
Max-CSP competition 2007:
toolbar/toulbar2 solver brief description

S. Bouveret3, S. de Givry1, F. Heras2, J. Larrosa2, E. Rollon2, M. Sanchez1, T.
Schiex1, G. Verfaillie3, and M. Zytnicki1

1 INRA, Toulouse, France
2 Dep. LSI, UPC, Barcelona, Spain

3 ONERA, Toulouse, France

This document gives a brief description of the key techniques used in the
different versions of toolbar/toulbar2 solvers for Max-CSP competition 2007.

All the solvers exploit an initial upper bound found by a local search solver :
maxwalksat [13] (with 5 tries) for toolbar/MaxSAT and INCOP4 [11] for the other
solvers. The solvers are implemented in C code, except for toulbar2 in C++5.

toolbar

The search procedure is MEDAC* [3], a branch and bound algorithm which
maintains the state-of-the-art soft local consistency property EDAC* during
the search. The local consistency enforcement procedure is à la AC-2001 as
described in [9] and it uses specific data structures for efficient binary constraint
updating as introduced in [1]. The usual min domain / max degree dynamic
variable ordering heuristic is employed during the search. Domain values are
dynamically ordered by increasing associated unary costs for value enumeration
at each node of the search tree.

No particular options are used, except in a preprocessing step where con-
straints of arity smaller than 10 are projected on binary constraints. Noticed
that non-binary constraints are delayed from propagation during the search un-
til they become binary.

toolbar/BTD

The search procedure is EDAC-BTD+ [2], a branch and bound algorithm which
exploits the problem structure given by a tree decomposition. EDAC-BTD+
extends BTD [5] by exploiting local initial upper bounds inside the clusters
and maintaining EDAC* during the search instead of partial forward checking
(EDAC* is restricted to the current cluster subtree in order to guarantee time
complexity proportional to the tree width).

The min-degree heuristic is used to compute a tree decomposition. The root
cluster is chosen in order to minimize tree height then maximize the product of
4 The command line parameters are narycsp result problem.wcsp 0 1 5 idwa

100000 cv v 0 200 1 0 0.
5 The solvers are available at the AlgorithmS section of
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP



domain sizes of cluster variables. Cluster separators larger than 5 are removed,
by merging clusters. The same preprocessing as in toolbar for non-binary con-
straints is performed. The variable ordering heuristic is dynamic (min domain
/ max degree) inside the clusters and follows a compatible order with respect to
the cluster tree decomposition. All the variables of a cluster are assigned before
a cluster son is examined (in lexicographic order). A hash-table with initial size
of 220 is used to memorize cluster lower bounds for pruning and partial solutions
for recovering an optimal solution. The value ordering heuristic chooses the last
value in the best solution found so far before sorting values by increasing unary
costs.

toolbar/MaxSAT

The search procedure is Max-DPLL [7], a branch and bound algorithm dedicated
to Weighted Max-SAT. Max-DPLL is enhanced by several inference rules : neigh-
borhood resolution (equivalent to soft AC* in Weighted CSPs), chain resolution
restricted to binary clauses (equivalent to soft DAC* in Weighted CSPs but with
a dynamic DAC ordering), and cycle resolution with cycles of triplets of vari-
ables, initially proposed in [6]. Two-sided Jeroslow dynamic variable ordering
heuristic is used during the search.

The usual direct encoding (one Boolean variable per value for non-Boolean
variables) is used to convert Max-CSP instances into Weighted Max-SAT.

toulbar2

The search procedure extends the one in toolbar, i.e. MEDAC*, in several ways:

– EDAC* also propagates soft ternary constraints as defined in [12].
– The variable ordering heuristic combines a basic form of conflict back-jumping

[10] with the usual min domain / max degree.
– A limited form of variable elimination (for variables with a degree less than

or equal to 2) is applied during the search as proposed in [8].
– The search procedure exploits a binary branching scheme instead of value

enumeration. Two different kinds of branching schema are used depending on
the domain size of the current chosen variable. If the domain size is greater
than 10, then the domain is split into two equal-size parts, creating two new
search nodes. Otherwise, the chosen variable is assigned to its fully supported
value (maintained by EDAC*) or this value is removed from its domain.

– A Limited Discrepancy Search [4] scheme is performed by iteratively running
MEDAC* with a power-of-two increasing limit in the number of discrepan-
cies to the value ordering heuristic until optimality proof has been obtained
(when no limit occurred).

The first extension yields better lower bounds, especially on the pedigree
benchmark. The second and third extensions exploit the problem structure bet-
ter. The forth extension improves propagation and heuristics, especially on prob-
lems with large domains as in the celar benchmark. The last extension allows



to find better upper bounds more rapidly. However, this last option may be
counter-productive when a good initial upper bound has been already found by
local search as it slows down the time to prove optimality (mainly by a factor of
two approximatively).

References

[1] M. Cooper and T. Schiex. Arc consistency for soft constraints. Artificial Intelli-
gence, 154:199–227, 2004.

[2] S. de Givry, T. Schiex, and G. Verfaillie. Exploiting Tree Decomposition and Soft
Local Consistency in Weighted CSP. In Proc. of AAAI-06, Boston, MA, 2006.

[3] S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa. Existential arc consistency:
Getting closer to full arc consistency in weighted CSPs. In Proc. of IJCAI-05,
pages 84–89, Edinburgh, Scotland, 2005.

[4] W. D. Harvey and M. L. Ginsberg. Limited discrepency search. In Proc. of the
14th IJCAI, Montréal, Canada, 1995.

[5] P. Jégou and C. Terrioux. Decomposition and good recording. In Proc. of ECAI-
2004, pages 196–200, Valencia, Spain, 2004.

[6] J. Larrosa and F. Heras. New Inference Rules for Efficient Max-SAT Solving. In
Proc. of AAAI-06, Boston, MA, August 2006.

[7] J. Larrosa, F. Heras, and S. de Givry. A logical approach to efficient max-sat
solving. Artificial Intelligence, 172(2–3):204–233, 2008.

[8] J. Larrosa, E. Morancho, and D. Niso. On the practical applicability of bucket
elimination: still-life as a case study. Journal of Artificial Intelligence Research,
23:421–440, 2005.

[9] J. Larrosa and T. Schiex. Solving Weighted CSP by Maintaining Arc-consistency.
Artificial Intelligence, 159(1-2):1–26, 2004.

[10] C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Last conflict based reasoning. In
Proc. of ECAI-2006, pages 133–137, Trento, Italy, 2006.

[11] B. Neveu and G. Trombettoni. INCOP: An Open Library for INcomplete Com-
binatorial OPtimization. In Proc. of CP-03, pages 909–913, Cork, Ireland, 2003.

[12] M. Sanchez, S. de Givry, and T. Schiex. Mendelian error detection in complex
pedigrees using weighted constraint satisfaction techniques. Constraints, 13(1),
2008. Special issue on Bioinformatics and Constraints.

[13] B. Selman, H. Kautz, and B. Cohen. Noise Strategies for Improving Local Search.
In Proc. of AAAI-94, pages 337–343, Seattle, WA, 1994.


