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eAbstra
tThere exist several ar
hite
tures to solve in-
uen
e diagrams using lo
al 
omputations,su
h as the Shenoy-Shafer, the HUGIN, orthe Lazy Propagation ar
hite
tures. They allextend usual variable elimination algorithmsthanks to the use of so-
alled \potentials".In this paper, we introdu
e a new ar
hite
-ture, 
alled the Multi-operator Cluster DAGar
hite
ture, whi
h 
an produ
e de
omposi-tions with an improved 
onstrained indu
ed-width, and therefore indu
e potentially expo-nential gains. Its prin
iple is to bene�t fromthe 
omposite nature of in
uen
e diagrams,instead of using uniform potentials, in orderto better analyze the problem stru
ture.1 INTRODUCTIONSin
e the �rst algorithms based on de
ision trees orar
-reversal operations [Sha
hter, 1986℄, several exa
tmethods have been proposed to solve in
uen
e dia-grams using lo
al 
omputations, su
h as the ones basedon the Shenoy-Shafer, the HUGIN, or the Lazy Propa-gation ar
hite
tures [Shenoy, 1992; Jensen et al., 1994;Madsen and Jensen, 1999℄. These methods have su
-
eeded in adapting 
lassi
al variable elimination te
h-niques (whi
h are basi
ally designed to 
ompute onetype of marginalization on a 
ombination of lo
alfun
tions with only one type of 
ombination opera-tor), in order to handle the multiple types of infor-mation (probabilities and utilities), the multiple typesof marginalizations (sum and max), and the multipletypes of 
ombination (� for probabilities, + for utili-ties) involved in an in
uen
e diagram. The key me
h-anism used for su
h an extension 
onsists in using el-ements known as potentials [Ndilikilikesha, 1994℄.In this paper, we de�ne a new ar
hite
ture, 
alledthe Multi-operator Cluster DAG (MCDAG) ar
hite
-

ture, whi
h does not use potentials, but still bene-�ts from variable elimination. Compared to existings
hemes, MCDAGs a
tively exploit the 
omposite na-ture of in
uen
e diagrams. We �rst present the poten-tial approa
h and motivate the need for a new ar
hi-te
ture (Se
tion 2). Then, MCDAGs are introdu
ed(Se
tion 3) and a variable elimination algorithm isde�ned (Se
tion 4). Finally, this work is 
omparedwith existing approa
hes (Se
tion 5) and extended toother frameworks (Se
tion 6). The proofs are availablein [Pralet et al., 2006℄.2 MOTIVATIONSNotations and de�nitions An in
uen
e dia-gram [Howard and Matheson, 1984℄ is a 
ompositegraphi
al model de�ned on three sets of variables orga-nized in a Dire
ted A
y
li
 Graph (DAG) G: (1) a setC of 
han
e variables x 2 C, for ea
h of whi
h a 
ondi-tional probability distribution Px j pa(x) on x given itsparents in G is spe
i�ed; (2) a set D = fD1; : : : ; Dng(indi
es represent the order in whi
h de
isions aremade) of de
ision variables x 2 D, for ea
h of whi
hpa(x) is the set of variables observed before de
isionx is made; (3) a set � of utility variables u 2 �, ea
hof whi
h is asso
iated with a utility fun
tion Upa(u) onpa(u) (and utility variables are leaves in the DAG).The set of 
onditional probability distributions (onefor ea
h x 2 C) is denoted P and the set of utilityfun
tions (one for ea
h u 2 �) is denoted U . Ea
hfun
tion � 2 P [ U holds on a set of variables s
(�)
alled its s
ope, and is 
onsequently 
alled a s
opedfun
tion (s
(Px j pa(x)) = fxg[ pa(x) and s
(Upa(u)) =pa(u)). The set of 
han
e variables observed before the�rst de
ision is denoted I0, the set of 
han
e variablesobserved between de
isions Dk and Dk+1 is denotedIk, and the set of 
han
e variables unobserved beforethe last de
ision is denoted In. We use dom(x) todenote the domain of a variable x 2 C [ D, and byextension, for W � C [D, dom(W ) =Qx2W dom(x).



The usual problem asso
iated with an in
uen
e dia-gram is to �nd de
ision rules maximizing the expe
tedutility (a de
ision rule for a de
ision Dk is a fun
tionasso
iating a value in dom(Dk) with any assignmentof the variables observed before making de
ision Dk)As shown in [Jensen et al., 1994℄, this is equivalent to
omputing optimal de
ision rules for the quantityXI0 maxD1 : : :XIn�1 maxDn XIn   YPi2P Pi!� XUi2U Ui!! (1)2.1 THE POTENTIAL APPROACHWith this approa
h, Equation 1 is reformulated usingso-
alled potentials in order to use only one 
ombina-tion and one marginalization operator. A potentialon a set of variables W is a pair �W = (pW ; uW ),where pW and uW are respe
tively a positive real fun
-tion and a real fun
tion, whose s
opes are in
luded inW . The initial 
onditional probability distributionsPi 2 P are transformed into potentials (Pi; 0), whereasthe initial utility fun
tions Ui 2 U are transformed intopotentials (1; Ui). On these potentials, a 
ombinationoperation 
 and a marginalization (or elimination)operation # are de�ned:� the 
ombination of �W1 = (pW1 ; uW1) and �W2 =(pW2 ; uW2) is the potential on W1 [W2 given by�W1 
 �W2 = (pW1 � pW2 ; uW1 + uW2);� the marginalization of �W = (pW ; uW ) ontoW1 �C equals �#W1W = �PW�W1 pW ; PW�W1 pW uWPW�W1 pW �(with the 
onvention 0=0 = 0), whereas themarginalization of �W = (pW ; uW ) onto W1 � Dis given by �#W1W = (pW ;maxW1 uW ).Solving the problem asso
iated with an in
u-en
e diagram is then equivalent to 
omputingQ =  �� � ����C[D#In�#Dn�#In�1 � � ��#D1!#I0 , where�C[D = (
Pi2P (Pi; 0)) 
 (
Ui2U (1; Ui)) is the 
om-bination of the initial potentials. As 
 and # satisfythe Shenoy-Shafer axioms de�ned in [Shenoy, 1991℄,Q 
an be 
omputed using usual variable eliminationalgorithms [Jensen et al., 1994℄. This explains whypotentials are used by existing ar
hite
tures for lo
al
omputations on in
uen
e diagrams: Shenoy-Shafer,HUGIN, or Lazy Propagation (LP).12.2 QUANTIFYING THE COMPLEXITYIn the 
ase of in
uen
e diagrams, the alternation ofsum and max marginalizations, whi
h do not gener-1The LP ar
hite
ture a
tually uses potentials de�ned aspairs of set of fun
tions (instead of pairs of fun
tions).

ally 
ommute, prevents from eliminating variables inany order. The 
omplexity 
an then be quanti�ed us-ing the 
onstrained indu
ed-width [Jensen et al., 1994;Park and Darwi
he, 2004℄ (instead of the indu
ed-width [De
hter and El Fattah, 2001℄).De�nition 1. Let G = (VG; HG) be a hypergraph2and let � be a partial order on VG. The 
onstrainedindu
ed-width of G with 
onstraints on the eliminationorder given by � (\x � y" stands for \y must be elim-inated before x") is a parameter denoted wG(�). It isde�ned as wG(�) = mino2lin(�) wG(o), lin(�) beingthe set of linearizations of � to a total order on VGand wG(o) being the indu
ed-width of G for the elim-ination order o (i.e. the size of the largest hyperedge
reated when eliminating variables in the order givenby o).The 
onstrained indu
ed-width 
an be used to give anupper bound on the 
omplexity of existing algorithmswhi
h use potentials. Let Gp = (C [ D; fs
(Pi)jPi 2Pg [ fs
(Ui)jUi 2 Ug) be the hypergraph 
orrespond-ing to the \untyped" in
uen
e diagram. Let �p be thepartial order de�ned by I0 �p D1, (Ik 6= ;)! (Dk �pIk �p Dk+1), andDn �p In. Finally, let d be the max-imum size of the variables domains. Then, with 
lassi-
al approa
hes based on potentials and strong jun
tiontrees [Jensen et al., 1994℄, whi
h are jun
tion trees with
onstraints on the marginalization order, the theoreti-
al 
omplexity is O(jP [U j � d1+wGp (�p)) (the numberof elements of a �nite set E is denoted jEj).2.3 DECREASING THE CONSTRAINEDINDUCED-WIDTHThe 
onstrained-indu
ed width is a guideline to showhow the 
omplexity 
an be de
reased. In this dire
-tion, one 
an work on the two parameters on whi
h itdepends: the partial order �, and the hypergraph G.Weakening the partial order �Proposition 1. Let G = (VG; HG) be a hypergraphand let �1, �2 be two partial orders on VG su
h that8(x; y) 2 VG�VG; (x �2 y)! (x �1 y) (�2 is weakerthan �1). Then, wG(�1) � wG(�2).Proposition 1 means that if one weakens �, i.e. if onereveals some extra freedoms in the elimination order(e.g. by proving that some marginalizations with sumand max 
an 
ommute), then the theoreti
al 
omplex-ity may de
rease. Though su
h a te
hnique is knownto be useless in 
ontexts like Maximum A Posteriorihypothesis [Park and Darwi
he, 2004℄, where there isonly one alternation of max and sum marginalizations,2This means that VG is the set of variables (or verti
es),and HG is a set of hyperedges on VG, i.e. a subset of 2VG .



it 
an lead to an exponential gain as soon as there aremore than two levels of alternation.Indeed, assume that one wants to 
omputemaxx1;:::;xnPymaxxn+1 Py � �Ux1;y +Pi2[1;n℄ Uxi;xn+1�.On one hand, using �1 de�ned by fx1; : : : ; xng �1y �1 xn+1 provides us with the 
onstrained indu
ed-width wG(�1) = n, sin
e xn+1 is then ne
essarilyeliminated �rst. On the other hand, the s
opes ofthe fun
tions involved enable us to infer that with �2de�ned by x1 �2 y, one is guaranteed to 
ompute thesame value, sin
e y is \linked" only with x1. The 
on-strained indu
ed-width is then wG(�2) = 1, e.g. withthe elimination order x1 � y � xn+1 � xn � : : : � x2.Therefore, the theoreti
al 
omplexity de
reases fromO((n + 2) � dn+1) to O((n + 2) � d2), thanks to theweakening of the partial order (the (n + 2) fa
tor
orresponds to the number of s
oped fun
tions).Working on the hypergraph The se
ondpossible me
hanism is to work on the hyper-graph G, either by eliminating so-
alled barrenvariables (
omputing Px Px j pa(x) is useless be-
ause of normalization), or by better de
omposingthe problem. To illustrate the latter, assumethat one wants to 
ompute maxx1;:::;xnPy Py �(Uy;x1 + : : :+ Uy;xn). The basi
 hypergraph G1 =(fx1; : : : ; xn; yg; ffy; x1g; : : : ; fy; xngg), together with�1 de�ned by fx1; : : : ; xng �1 y, gives a theoreti
al
omplexity O((n+1) �dwG1 (�1)+1) = O((n+1) �dn+1).However, one 
an writemaxx1;:::;xnPy Py � (Uy;x1 + : : :+ Uy;xn)= (maxx1Py Py � Uy;x1) + : : :+ (maxxnPy Py � Uy;xn)Thus, an impli
it dupli
ation of y makes the 
omplex-ity de
rease to O((n + 1)d2) = O((n + 1)d1+wG2 (�2)),where G2 is the hypergraph de�ned by the vari-ables fx1; : : : ; xn; y(1); : : : ; y(n)g and by the hyperedgesffx1; y(1)g; : : : ; fxn; y(n)gg, and where �2 is given byx1 �2 y(1), . . . , xn �2 y(n). This method, whi
h usesthe propertyPS (U1 + U2) = (PS U1)+(PS U2), du-pli
ates variables \quanti�ed" with P, so that 
om-putations be
ome more lo
al. Proposition 2 shows thepossible exponential gain obtained by dupli
ation.Proposition 2. Let �x;Si be a s
oped fun
tion ofs
ope fxg [ Si for any i 2 [1;m℄. The raw 
om-putation of Px (�x;S1 + : : :+ �x;Sm) always requiresmore sums than the raw 
omputation of (Px �x;S1) +: : : + (Px �x;Sm). Moreover, the raw 
omputationof Px (�x;S1 + : : :+ �x;Sm) results in a 
omplexityO(m � d1+jS1[:::[Smj), whereas the raw 
omputation ofthe m quantities in the set fPx �x;Si j 1 � i � mg re-sults in a 
omplexity O(m � d1+maxi2[1;m℄ jSij).

Why not use potentials? Though weakening the
onstraints on the elimination order 
ould be donewith potentials, the dupli
ation me
hanism 
annotbe used if potentials are. Indeed, one 
annot write(�W1 
 �W2 )#W3 = (�#W3W1 ) 
 (�#W3W2 ) even if W3 �C. Moreover, the dupli
ation me
hanism itself mayweaken some 
onstraints on the elimination order.Consequently, we introdu
e a new ar
hite
ture whi
hdoes not use potentials to solve in
uen
e diagrams us-ing lo
al 
omputations. This ar
hite
ture is 
alled theMulti-operator Cluster DAG (MCDAG) ar
hite
ture.3 THE MCDAG ARCHITECTURE3.1 MACROSTRUCTURING ANINFLUENCE DIAGRAMThe �rst step to build the MCDAG ar
hite
ture is toanalyze the ma
rostru
ture of the in
uen
e diagram,by dete
ting the possible reordering freedoms in theelimination order, while using the dupli
ation te
h-nique and the normalization 
onditions on 
onditionalprobability distributions. This ma
rostru
ture is rep-resented with a DAG of 
omputation nodes.De�nition 2. A 
omputation node n is:� either a s
oped fon
tion � in P [ U ; in this 
ase,the value of n is given by val(n) = �, and its s
opeis given by s
(n) = s
(�);� or a triple (Sov;~; N), where Sov is a se-quen
e of operator-variables pairs, ~ is an asso-
iative and 
ommutative operator with an iden-tity, and where N is a set of 
omputation nodes;in this 
ase, the value of n is given by val(n) =Sov (~n02N val(n0)), and its s
ope is given bys
(n) = ([n02N s
(n0))� fx j opx 2 Sovg.Informally, a 
omputation node (Sov;~; N) de�nes asequen
e of marginalizations on a 
ombination of 
om-putation nodes with a spe
i�
 operator. It 
an berepresented as in Figure 1. Given a set of 
omputa-tion nodes N , we de�ne N+x (resp N�x) as the setof nodes of N whose s
ope 
ontains x (resp. doesnot 
ontain x): N+x = fn 2 N jx 2 s
(n)g (resp.N�x = fn 2 N jx =2 s
(n)g).
nqn2n1 �k�1�2~SovFigure 1: A 
omputation node (Sov;~; N), whereN \ (P [ U) = f�1; : : : ; �kg and N � (P [ U) =fn1; : : : ; nqg.



3.1.1 From in
uen
e diagrams to
omputation nodesWithout loss of generality, we assume that U 6= ; (ifthis is not the 
ase, one 
an add U0 = 1 to U).Proposition 3. Let Sov0 be the initial sequen
ePI0 maxD1 : : :PIn�1 maxDnPIn of operator-variables pairs de�ned by the in
uen
e diagram. Thevalue of Equation 1 is equal to the value of the 
ompu-tation node n0 = (Sov0;+; f(;;�; P [fUig); Ui 2 Ug).For the in
uen
e diagram asso
iated with the 
ompu-tation of maxdPr2;r1 Pr1 �Pr2jr1 �(Ud;r1+Ud;r2+Ud), n0
orresponds to the �rst 
omputation node in Figure 2.3.1.2 Ma
rostru
turing the initial nodeIn order to exhibit the ma
rostru
ture of the in
uen
ediagram, we analyze the sequen
e of 
omputations per-formed by n0. To do so, we su

essively 
onsider theeliminations in Sov0 from the right to the left and usethree types of rewriting rules, preserving nodes val-ues, to make the ma
rostru
ture expli
it: (1) de
om-position rules, whi
h de
ompose the stru
ture usingnamely the dupli
ation te
hnique; (2) re
ompositionrules, whi
h reveal freedoms in the elimination order;(3) simpli�
ation rules, whi
h remove useless 
ompu-tations from the ar
hite
ture, by using normalization
onditions. Rewriting rules are presented �rst for the
ase of sum-marginalizations, and then for the 
ase ofmax-marginalizations. A rewriting rule may be pre-
eded by some pre
onditions for it to be appli
able.Rewriting rules for Px When a sum-marginalization must be performed, a de
ompositionrule D�, a re
omposition rule R�, and two simpli�
a-tion rules S1� and S2� are used. These are illustrated inFigure 2, whi
h 
orresponds to the in
uen
e diagramexample introdu
ed in 3.1.1.D� (Sov:Px;+; f(;;�; N) ; N 2 Ng) �Sov;+;��;;�; N�x [ ��Px;�; N+x�	� ; N 2 N	�R� [ Pre
.: (S0 \ (S [ s
(N1)) = ;) ^ (N1 \N2 = ;)℄(PS ;�; N1 [ f(PS0 ;�; N2)g) (PS[S0 ;�; N1 [N2)S1� [ Pre
.: x =2 S [ s
(N) ℄(Pfxg[S ;�; N [ �Px j pa(x)	) (PS ;�; N)S2� �;;�; N [ ��P;;�; ;�	�  (;;�; N)Example In the example of Figure 2, the �rst ruleto be applied is the de
omposition rule D�, whi
h

Pr1Pr2jr1 Ud

�;

�Ud;r2 ;� Pr1Pr2jr1Ud;r1; Pr2jr1Pr1

Ud;r1
D�
R�
S1� + S2�

D�
Pr2 � Ud;r2 Pr2� Pr1Pr1 Pr2jr1 Pr2jr1; � Ud; � ��Pr2 �Pr1 Pr1

Ud;r1

Ud;r1 Pr1;r2Pr1Pr2jr1�Pr1;r2 �Pr1;r2 Pr1Pr2jr1Ud;r2+maxd; � ; � Ud
Pr1

+maxd
+maxd ; � Ud; � ; � � Pr2jr1

� Ud; �� Pr1 �Pr1 Pr1Pr2jr1 Pr1Pr2jr1
+maxdPr2;r1; �

;

; ��Pr1 Pr1 Ud;r1 �Pr1;r2 Pr1Pr2jr1Ud;r2

+maxdPr2; � Ud;r2

Figure 2: Appli
ation of rewriting rules for P.treats the operator-variable pair Pr1 .3 Su
h a ruleuses the dupli
ation me
hanism and the distributivityproperty of � over +. It provides us with a DAG of
omputation nodes. It is a DAG sin
e 
ommon 
om-putation nodes are merged (and it is not hard to de-te
t su
h nodes when applying the rules). Then, D�
an be applied again for Pr2 . One 
an infer fromthe obtained ar
hite
ture that there is no reason forr1 to be eliminated before r2. Using the re
omposi-tion rule R� makes this 
lear in the stru
ture. Basi-
ally, R� uses the distributivity of � over +. Last,applying S1� and S2�, whi
h use the normalization of
onditional probability distributions, simpli�es somenodes in the ar
hite
ture. In the end, 
omputations3For the example needs, r1 is eliminated before r2, evenif the opposite would be more eÆ
ient.




an be made by 
onsidering at the most two variablessimultaneously (if one eliminates r1 �rst in the node(Pr1;r2 ;�; fPr1 ; Pr2jr1 ; Ud;r2)), whereas with a poten-tial approa
h, 
onsidering three variables simultane-ously would have been ne
essary (be
ause r1 would beinvolved in the potentials (Pr1 ; 0); (Pr2jr1 ; 0); (1; Ud;r1)if eliminated �rst, and r2 would be involved in thepotentials (Pr2jr1 ; 0); (1; Ud;r2) if eliminated �rst).Rewriting rules for maxx When a max-marginalization must be performed, a de
ompo-sition rule Dmax and a re
omposition rule Rmaxare used (there is no simpli�
ation rule sin
e thereis no normalization 
ondition to use for de
isionvariables). These rules, whi
h are a bit more
omplex than the previous ones, are illustrated inFigure 3, whi
h 
orresponds to the in
uen
e diagrammaxd1Pr2 maxd2Pr1 maxd3 Pr1 � Pr2jr1 � (Ud1 +Ud2;d3 + Ur2;d1;d3 + Ur1;d2).Dmax [ Pre
.: 8N 2 N+x 8n 2 N�x; val(n) � 0 ℄(Sov:maxx;+; f(;;�; N) ; N 2 Ng) 8<: (Sov;+; f(;;�; N) ; N 2 Ng) if N+x = ;(Sov;+; f(;;�; N) ; N 2 N�xg[ f(;;�; N1 [ f(maxx;+; N2)g)g) otherwisewhere � N1 = \N2N+xN�xN2 = f(;;�; N �N1) ; N 2 N+xgRmax [ Pre
.: (S0\(S[s
(N1)[s
(N2)) = ;)^(8N3 2N; N2 \N3 = ;) ^ (8n 2 N2; val(n) � 0) ℄(maxS ;+; N1[f(;;�; N2 [ f(maxS0 ;+; f(;;�; N3); N3 2 Ng)g)g) (maxS[S0 ;+; N1 [ f(;;�; N2 [N3) ; N3 2 Ng)Example In the example of Figure 3, one �rst ap-plies the de
omposition ruleDmax, in order to treat theoperator-variable pair maxd3 . Su
h a rule uses �rst themonotoni
ity of + (max(a+ b; a+ 
) = a+max(b; 
)),and then both the distributivity of � over + andthe monotoni
ity of � (so as to write things likemaxd3((Pr1 �Pr2jr1 �Ud2;d3)+ (Pr1 �Pr2jr1 �Ur2;d1;d3)) =Pr1 �Pr2jr1 �maxd3(Ud2;d3+Ur2;d1;d3)). Then, D� 
an beused forPr1 , and Dmax 
an be used for maxd2 . Afterthose steps, the re
omposition rule Rmax, whi
h usesthe monotoni
ities of � and +, reveals that the elimi-nation order between d2 and d3 is a
tually free. Thiswas not obvious from the initial Sov sequen
e. Theapproa
h using potentials is unable to make su
h free-doms expli
it, whi
h may indu
e exponential in
reasein 
omplexity as shown in 2.3.Order of appli
ation of the rules A 
haoti
 iter-ation of the rules does not 
onverge, sin
e e.g., rules

; Pr2jr1� Ud1
Pr1
Pr1
Ud1� Pr2jr1;

�; D�
Dmaxmaxd1Pr2 ; maxd2 +�� ; �; � Ud1� Pr2jr1Pr1 ;+
Rmax

maxd1Pr2 maxd2Pr1 Pr1Pr2jr1Ur1;d2�Dmax+maxd1Pr2 maxd2Pr1 maxd3Ud2;d3 ;Pr2jr1Pr1�; Pr1; � Pr2jr1Ur2;d1;d3 Pr1Pr2jr1Ur1;d2�
;+

Pr1 �Pr1 Ur1;d2Pr1Pr2jr1+maxd1Pr2 +maxd2;d3 ; ��Pr1 Ur1;d2Pr1Pr2jr1; � Ud1� Pr2jr1Pr1Pr1

� Ud1

; � Ud2;d3 ; � Ur2;d1;d3

�
; � Pr1 Pr2jr1

;
+maxd3

� Ur1;d2Pr1Pr2jr1Pr1
+maxd3

�
; � Ur2;d1;d3

Pr1
; � Ud2;d3
Pr2jr1

; �

;
Pr1 Ud2;d3�; Ur2;d1;d3�;maxd3 +

� Ur2;d1;d3;; � Ud2;d3maxd1Pr2 maxd2 +

Figure 3: Appli
ation of rewriting rules for max(the appli
ation of the rules may 
reate nodes look-ing like (;;�; fng), whi
h perform no 
omputations;these nodes 
an be eliminated at a �nal step).Dmax and Rmax may be in�nitely alternately applied.As a result, we spe
ify an order in whi
h rules 
anbe used to 
onverge to a unique �nal DAG of 
om-putation nodes (we have impli
itly used this order inthe previous examples). We su

essively 
onsider ea
hoperator-variable pair of the initial sequen
e Sov0 fromthe right to the left (marginalizations like Px1;:::;xn




an be split into Px1 � � �Pxn).If the rightmost marginalization in the Sov sequen
e ofthe root node is Px, then rule D� is applied on
e. It
reates new grand
hildren nodes for the root, for ea
hof whi
h, we try to apply rule R� in order to revealfreedoms in the elimination order. If R� is applied,this 
reates new 
omputation nodes, on ea
h of whi
hsimpli�
ation rules S1� and then S2� are applied (untilthey 
annot be applied anymore).If the rightmost marginalization in the Sov sequen
eof the root node is maxx, then rule Dmax is appliedon
e. This 
reates a new 
hild and a new grand
hildfor the root. For the 
reated grand
hild, we try toweaken 
onstraints on the elimination order using ruleRmax.The soundness of the ma
rostru
ture obtained is pro-vided by the soundness of the rewriting rules:Proposition 4. Rewriting rules D�, R�, S1�, S2�,Dmax and Rmax are sound, i.e. for any of theserules n1  n2, if the pre
onditions are satis�ed, thenval(n1) = val(n2) holds. Moreover, rules Dmax andRmax leave the set of optimal de
ision rules un
hanged.Complexity issues An ar
hite
ture is usable onlyif it is reasonable to build it. Proposition 5 makesit possible to save some tests during the appli
ationof the rewriting rules, and Proposition 6 gives upperbounds on the 
omplexity.Proposition 5. Ex
ept for S1�, the pre
onditions ofthe rewriting rules are always satis�ed.Proposition 6. The time and spa
e 
omplexity of theappli
ation of the rewriting rules are O(jU j �(1+ jP j)2)and O(jU j � (1 + jP j)) respe
tively.3.2 TOWARDS MCDAGSThe rewriting rules enable us to transform the ini-tial multi-operator 
omputation node n0 into a DAGof mono-operator 
omputation nodes looking like(maxS ;+; N), (PS ;�; N), (;;�; N), or � 2 P [ U .For nodes (maxS ;+; N) or (PS ;�; N), it is time touse freedoms in the elimination order. To do so, usualjun
tion tree 
onstru
tion te
hniques 
an be used,sin
e on one hand, (R;max;+) and (R;+;�) are 
om-mutative semirings, and sin
e on the other hand, thereare no 
onstraints on the elimination order inside ea
hof these nodes (the only slight di�eren
e with usualjun
tion trees is that only a subset of the variablesinvolved in a 
omputation node may have to be elim-inated, but it is quite easy to 
ope with this).To obtain a good de
omposition for nodes n like(maxS ;+; N) or (PS ;�; N), one 
an build a jun
-tion tree to eliminate S from the hypergraph G =

(s
(N); fs
(n0) jn0 2 Ng). The optimal indu
ed-widthwhi
h 
an be obtained for n is w(n) = wG;S , theindu
ed-width of G for the elimination of the vari-ables in S.4 The indu
ed-width of the MCDAG ar-
hite
ture is then de�ned by wm
dag = maxn2N w(n),where N is the set of nodes looking like (maxS ;+; N)or (PS ;�; N).After the de
omposition of ea
h mono-operator 
om-putation node, one obtains a Multi-operator Clus-ter DAG. The de�nition below is more general thanneeded for the in
uen
e diagram 
ase, but su
h ageneri
ity is useful for the dis
ussion in Se
tion 6.De�nition 3. A Multi-operator Cluster DAG is aDAG where every vertex 
 (
alled a 
luster) is labelledwith four elements: a set of variables V (
), a set ofs
oped fun
tions 	(
) taking values in a set E, a setof son 
lusters Sons(
), and a 
ouple (�
;

) of op-erators on E su
h that (E;�
;

) is a 
ommutativesemiring.De�nition 4. The value of a 
luster 
 of a MCDAGis given byval(
) = �
V (
)�V (pa(
))  

 2	(
) !

  

s2Sons(
) val(s)!!The value of a MCDAG is the value of its root node.Thanks to Proposition 7, working on MCDAGs is suf-�
ient to solve in
uen
e diagrams.Proposition 7. The value of the MCDAG obtainedafter having de
omposed the ma
rostru
ture is equalto the maximal expe
ted utility. Moreover, for any de-
ision variable Dk, the set of optimal de
ision rulesfor Dk in the in
uen
e diagram is equal to the set ofoptimal de
ision rules for Dk in the MCDAG.3.3 MERGING SOME COMPUTATIONSThere may exist MCDAG 
lusters performing exa
tlythe same 
omputations, even if the 
omputation nodesthey 
ome from are distin
t. For instan
e, a 
omputa-tion node n1 = (Px;y;�; fPx; Pyjx; Uy;z) may be de-
omposed into 
lusters 
1 = (fxg; fPx; Pyjxg; ;; (+;�))4For nodes like (maxS ;+; N), whi
h a
tually alwayslook like (maxS;+; f(;;�; N 0); N 0 2 Ng), better de
ompo-sitions 
an be obtained by 
onsidering another hypergraph.In fa
t, for ea
h N 0 2 N, there exists a unique node n 2 N 0,denoted N 0[u℄, su
h that n or its 
hildren involve at leastone utility fun
tion. It is then better to 
onsider thehypergraph G0 = (s
(N); fs
(N 0[u℄) jN 0 2 Ng). In-tuitively, this enables to �gure out that e.g., if oneeliminates x �rst in a node like (maxxy;+; N) =(maxxy;+; f(;;�; Uy;z); (;;�; fnz ; Ux;yg); (;;�; fnz; Uxg)g),only two variables (x and y) must be 
onsidered, sin
e nzis a fa
tor of both Ux;y and Ux. We do not further developthis te
hni
al point here.



and 
01 = (fyg; fUy;zg; f
01g; (+;�)). A 
omputationnode n2 = (Px;y;�; fPx; Pyjx; Uy;t) may be de
om-posed into 
lusters 
2 = (fxg; fPx; Pyjxg; ;; (+;�))and 
02 = (fyg; fUy;tg; f
02g; (+;�)). As 
1 = 
2, some
omputations 
an be saved by merging 
lusters 
1 and
2 in the MCDAG. Dete
ting 
ommon 
lusters is notas easy as dete
ting 
ommon 
omputation nodes.3.4 SUMMARYThere are three steps to build the ar
hite
ture. First,the initial multi-operator 
omputation node is trans-formed into a DAG of mono-operator 
omputationnodes (via sound rewriting rules). Then, ea
h 
ompu-tation node is de
omposed with a usual jun
tion tree
ontru
tion. It provides us with a MCDAG, in whi
hsome 
lusters 
an �nally be merged.4 VARIABLE ELIMINATIONALGORITHM ON MCDAGsDe�ning a variable elimination algorithm on aMCDAG is simple. The only di�eren
e with existingvariable elimination algorithms is the multi-operatoraspe
t for both the marginalization and the 
om-bination operators used. As in usual ar
hite
tures,nodes send messages to their parents. Whenevera node 
 has re
eived all messages val(s) fromits 
hildren, 
 
an 
ompute its own value val(
) =�
V (
)�V (pa(
)) ��

 2	(
)  �

 �

s2Sons(
) val(s)��and send it to its parents. As a result, messages gofrom leaves to root, and the value 
omputed by theroot is the maximal expe
ted utility.5 COMPARISON WITH EXISTINGARCHITECTURESCompared to existing ar
hite
tures on in
uen
e dia-grams, MCDAGs 
an be exponentially more eÆ
ientby strongly de
reasing the 
onstrained indu
ed-width(
f Se
tion 2.3), thanks to (1) the dupli
ation te
h-nique, (2) the analysis of extra reordering freedoms,and (3) the use of normalizations 
onditions. One 
an
ompare these three points with existing works:� The idea behind dupli
ation is to use all thede
ompositions (independen
es) available in anin
uen
e diagram. An in
uen
e diagram a
tu-ally expresses independen
es on one hand on theglobal probability distribution P (C jD), and onthe other hand on the global utility fun
tion.MCDAGs separately use these two kinds of in-dependen
es, whereas a potential approa
h uses akind of weaker \mixed" independen
e relation.

� Weakening the 
onstraints on the elimination or-der 
an be linked with the usual notion of rel-evant information for de
ision variables. WithMCDAGs, this notion is not used only for de-
ision rules 
on
iseness reasons: it is also usedto reveal reordering freedoms, whi
h 
an de
reasethe temporal 
omplexity. Note that some of theordering freedom here is obtained by synergismwith the dupli
ation, whi
h 
annot be used withpotentials.� Thanks to simpli�
ation rule S1�, the normaliza-tion 
onditions enable us not only to avoid use-less 
omputations, but also to improve the ar-
hite
ture stru
ture (S1� may indire
tly weakensome 
onstraints on the elimination order). Thisis stronger than Lazy Propagation ar
hite
-tures [Madsen and Jensen, 1999℄, whi
h use the�rst point only, during the message passing phase.Note that with MCDAGs, on
e the DAG of 
om-putation nodes is built, there are no more normal-ization 
onditions to be used.In the end, the MCDAG ar
hite
ture is always betterthan existing s
hemes in terms of 
onstrained indu
ed-width, as Theorem 1 shows.Theorem 1. Let wGp(�p) be the 
onstrained indu
ed-width asso
iated with the potential approa
h (
f Se
-tion 2.2) and let wm
dag be the indu
ed-width as-so
iated with the MCDAG (
f Se
tion 3.2). Then,wm
dag � wGp(�p).Last, the MCDAG ar
hite
ture 
ontradi
ts a 
ommonbelief that using potentials and division operations isne
essary to solve in
uen
e diagrams with variableelimination algorithms.6 POSSIBLE EXTENSIONSThe MCDAG ar
hite
ture has a
tually been devel-oped in a generi
 algebrai
 framework whi
h sub-sumes in
uen
e diagrams. This framework, 
alledthe Plausibility-Feasibility-Utility networks (PFUs)framework [Pralet et al., 2005℄, is a generi
 frame-work for sequential de
ision making with possibly un-
ertainties (plausibility part), assymmetries in the de-
ision pro
ess (feasibility part), and utilities. PFUssubsume formalisms from quanti�ed boolean formulasor Bayesian networks to sto
hasti
 
onstraint satisfa
-tion problems, and even de�ne new frameworks likepossibilisti
 in
uen
e diagrams. This subsumption ispossible be
ause the questions raised in many exist-ing formalisms 
an often be redu
ed to a sequen
e ofmarginalizations (with possibly multiple marginaliza-tion operators) on a 
ombination of s
oped fun
tions



(with possibly multiple 
ombination operators). Su
hsequen
es, a parti
ular 
ase of whi
h is Equation 1, 
anbe stru
tured using rewriting rules as the ones previ-ously presented, whi
h a
tively exploit the algebrai
properties of the operators at stake.Thanks to the generi
 nature of PFUs, extending theprevious work to a possibilisti
 version of in
uen
e dia-grams is trivial. If one uses the possibilisti
 pessimisti
expe
ted utility [Dubois and Prade, 1995℄, the optimalutility 
an be de�ned by (the probability distributionsPi be
ome possibility distributions, and the utilitiesUi be
ome preferen
e degrees in [0; 1℄):minI0 maxD1 : : :minIn�1maxDn minIn �max�maxPi2P (1� Pi); minUi2U U��The above sequen
e of marginalizations 
an be stru
-tured and 
omputed via MCDAGs. The only dif-feren
e is that � be
omes max, and P and + be-
ome min in the rewriting rules. The 
omputationnodes then look like (min;max; N), (max;min; N),or (;;max; N), and the 
lusters in the MCDAG use(�
;

) = (min;max), (�
;

) = (max;min), or(�
;

) = (;;max).7 CONCLUSIONTo solve in
uen
e diagrams, using potentials allowsone to reuse existing variable elimination s
hemes, butmay be exponentially sub-optimal. The key pointis that taking advantage of the 
omposite natureof graphi
al models su
h as in
uen
e diagrams, andnamely of the algebrai
 properties of the eliminationand 
ombination operators at stake, is essential to ob-tain an eÆ
ient ar
hite
ture for lo
al 
omputations.To do so, a solution is to design a kind of 
ompos-ite ar
hite
ture involving several elimination operatorsand several 
ombination operators. The result is theMCDAG ar
hite
ture, whi
h guarantees a de
rease inthe 
onstrained indu
ed-width.The authors are 
urrently working to obtain moreformal and experimental results on MCDAGs in the
ontext of the PFU framework (the 
onstru
tion ofMCDAG ar
hite
tures is 
urrently implemented). Fu-ture dire
tions 
ould be �rst to try and adapt theMCDAG ar
hite
ture, and namely the dupli
ationme
hanism, to the 
ase of Limited Memory In
uen
eDiagrams (LIMIDs) [Lauritzen and Nilsson, 2001℄, andthen to use the MCDAG ar
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ture in the 
ontext ofan approximate resolution.Referen
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