics Xi ,k:n.

2 Sort the observations for each sample i , and denote by X(i).

the sorted vector Xi ,1:n, . . . ,Xi ,n:n and thus we obtain an array
of sorted observations (X(1)., . . . ,X(m).).

3 Compute d̂g an approximation of the geodesic distance
between the vectors X(i).

4 Hence the corresponding geodesic mean as the minimizer over
all the observation vectors x ∈ {X(i)., i = 1, . . . ,m} of the
criterion

x 7→ 1

m

m∑
i=1

d̂g (x ,X(i).).
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Curve warping Density Normalization as a structural model Alignment of points with warping effects Why? A solution? Simulation 1 Simulation 2 Simulation 3 PCA

We have

X̄ = arg min
a∈R2

n∑
i=1

d (Xi , a)

with d the Euclidean distance.
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Curve warping Density Normalization as a structural model Alignment of points with warping effects Why? A solution? Simulation 1 Simulation 2 Simulation 3 PCA

We replace

arg min
a∈R2

n∑
i=1

d (Xi , a)

with d the Euclidean distance, by

arg min
a∈M

n∑
i=1

δ (Xi , a)

with δ the geodesic distance.
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Wasserstein Analysis

j = 1, . . . , J
Xij ∼ µj i.i.d

i = 1, . . . , n

µj comes from a family of deformations µj = Tj #µ

Objective : recover the unknown distribution µ and study the
deformations

Observations enable to recover the empirical distribution

µj ,n =
1

n

n∑
i=1

δXij
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Wasserstein Analysis

We say that the measure µ ∈ P2(E ) is a Wasserstein barycenter
for the measures µ1, . . . , µJ ∈ P2(E ) endowed with weights
λ1, . . . , λJ , where λj ≥ 0, ≤ j ≤ J, and

∑J
j=1 λj = 1, if µ

minimizes

E (ν) =
J∑

j=1

λjW
2
2 (ν, µj).

We will write

µ = Bar((µj , λj)1≤j≤J).
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Wasserstein

Theorem

Let J ≥ 1, and for every n ≥ 0, let µn
j ∈ P2(Rd), 1 ≤ j ≤ J, be

measures absolutely continuous w.r.t. Lebesgue measure. Let
λ1, . . . , λJ be positive weights. Let

µ̂n = Bar((µn
j , λj)1≤j≤J).

Let µ1, . . . , µJ ∈ P2(Rd) be absolutely continuous w.r.t. Lebesgue
measure, and let

µ∗ = Bar((µj , λj)1≤j≤J).

Assume that for 1 ≤ j ≤ J, W2(µn
j , µj)→ 0 for 1 ≤ j ≤ J, then

W2(µ̂n, µ∗)→ 0.
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Consistency of Wasserstein Barycenter

Theorem

Assume that (Ti )i∈I is an admissible family of deformations on a
domain Ω ⊂ Rn, and let µ ∈ P2(Ω), µ << λ. Let µj = (Tj)#µ.
The following holds :

IB((µj , λj)1≤j≤J) = (
J∑

j=1

λjTj)#µ.

Let γε denote a N (0, ε) measure. Set

µ̂n
j = µn

j ∗ γ1/n.

Set µ̂B = Bar(µ̂n
j ,

1
J ). As n→ +∞, we have

µ̂n
B → µB .

in W2 distance
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PCA Analysis

µB is a suitable mean of the data

Compute the distance with respect to this mean (i.e a way to
center the data)

Show on the paper ....
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