
From inuene diagrams to multioperator luster DAGs
C�edri PraletLAAS-CNRSToulouse, Frane G�erard VerfaillieONERAToulouse, Frane Thomas ShiexINRACastanet Tolosan, FraneAbstratThere exist several arhitetures to solve in-uene diagrams using loal omputations,suh as the Shenoy-Shafer, the HUGIN, orthe Lazy Propagation arhitetures. They allextend usual variable elimination algorithmsthanks to the use of so-alled \potentials".In this paper, we introdue a new arhite-ture, alled the Multi-operator Cluster DAGarhiteture, whih an produe deomposi-tions with an improved onstrained indued-width, and therefore indue potentially expo-nential gains. Its priniple is to bene�t fromthe omposite nature of inuene diagrams,instead of using uniform potentials, in orderto better analyze the problem struture.1 INTRODUCTIONSine the �rst algorithms based on deision trees orar-reversal operations [Shahter, 1986℄, several exatmethods have been proposed to solve inuene dia-grams using loal omputations, suh as the ones basedon the Shenoy-Shafer, the HUGIN, or the Lazy Propa-gation arhitetures [Shenoy, 1992; Jensen et al., 1994;Madsen and Jensen, 1999℄. These methods have su-eeded in adapting lassial variable elimination teh-niques (whih are basially designed to ompute onetype of marginalization on a ombination of loalfuntions with only one type of ombination opera-tor), in order to handle the multiple types of infor-mation (probabilities and utilities), the multiple typesof marginalizations (sum and max), and the multipletypes of ombination (� for probabilities, + for utili-ties) involved in an inuene diagram. The key meh-anism used for suh an extension onsists in using el-ements known as potentials [Ndilikilikesha, 1994℄.In this paper, we de�ne a new arhiteture, alledthe Multi-operator Cluster DAG (MCDAG) arhite-

ture, whih does not use potentials, but still bene-�ts from variable elimination. Compared to existingshemes, MCDAGs atively exploit the omposite na-ture of inuene diagrams. We �rst present the poten-tial approah and motivate the need for a new arhi-teture (Setion 2). Then, MCDAGs are introdued(Setion 3) and a variable elimination algorithm isde�ned (Setion 4). Finally, this work is omparedwith existing approahes (Setion 5) and extended toother frameworks (Setion 6). The proofs are availablein [Pralet et al., 2006℄.2 MOTIVATIONSNotations and de�nitions An inuene dia-gram [Howard and Matheson, 1984℄ is a ompositegraphial model de�ned on three sets of variables orga-nized in a Direted Ayli Graph (DAG) G: (1) a setC of hane variables x 2 C, for eah of whih a ondi-tional probability distribution Px j pa(x) on x given itsparents in G is spei�ed; (2) a set D = fD1; : : : ; Dng(indies represent the order in whih deisions aremade) of deision variables x 2 D, for eah of whihpa(x) is the set of variables observed before deisionx is made; (3) a set � of utility variables u 2 �, eahof whih is assoiated with a utility funtion Upa(u) onpa(u) (and utility variables are leaves in the DAG).The set of onditional probability distributions (onefor eah x 2 C) is denoted P and the set of utilityfuntions (one for eah u 2 �) is denoted U . Eahfuntion � 2 P [ U holds on a set of variables s(�)alled its sope, and is onsequently alled a sopedfuntion (s(Px j pa(x)) = fxg[ pa(x) and s(Upa(u)) =pa(u)). The set of hane variables observed before the�rst deision is denoted I0, the set of hane variablesobserved between deisions Dk and Dk+1 is denotedIk, and the set of hane variables unobserved beforethe last deision is denoted In. We use dom(x) todenote the domain of a variable x 2 C [ D, and byextension, for W � C [D, dom(W ) =Qx2W dom(x).



The usual problem assoiated with an inuene dia-gram is to �nd deision rules maximizing the expetedutility (a deision rule for a deision Dk is a funtionassoiating a value in dom(Dk) with any assignmentof the variables observed before making deision Dk)As shown in [Jensen et al., 1994℄, this is equivalent toomputing optimal deision rules for the quantityXI0 maxD1 : : :XIn�1 maxDn XIn   YPi2P Pi!� XUi2U Ui!! (1)2.1 THE POTENTIAL APPROACHWith this approah, Equation 1 is reformulated usingso-alled potentials in order to use only one ombina-tion and one marginalization operator. A potentialon a set of variables W is a pair �W = (pW ; uW ),where pW and uW are respetively a positive real fun-tion and a real funtion, whose sopes are inluded inW . The initial onditional probability distributionsPi 2 P are transformed into potentials (Pi; 0), whereasthe initial utility funtions Ui 2 U are transformed intopotentials (1; Ui). On these potentials, a ombinationoperation 
 and a marginalization (or elimination)operation # are de�ned:� the ombination of �W1 = (pW1 ; uW1) and �W2 =(pW2 ; uW2) is the potential on W1 [W2 given by�W1 
 �W2 = (pW1 � pW2 ; uW1 + uW2);� the marginalization of �W = (pW ; uW ) ontoW1 �C equals �#W1W = �PW�W1 pW ; PW�W1 pW uWPW�W1 pW �(with the onvention 0=0 = 0), whereas themarginalization of �W = (pW ; uW ) onto W1 � Dis given by �#W1W = (pW ;maxW1 uW ).Solving the problem assoiated with an inu-ene diagram is then equivalent to omputingQ =  �� � ����C[D#In�#Dn�#In�1 � � ��#D1!#I0 , where�C[D = (
Pi2P (Pi; 0)) 
 (
Ui2U (1; Ui)) is the om-bination of the initial potentials. As 
 and # satisfythe Shenoy-Shafer axioms de�ned in [Shenoy, 1991℄,Q an be omputed using usual variable eliminationalgorithms [Jensen et al., 1994℄. This explains whypotentials are used by existing arhitetures for loalomputations on inuene diagrams: Shenoy-Shafer,HUGIN, or Lazy Propagation (LP).12.2 QUANTIFYING THE COMPLEXITYIn the ase of inuene diagrams, the alternation ofsum and max marginalizations, whih do not gener-1The LP arhiteture atually uses potentials de�ned aspairs of set of funtions (instead of pairs of funtions).

ally ommute, prevents from eliminating variables inany order. The omplexity an then be quanti�ed us-ing the onstrained indued-width [Jensen et al., 1994;Park and Darwihe, 2004℄ (instead of the indued-width [Dehter and El Fattah, 2001℄).De�nition 1. Let G = (VG; HG) be a hypergraph2and let � be a partial order on VG. The onstrainedindued-width of G with onstraints on the eliminationorder given by � (\x � y" stands for \y must be elim-inated before x") is a parameter denoted wG(�). It isde�ned as wG(�) = mino2lin(�) wG(o), lin(�) beingthe set of linearizations of � to a total order on VGand wG(o) being the indued-width of G for the elim-ination order o (i.e. the size of the largest hyperedgereated when eliminating variables in the order givenby o).The onstrained indued-width an be used to give anupper bound on the omplexity of existing algorithmswhih use potentials. Let Gp = (C [ D; fs(Pi)jPi 2Pg [ fs(Ui)jUi 2 Ug) be the hypergraph orrespond-ing to the \untyped" inuene diagram. Let �p be thepartial order de�ned by I0 �p D1, (Ik 6= ;)! (Dk �pIk �p Dk+1), andDn �p In. Finally, let d be the max-imum size of the variables domains. Then, with lassi-al approahes based on potentials and strong juntiontrees [Jensen et al., 1994℄, whih are juntion trees withonstraints on the marginalization order, the theoreti-al omplexity is O(jP [U j � d1+wGp (�p)) (the numberof elements of a �nite set E is denoted jEj).2.3 DECREASING THE CONSTRAINEDINDUCED-WIDTHThe onstrained-indued width is a guideline to showhow the omplexity an be dereased. In this dire-tion, one an work on the two parameters on whih itdepends: the partial order �, and the hypergraph G.Weakening the partial order �Proposition 1. Let G = (VG; HG) be a hypergraphand let �1, �2 be two partial orders on VG suh that8(x; y) 2 VG�VG; (x �2 y)! (x �1 y) (�2 is weakerthan �1). Then, wG(�1) � wG(�2).Proposition 1 means that if one weakens �, i.e. if onereveals some extra freedoms in the elimination order(e.g. by proving that some marginalizations with sumand max an ommute), then the theoretial omplex-ity may derease. Though suh a tehnique is knownto be useless in ontexts like Maximum A Posteriorihypothesis [Park and Darwihe, 2004℄, where there isonly one alternation of max and sum marginalizations,2This means that VG is the set of variables (or verties),and HG is a set of hyperedges on VG, i.e. a subset of 2VG .



it an lead to an exponential gain as soon as there aremore than two levels of alternation.Indeed, assume that one wants to omputemaxx1;:::;xnPymaxxn+1 Py � �Ux1;y +Pi2[1;n℄ Uxi;xn+1�.On one hand, using �1 de�ned by fx1; : : : ; xng �1y �1 xn+1 provides us with the onstrained indued-width wG(�1) = n, sine xn+1 is then neessarilyeliminated �rst. On the other hand, the sopes ofthe funtions involved enable us to infer that with �2de�ned by x1 �2 y, one is guaranteed to ompute thesame value, sine y is \linked" only with x1. The on-strained indued-width is then wG(�2) = 1, e.g. withthe elimination order x1 � y � xn+1 � xn � : : : � x2.Therefore, the theoretial omplexity dereases fromO((n + 2) � dn+1) to O((n + 2) � d2), thanks to theweakening of the partial order (the (n + 2) fatororresponds to the number of soped funtions).Working on the hypergraph The seondpossible mehanism is to work on the hyper-graph G, either by eliminating so-alled barrenvariables (omputing Px Px j pa(x) is useless be-ause of normalization), or by better deomposingthe problem. To illustrate the latter, assumethat one wants to ompute maxx1;:::;xnPy Py �(Uy;x1 + : : :+ Uy;xn). The basi hypergraph G1 =(fx1; : : : ; xn; yg; ffy; x1g; : : : ; fy; xngg), together with�1 de�ned by fx1; : : : ; xng �1 y, gives a theoretialomplexity O((n+1) �dwG1 (�1)+1) = O((n+1) �dn+1).However, one an writemaxx1;:::;xnPy Py � (Uy;x1 + : : :+ Uy;xn)= (maxx1Py Py � Uy;x1) + : : :+ (maxxnPy Py � Uy;xn)Thus, an impliit dupliation of y makes the omplex-ity derease to O((n + 1)d2) = O((n + 1)d1+wG2 (�2)),where G2 is the hypergraph de�ned by the vari-ables fx1; : : : ; xn; y(1); : : : ; y(n)g and by the hyperedgesffx1; y(1)g; : : : ; fxn; y(n)gg, and where �2 is given byx1 �2 y(1), . . . , xn �2 y(n). This method, whih usesthe propertyPS (U1 + U2) = (PS U1)+(PS U2), du-pliates variables \quanti�ed" with P, so that om-putations beome more loal. Proposition 2 shows thepossible exponential gain obtained by dupliation.Proposition 2. Let �x;Si be a soped funtion ofsope fxg [ Si for any i 2 [1;m℄. The raw om-putation of Px (�x;S1 + : : :+ �x;Sm) always requiresmore sums than the raw omputation of (Px �x;S1) +: : : + (Px �x;Sm). Moreover, the raw omputationof Px (�x;S1 + : : :+ �x;Sm) results in a omplexityO(m � d1+jS1[:::[Smj), whereas the raw omputation ofthe m quantities in the set fPx �x;Si j 1 � i � mg re-sults in a omplexity O(m � d1+maxi2[1;m℄ jSij).

Why not use potentials? Though weakening theonstraints on the elimination order ould be donewith potentials, the dupliation mehanism annotbe used if potentials are. Indeed, one annot write(�W1 
 �W2 )#W3 = (�#W3W1 ) 
 (�#W3W2 ) even if W3 �C. Moreover, the dupliation mehanism itself mayweaken some onstraints on the elimination order.Consequently, we introdue a new arhiteture whihdoes not use potentials to solve inuene diagrams us-ing loal omputations. This arhiteture is alled theMulti-operator Cluster DAG (MCDAG) arhiteture.3 THE MCDAG ARCHITECTURE3.1 MACROSTRUCTURING ANINFLUENCE DIAGRAMThe �rst step to build the MCDAG arhiteture is toanalyze the marostruture of the inuene diagram,by deteting the possible reordering freedoms in theelimination order, while using the dupliation teh-nique and the normalization onditions on onditionalprobability distributions. This marostruture is rep-resented with a DAG of omputation nodes.De�nition 2. A omputation node n is:� either a soped fontion � in P [ U ; in this ase,the value of n is given by val(n) = �, and its sopeis given by s(n) = s(�);� or a triple (Sov;~; N), where Sov is a se-quene of operator-variables pairs, ~ is an asso-iative and ommutative operator with an iden-tity, and where N is a set of omputation nodes;in this ase, the value of n is given by val(n) =Sov (~n02N val(n0)), and its sope is given bys(n) = ([n02N s(n0))� fx j opx 2 Sovg.Informally, a omputation node (Sov;~; N) de�nes asequene of marginalizations on a ombination of om-putation nodes with a spei� operator. It an berepresented as in Figure 1. Given a set of omputa-tion nodes N , we de�ne N+x (resp N�x) as the setof nodes of N whose sope ontains x (resp. doesnot ontain x): N+x = fn 2 N jx 2 s(n)g (resp.N�x = fn 2 N jx =2 s(n)g).
nqn2n1 �k�1�2~SovFigure 1: A omputation node (Sov;~; N), whereN \ (P [ U) = f�1; : : : ; �kg and N � (P [ U) =fn1; : : : ; nqg.



3.1.1 From inuene diagrams toomputation nodesWithout loss of generality, we assume that U 6= ; (ifthis is not the ase, one an add U0 = 1 to U).Proposition 3. Let Sov0 be the initial sequenePI0 maxD1 : : :PIn�1 maxDnPIn of operator-variables pairs de�ned by the inuene diagram. Thevalue of Equation 1 is equal to the value of the ompu-tation node n0 = (Sov0;+; f(;;�; P [fUig); Ui 2 Ug).For the inuene diagram assoiated with the ompu-tation of maxdPr2;r1 Pr1 �Pr2jr1 �(Ud;r1+Ud;r2+Ud), n0orresponds to the �rst omputation node in Figure 2.3.1.2 Marostruturing the initial nodeIn order to exhibit the marostruture of the inuenediagram, we analyze the sequene of omputations per-formed by n0. To do so, we suessively onsider theeliminations in Sov0 from the right to the left and usethree types of rewriting rules, preserving nodes val-ues, to make the marostruture expliit: (1) deom-position rules, whih deompose the struture usingnamely the dupliation tehnique; (2) reompositionrules, whih reveal freedoms in the elimination order;(3) simpli�ation rules, whih remove useless ompu-tations from the arhiteture, by using normalizationonditions. Rewriting rules are presented �rst for thease of sum-marginalizations, and then for the ase ofmax-marginalizations. A rewriting rule may be pre-eded by some preonditions for it to be appliable.Rewriting rules for Px When a sum-marginalization must be performed, a deompositionrule D�, a reomposition rule R�, and two simpli�a-tion rules S1� and S2� are used. These are illustrated inFigure 2, whih orresponds to the inuene diagramexample introdued in 3.1.1.D� (Sov:Px;+; f(;;�; N) ; N 2 Ng) �Sov;+;��;;�; N�x [ ��Px;�; N+x�	� ; N 2 N	�R� [ Pre.: (S0 \ (S [ s(N1)) = ;) ^ (N1 \N2 = ;)℄(PS ;�; N1 [ f(PS0 ;�; N2)g) (PS[S0 ;�; N1 [N2)S1� [ Pre.: x =2 S [ s(N) ℄(Pfxg[S ;�; N [ �Px j pa(x)	) (PS ;�; N)S2� �;;�; N [ ��P;;�; ;�	�  (;;�; N)Example In the example of Figure 2, the �rst ruleto be applied is the deomposition rule D�, whih
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Figure 2: Appliation of rewriting rules for P.treats the operator-variable pair Pr1 .3 Suh a ruleuses the dupliation mehanism and the distributivityproperty of � over +. It provides us with a DAG ofomputation nodes. It is a DAG sine ommon om-putation nodes are merged (and it is not hard to de-tet suh nodes when applying the rules). Then, D�an be applied again for Pr2 . One an infer fromthe obtained arhiteture that there is no reason forr1 to be eliminated before r2. Using the reomposi-tion rule R� makes this lear in the struture. Basi-ally, R� uses the distributivity of � over +. Last,applying S1� and S2�, whih use the normalization ofonditional probability distributions, simpli�es somenodes in the arhiteture. In the end, omputations3For the example needs, r1 is eliminated before r2, evenif the opposite would be more eÆient.



an be made by onsidering at the most two variablessimultaneously (if one eliminates r1 �rst in the node(Pr1;r2 ;�; fPr1 ; Pr2jr1 ; Ud;r2)), whereas with a poten-tial approah, onsidering three variables simultane-ously would have been neessary (beause r1 would beinvolved in the potentials (Pr1 ; 0); (Pr2jr1 ; 0); (1; Ud;r1)if eliminated �rst, and r2 would be involved in thepotentials (Pr2jr1 ; 0); (1; Ud;r2) if eliminated �rst).Rewriting rules for maxx When a max-marginalization must be performed, a deompo-sition rule Dmax and a reomposition rule Rmaxare used (there is no simpli�ation rule sine thereis no normalization ondition to use for deisionvariables). These rules, whih are a bit moreomplex than the previous ones, are illustrated inFigure 3, whih orresponds to the inuene diagrammaxd1Pr2 maxd2Pr1 maxd3 Pr1 � Pr2jr1 � (Ud1 +Ud2;d3 + Ur2;d1;d3 + Ur1;d2).Dmax [ Pre.: 8N 2 N+x 8n 2 N�x; val(n) � 0 ℄(Sov:maxx;+; f(;;�; N) ; N 2 Ng) 8<: (Sov;+; f(;;�; N) ; N 2 Ng) if N+x = ;(Sov;+; f(;;�; N) ; N 2 N�xg[ f(;;�; N1 [ f(maxx;+; N2)g)g) otherwisewhere � N1 = \N2N+xN�xN2 = f(;;�; N �N1) ; N 2 N+xgRmax [ Pre.: (S0\(S[s(N1)[s(N2)) = ;)^(8N3 2N; N2 \N3 = ;) ^ (8n 2 N2; val(n) � 0) ℄(maxS ;+; N1[f(;;�; N2 [ f(maxS0 ;+; f(;;�; N3); N3 2 Ng)g)g) (maxS[S0 ;+; N1 [ f(;;�; N2 [N3) ; N3 2 Ng)Example In the example of Figure 3, one �rst ap-plies the deomposition ruleDmax, in order to treat theoperator-variable pair maxd3 . Suh a rule uses �rst themonotoniity of + (max(a+ b; a+ ) = a+max(b; )),and then both the distributivity of � over + andthe monotoniity of � (so as to write things likemaxd3((Pr1 �Pr2jr1 �Ud2;d3)+ (Pr1 �Pr2jr1 �Ur2;d1;d3)) =Pr1 �Pr2jr1 �maxd3(Ud2;d3+Ur2;d1;d3)). Then, D� an beused forPr1 , and Dmax an be used for maxd2 . Afterthose steps, the reomposition rule Rmax, whih usesthe monotoniities of � and +, reveals that the elimi-nation order between d2 and d3 is atually free. Thiswas not obvious from the initial Sov sequene. Theapproah using potentials is unable to make suh free-doms expliit, whih may indue exponential inreasein omplexity as shown in 2.3.Order of appliation of the rules A haoti iter-ation of the rules does not onverge, sine e.g., rules
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Figure 3: Appliation of rewriting rules for max(the appliation of the rules may reate nodes look-ing like (;;�; fng), whih perform no omputations;these nodes an be eliminated at a �nal step).Dmax and Rmax may be in�nitely alternately applied.As a result, we speify an order in whih rules anbe used to onverge to a unique �nal DAG of om-putation nodes (we have impliitly used this order inthe previous examples). We suessively onsider eahoperator-variable pair of the initial sequene Sov0 fromthe right to the left (marginalizations like Px1;:::;xn



an be split into Px1 � � �Pxn).If the rightmost marginalization in the Sov sequene ofthe root node is Px, then rule D� is applied one. Itreates new grandhildren nodes for the root, for eahof whih, we try to apply rule R� in order to revealfreedoms in the elimination order. If R� is applied,this reates new omputation nodes, on eah of whihsimpli�ation rules S1� and then S2� are applied (untilthey annot be applied anymore).If the rightmost marginalization in the Sov sequeneof the root node is maxx, then rule Dmax is appliedone. This reates a new hild and a new grandhildfor the root. For the reated grandhild, we try toweaken onstraints on the elimination order using ruleRmax.The soundness of the marostruture obtained is pro-vided by the soundness of the rewriting rules:Proposition 4. Rewriting rules D�, R�, S1�, S2�,Dmax and Rmax are sound, i.e. for any of theserules n1  n2, if the preonditions are satis�ed, thenval(n1) = val(n2) holds. Moreover, rules Dmax andRmax leave the set of optimal deision rules unhanged.Complexity issues An arhiteture is usable onlyif it is reasonable to build it. Proposition 5 makesit possible to save some tests during the appliationof the rewriting rules, and Proposition 6 gives upperbounds on the omplexity.Proposition 5. Exept for S1�, the preonditions ofthe rewriting rules are always satis�ed.Proposition 6. The time and spae omplexity of theappliation of the rewriting rules are O(jU j �(1+ jP j)2)and O(jU j � (1 + jP j)) respetively.3.2 TOWARDS MCDAGSThe rewriting rules enable us to transform the ini-tial multi-operator omputation node n0 into a DAGof mono-operator omputation nodes looking like(maxS ;+; N), (PS ;�; N), (;;�; N), or � 2 P [ U .For nodes (maxS ;+; N) or (PS ;�; N), it is time touse freedoms in the elimination order. To do so, usualjuntion tree onstrution tehniques an be used,sine on one hand, (R;max;+) and (R;+;�) are om-mutative semirings, and sine on the other hand, thereare no onstraints on the elimination order inside eahof these nodes (the only slight di�erene with usualjuntion trees is that only a subset of the variablesinvolved in a omputation node may have to be elim-inated, but it is quite easy to ope with this).To obtain a good deomposition for nodes n like(maxS ;+; N) or (PS ;�; N), one an build a jun-tion tree to eliminate S from the hypergraph G =

(s(N); fs(n0) jn0 2 Ng). The optimal indued-widthwhih an be obtained for n is w(n) = wG;S , theindued-width of G for the elimination of the vari-ables in S.4 The indued-width of the MCDAG ar-hiteture is then de�ned by wmdag = maxn2N w(n),where N is the set of nodes looking like (maxS ;+; N)or (PS ;�; N).After the deomposition of eah mono-operator om-putation node, one obtains a Multi-operator Clus-ter DAG. The de�nition below is more general thanneeded for the inuene diagram ase, but suh ageneriity is useful for the disussion in Setion 6.De�nition 3. A Multi-operator Cluster DAG is aDAG where every vertex  (alled a luster) is labelledwith four elements: a set of variables V (), a set ofsoped funtions 	() taking values in a set E, a setof son lusters Sons(), and a ouple (�;
) of op-erators on E suh that (E;�;
) is a ommutativesemiring.De�nition 4. The value of a luster  of a MCDAGis given byval() = �V ()�V (pa())  
 2	() !
  
s2Sons() val(s)!!The value of a MCDAG is the value of its root node.Thanks to Proposition 7, working on MCDAGs is suf-�ient to solve inuene diagrams.Proposition 7. The value of the MCDAG obtainedafter having deomposed the marostruture is equalto the maximal expeted utility. Moreover, for any de-ision variable Dk, the set of optimal deision rulesfor Dk in the inuene diagram is equal to the set ofoptimal deision rules for Dk in the MCDAG.3.3 MERGING SOME COMPUTATIONSThere may exist MCDAG lusters performing exatlythe same omputations, even if the omputation nodesthey ome from are distint. For instane, a omputa-tion node n1 = (Px;y;�; fPx; Pyjx; Uy;z) may be de-omposed into lusters 1 = (fxg; fPx; Pyjxg; ;; (+;�))4For nodes like (maxS ;+; N), whih atually alwayslook like (maxS;+; f(;;�; N 0); N 0 2 Ng), better deompo-sitions an be obtained by onsidering another hypergraph.In fat, for eah N 0 2 N, there exists a unique node n 2 N 0,denoted N 0[u℄, suh that n or its hildren involve at leastone utility funtion. It is then better to onsider thehypergraph G0 = (s(N); fs(N 0[u℄) jN 0 2 Ng). In-tuitively, this enables to �gure out that e.g., if oneeliminates x �rst in a node like (maxxy;+; N) =(maxxy;+; f(;;�; Uy;z); (;;�; fnz ; Ux;yg); (;;�; fnz; Uxg)g),only two variables (x and y) must be onsidered, sine nzis a fator of both Ux;y and Ux. We do not further developthis tehnial point here.



and 01 = (fyg; fUy;zg; f01g; (+;�)). A omputationnode n2 = (Px;y;�; fPx; Pyjx; Uy;t) may be deom-posed into lusters 2 = (fxg; fPx; Pyjxg; ;; (+;�))and 02 = (fyg; fUy;tg; f02g; (+;�)). As 1 = 2, someomputations an be saved by merging lusters 1 and2 in the MCDAG. Deteting ommon lusters is notas easy as deteting ommon omputation nodes.3.4 SUMMARYThere are three steps to build the arhiteture. First,the initial multi-operator omputation node is trans-formed into a DAG of mono-operator omputationnodes (via sound rewriting rules). Then, eah ompu-tation node is deomposed with a usual juntion treeontrution. It provides us with a MCDAG, in whihsome lusters an �nally be merged.4 VARIABLE ELIMINATIONALGORITHM ON MCDAGsDe�ning a variable elimination algorithm on aMCDAG is simple. The only di�erene with existingvariable elimination algorithms is the multi-operatoraspet for both the marginalization and the om-bination operators used. As in usual arhitetures,nodes send messages to their parents. Whenevera node  has reeived all messages val(s) fromits hildren,  an ompute its own value val() =�V ()�V (pa()) ��
 2	()  �
 �
s2Sons() val(s)��and send it to its parents. As a result, messages gofrom leaves to root, and the value omputed by theroot is the maximal expeted utility.5 COMPARISON WITH EXISTINGARCHITECTURESCompared to existing arhitetures on inuene dia-grams, MCDAGs an be exponentially more eÆientby strongly dereasing the onstrained indued-width(f Setion 2.3), thanks to (1) the dupliation teh-nique, (2) the analysis of extra reordering freedoms,and (3) the use of normalizations onditions. One anompare these three points with existing works:� The idea behind dupliation is to use all thedeompositions (independenes) available in aninuene diagram. An inuene diagram atu-ally expresses independenes on one hand on theglobal probability distribution P (C jD), and onthe other hand on the global utility funtion.MCDAGs separately use these two kinds of in-dependenes, whereas a potential approah uses akind of weaker \mixed" independene relation.

� Weakening the onstraints on the elimination or-der an be linked with the usual notion of rel-evant information for deision variables. WithMCDAGs, this notion is not used only for de-ision rules oniseness reasons: it is also usedto reveal reordering freedoms, whih an dereasethe temporal omplexity. Note that some of theordering freedom here is obtained by synergismwith the dupliation, whih annot be used withpotentials.� Thanks to simpli�ation rule S1�, the normaliza-tion onditions enable us not only to avoid use-less omputations, but also to improve the ar-hiteture struture (S1� may indiretly weakensome onstraints on the elimination order). Thisis stronger than Lazy Propagation arhite-tures [Madsen and Jensen, 1999℄, whih use the�rst point only, during the message passing phase.Note that with MCDAGs, one the DAG of om-putation nodes is built, there are no more normal-ization onditions to be used.In the end, the MCDAG arhiteture is always betterthan existing shemes in terms of onstrained indued-width, as Theorem 1 shows.Theorem 1. Let wGp(�p) be the onstrained indued-width assoiated with the potential approah (f Se-tion 2.2) and let wmdag be the indued-width as-soiated with the MCDAG (f Setion 3.2). Then,wmdag � wGp(�p).Last, the MCDAG arhiteture ontradits a ommonbelief that using potentials and division operations isneessary to solve inuene diagrams with variableelimination algorithms.6 POSSIBLE EXTENSIONSThe MCDAG arhiteture has atually been devel-oped in a generi algebrai framework whih sub-sumes inuene diagrams. This framework, alledthe Plausibility-Feasibility-Utility networks (PFUs)framework [Pralet et al., 2005℄, is a generi frame-work for sequential deision making with possibly un-ertainties (plausibility part), assymmetries in the de-ision proess (feasibility part), and utilities. PFUssubsume formalisms from quanti�ed boolean formulasor Bayesian networks to stohasti onstraint satisfa-tion problems, and even de�ne new frameworks likepossibilisti inuene diagrams. This subsumption ispossible beause the questions raised in many exist-ing formalisms an often be redued to a sequene ofmarginalizations (with possibly multiple marginaliza-tion operators) on a ombination of soped funtions



(with possibly multiple ombination operators). Suhsequenes, a partiular ase of whih is Equation 1, anbe strutured using rewriting rules as the ones previ-ously presented, whih atively exploit the algebraiproperties of the operators at stake.Thanks to the generi nature of PFUs, extending theprevious work to a possibilisti version of inuene dia-grams is trivial. If one uses the possibilisti pessimistiexpeted utility [Dubois and Prade, 1995℄, the optimalutility an be de�ned by (the probability distributionsPi beome possibility distributions, and the utilitiesUi beome preferene degrees in [0; 1℄):minI0 maxD1 : : :minIn�1maxDn minIn �max�maxPi2P (1� Pi); minUi2U U��The above sequene of marginalizations an be stru-tured and omputed via MCDAGs. The only dif-ferene is that � beomes max, and P and + be-ome min in the rewriting rules. The omputationnodes then look like (min;max; N), (max;min; N),or (;;max; N), and the lusters in the MCDAG use(�;
) = (min;max), (�;
) = (max;min), or(�;
) = (;;max).7 CONCLUSIONTo solve inuene diagrams, using potentials allowsone to reuse existing variable elimination shemes, butmay be exponentially sub-optimal. The key pointis that taking advantage of the omposite natureof graphial models suh as inuene diagrams, andnamely of the algebrai properties of the eliminationand ombination operators at stake, is essential to ob-tain an eÆient arhiteture for loal omputations.To do so, a solution is to design a kind of ompos-ite arhiteture involving several elimination operatorsand several ombination operators. The result is theMCDAG arhiteture, whih guarantees a derease inthe onstrained indued-width.The authors are urrently working to obtain moreformal and experimental results on MCDAGs in theontext of the PFU framework (the onstrution ofMCDAG arhitetures is urrently implemented). Fu-ture diretions ould be �rst to try and adapt theMCDAG arhiteture, and namely the dupliationmehanism, to the ase of Limited Memory InueneDiagrams (LIMIDs) [Lauritzen and Nilsson, 2001℄, andthen to use the MCDAG arhiteture in the ontext ofan approximate resolution.Referenes[Dehter and El Fattah, 2001℄ R. Dehter and Y. ElFattah. Topologial parameters for time-spae
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