
A new local consistency for weighted CSP dedicated to
long domains

ABSTRACT
The weighted constraint satisfaction problem (WCSP) is a
soft constraint framework with a wide range of applications.
Most current complete solvers can be described as a depth-
first branch and bound search that maintain some form of
local consistency during the search. However, the known
consistencies are unable to solve problems with huge do-
mains because of their time and space complexities. In this
paper, we adapt the 2B-consistency, a weaker form of arc
consistency well-known in classic CSPs, into the bound arc
consistency and we provide several algorithms to enforce it.

General Terms
Algorithms

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Logic and constraint programming ; G.1.6
[Numerical Analysis]: Optimization—Constrained opti-
mization

Keywords
Weighted Constraint Satisfaction Problem, Local Consis-
tency, Bound Arc Consistency

1. INTRODUCTION
The weighted constraint satisfaction problem (WCSP) is

a well-known extension of the CSP framework with many
practical applications. Recently, several generalizations of
the CSP’s arc consistency (AC) have been proposed for soft
constraints, like AC* in [6]. Unfortunately, compared to the
classic AC, the time complexity always increases by a factor
of d (the size of the largest domain), and the memory space
is at least proportional to d. This makes these consistencies
useless for problems with long domains like RNA detection
or temporal constraints with preferences. We present here

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

an extension of the 2B-consistency, first described for classic
CSPs in [9], called bound arc consistency. Its time and space
complexities are better than the complexities of AC* by an
order of d.

Bound arc consistency (BAC*) is based on a interval rep-
resentation of the sets of values and it can treat efficiently
“simple” constraints, such as precedence: f(v1, v2) = v2 −
v1 − d if v2 − v1 − d > 0, 0 otherwise, that often show up in
problems with long domains (like scheduling). We also pro-
pose an extension of this consistency that takes into account
the semantics of the function, like monotonicity or convexity
and we define ∅-inverse consistency that can boost the cost
propagation on some conditions.

Finally, we compare BAC* with AC* on the problem of
non-coding RNA detection and show the superiority of our
consistency for this kind of problems.

2. PRELIMINARIES
Valuation structures are algebraic objects that specify costs

[13]. For WCSP [8], it is defined by a triple S = 〈E,⊕,≤〉
where: E = [0..k] ⊆ N is the set of costs, k can possibly be
∞; ⊕, the addition on E, is defined by ∀(a, b) ∈ N

2, a⊕ b =
min{a + b, k}, ≤ is the usual operator on N. It is useful
to define the subtraction 	 of costs: ∀(a, b) ∈ N

2, a 	 b =
a− b if a 6= k, k otherwise.

A binary WCSP is a tuple P = 〈S ,X ,D, C〉, where: S
is the valuation structure, X = {x1, . . . , xn} is a set of n
variables, D = {D(x1), . . . , D(xn)} is the set of the finite
domains of each variable and the size of the largest one is
d, C = {c1, . . . , ce} is the set of e constraints. A constraint
c ∈ C can be either a unary constraint: c : D(xi) → E (we
call it ci), or a binary constraint: c : D(xi) × D(xj) → E
(we call it cij).

We will restrict ourselves to binary WCSP, where no con-
straint has an arity greater than 2. Results can easily be ex-
tended to higher arity constraints. Furthermore, we assume
the existence of a unary constraint ci for every variable, and
a zero-arity constraint (i.e. a constant), noted c∅ (if no such
constraints are defined, we can always define dummy ones:
ci is the null function over D(xi), c∅ = 0).

Given a pair (vi, wj) (resp. a value vi), cij(vi, wj) = k
(resp. ci(vi) = k) means that the constraint forbids the cor-
responding assignment. Another cost means the pair (resp.
the value) is permitted by the constraint with the corre-
sponding cost. The cost of an assignment t = (v1, . . . , vn),
noted V(t), is the sum over all the cost functions: V(t) =
L

i,j
cij(vi, vj)⊕

L

i
ci(vi)⊕ c∅

An assignment t is consistent if V(t) < k. The usual task

of interest is to find a consistent assignment with minimum
cost. This is a NP-hard problem. Observe that, if k = 1, a
WCSP reduces to classic CSP.

3. SOME LOCAL PROPERTIES

3.1 Existing local consistencies
WCSPs are usually solved with a branch-and-bound tree

of which each node is a partial assignment. To accelerate the
search, local consistency properties are widely used to trans-
form the sub-problem at each node of the tree to an equiv-
alent, simpler one. The simplest local consistency property
is the node consistency (NC*, cf. [6]).

Definition 1. A variable xi is node consistent if: ∀vi ∈
D(xi), c∅ ⊕ ci(vi) < k and ∃vi ∈ D(xi), ci(vi) = 0 (this
value vi is called the unary support of xi). A WCSP is node
consistent if every variable is node consistent.

This property can be enforced in time and space O(nd).
Another famous stronger local consistency is the arc consis-
tency (AC*, cf. [12, 6]).

Definition 2. The neighbours N(xi) of a variable xi is the
set of the variables xj such that there exists a constraint
that involves xi and xj . More formally: ∀xi ∈ X , N(xi) =
{xj ∈ X : cij ∈ C}. A variable xi is arc consistent if:
∀vi ∈ D(xi),∀xj ∈ N(xi),∃wj ∈ D(xj), cij(vi, wj) = 0 (this
value wj is called the support of xi in vi w.r.t. cij) and xi is
node consistent. A WCSP is arc consistent if every variable
is arc consistent.

On a binary WCSP, arc consistency can be enforced in time
O(n2d3) and in space O(ed). The algorithm uses the op-
erations ProjectUnary and Project described in Alg. 1 to
enforce the supports of the values and the unary supports
respectively. In practice, to reach the O(ed) space complex-
ity, the algorithm uses extra costs differences data structures
as suggested in [1].

3.2 Bound arc consistency
We present here a consistency which is weaker than AC*.

It can be enforced with lower time and space complexities
and it is called bound arc consistency (BAC*). To apply
bound arc consistency, we need to change the definition of
a WCSP: the domains are now intervals I. The intervals
initially range over all the possible values. We shall suppose
that all the values of the variables are sorted by an arbitrary
order and ∀xi ∈ X , lbi = min{D(xi)}, ubi = max{D(xi)}
(lbi is the lower bound of the interval of xi and ubi is its
upper bound).

Definition 3. A variable xi is bound node consistent (BNC*)
if: (c∅ ⊕ ci(lbi) < k) ∧ (c∅ ⊕ ci(ubi) < k) and ∃vi ∈
I(xi), ci(vi) = 0. A variable xi is bound arc consistent if:
∀xj ∈ N(xi),∃(wj , w

′
j) ∈ I2(xj), cij(lbi, wj) = cij(ubi, w

′
j) =

0 and it is bound node consistent. A WCSP is bound arc
consistent if every variable is bound arc consistent.

Changing the representation of the set of the values to
intervals alters the expressivity of the framework: it is not
possible to describe that a value which is inside an inter-
val has been deleted. But this allows us to decrease the
space complexity as a domain is now represented by only
two values. The Alg. 1 provides an algorithm to enforce
this consistency.

c

b

a a

b

c

x2

0

0

1

1

3

2
2

2

2

x1

1

lb1

ub1

lb2

ub2

C∅ = 0, k = 4

2

(a)

c

b

a a

b

c

x1 x2

0

0

1

1

1

1

1

1
2

1

C∅ = 1, k = 4

lb1

ub1

lb2

ub2

2

(b)

c

b

a a

b

c

x1 x2

0

0

1

1

2

2

1

1

ub1

lb1

C∅ = 1, k = 4

lb2

ub2

3

(c)

c

b

a a

b

c

x1 x2

0

0

1

2

2

1

0

0

2

ub1

lb1

C∅ = 2, k = 4

lb2

ub2

(d)

c

b

a

b

c

x1 x2

0

0

1

2

2
0

0

lb1

ub1

lb2

ub2

C∅ = 2, k = 4

(e)

Figure 1: Steps to enforce BAC* with ∅IC

Example 1. Fig. 1(b) represents an instance of a small
problem. It contains two variables (x1 and x2) with three
possible values for each one (a, b and c), a unary constraint
for each variable (the costs are written in the vertices) and
a binary constraint (the costs are written on the edge that
connects a pair of values; if there is no edge between two
values, the cost is 0). k is arbitrarily set to 4 and c∅ is set to
0. The values are supposed to be sorted by the lexicographic
order (a ≺ b ≺ c), thus lb1 = a and ub1 = c for x1 and x2.
First, we notice that the value a of x1 has no support. After
a call of Project(x1, a), we get Fig. 1(c). Then, we project
a cost of 1 to the c∅ because x1 has no unary support (cf.
Fig. 1(d)). Finally, as c∅ ⊕ ci(lb1) is equal to k, x1 = a

is discarded and the lower bound of x1 is updated to lb1

(cf. Fig. 1(e)). This instance is BAC* but not AC* because
x2 = b has no support. This proves that BAC* can be
strictly weaker than AC*.

Theorem 1. Algorithm 1 enforces BAC* in time O(ed2+
min{k, nd} × nd) and in space O(n + e) (proof omitted).

3.3 Strengthening BAC*
We may want to enforce a stronger local consistency that

takes into account the constraint costs involving values in-
side the intervals. To keep a reasonable space complexity,
this cost will be projected directly to c∅ . Thus we add to
the BAC* property the ∅-inverse consistency (∅IC):

Definition 4. The constraint cij is ∅-inverse consistent if
∃(vi, wj) ∈ D(xi)×D(xj), cij(vi, wj) = 0 (this pair (vi, wj)

Algorithm 1: Algorithm enforcing BAC*

Procedure SetBAC*()
foreach xi ∈ X do SetBNC*(xi) ;
Q← X ; c∅ raised← false ;
while (Q 6= ∅) do

xj ← Q.pop() ;
foreach xi ∈ N(xj) do

SetBSupport(xi, xj) ; SetBSupport(xj, xi) ;
if (SetBNC*(xi)) then Q← Q ∪ {xi} ;

if (SetBNC*(xj)) then Q← Q ∪ {xj} ;
if (c∅ raised) then

c∅ raised← false ;
foreach xi ∈ X do

if (SetBNC*(xi)) then Q← Q ∪ {xi} ;

Function SetBNC*(xi): boolean
changed← false ;
while (bii ≤ bsi) ∧ (c∅ ⊕ ci(bii) ≥ k) do

bii ← bii + 1 ; changed← true ;

while (bii ≤ bsi) ∧ (c∅ ⊕ ci(bsi) ≥ k) do
bsi ← bsi − 1 ; changed← true ;

ProjectUnary(xi) ;
return changed ;

Procedure SetBSupport(xi , xj)
Project(xi, bii, xj) ; Project(xi, bsi, xj) ;

Procedure ProjectUnary(xi)
min← minvi∈I(xi){ci(vi)} ;
if (min = 0) then return ;
c∅ raised← true ;
foreach vi ∈ I(xi) do ci(vi)← ci(vi)	min ;
c∅ ← c∅ ⊕min ;
if (c∅ ≥ k) then raise exception ;

Procedure Project(xi, vi, xj)
min← minwj∈I(xj){cij(vi, wj)} ;

foreach wj ∈ I(xj) do
cij(vi, wj)← cij(vi, wj)	min ;

ci(vi)← ci(vi)⊕min ;

Procedure SetBSupport2(xi , xj)
ProjectBinary(xi, xj) ;
Project(xi, bii, xj) ; Project(xi, bsi, xj) ;

Procedure ProjectBinary(xi, xj)
min← min vi∈I(xi)

wj∈I(xj)

{cij(vi, wj)} ;

if (min = 0) then return ;
c∅ raised← true ;
foreach vi ∈ I(xi) do

foreach wj ∈ I(xj) do
cij(vi, wj)← cij(vi, wj)	min ;

c∅ ← c∅ ⊕min ;
if (c∅ ≥ k) then raise exception ;

is called the binary support of c∅). A WCSP is ∅-inverse
consistent if every constraint is ∅-inverse consistent.

Remark that ∅IC is a generalization to a higher arity of the
second requirement of the NC* property.

When BAC* finds a support wj for lbi w.r.t. cij , it projects
the cost cij(lbi, wj) to the unary constraint ci. The con-
straint is now ∅IC (the binary support is (lbi, wj)), but this
property is more relevant when enforced first: it directly

increases the c∅ . To enforce this local consistency, the pro-
cedure SetBSupport should be replaced by SetBSupport2.

Example 2. Let us resume with the problem on Fig. 1(a).
If no cost is mentionned on an edge, it is by default 1. We
can see on this instance that for any value of x1 and for any
value of x2, the binary constraint yields to a cost not less
than 1. In this case, BAC* would project some binary costs
to the bounds but ∅IC directly projects all of this costs to
c∅ (cf. Fig. 1(b)); this guarantees an increase of the lower
bound.

Theorem 2. The algorithm enforcing BAC* with ∅IC
takes time O(ed3 + min{k, nd} × nd) and space O(n + e)
(proof omitted).

It could be possible to decrease the time complexity in d

by using an appropriate structure that contains the sorted
costs of a constraint. But this would increase the space
complexity by a factor at least of d2, which is unacceptable.
Another possibility to have a faster algorithm is to use the
semantics of the constraints to find the minimum of the
function in less than O(d2) time, when possible, to decrease
the complexity. We need a definition to describe easily the
cost propagation:

Theorem 3. If the minimum of the binary cost functions
can be found in O(d) time, the complexity of BAC* with
∅IC becomes O(ed2 + min{k, nd} × nd) with no memory
space increase. If the minimum of unary and binary cost
functions can be found in constant time, the complexity of
BAC* with ∅IC becomes O(ed + min{k, nd} × n) with no
memory space increase (proofs omitted).

These results are particularly interesting for semi-convex
functions (well-known in temporal constraints with prefer-
ences) because the minima can be found in constant time:

Definition 5. A function ci (resp. cij) is semi-convex [5]
iff: ∀e ∈ E, the set {vi ∈ D(xi) : ci(vi) > e} (resp. {(vi, wj)
∈ D(xi)×D(xj) : cij(vi, wj) > e}) is an interval. A function
x, y 7→ f(x, y) is semi-convex w.r.t. a single variable y iff
∀x, y 7→ f(x, y) is semi-convex.

Informally speaking, semi-convex functions have only one
peak. The unary semi-convex functions encompass mono-
tonic functions and anti-functional constraints [4]. An ex-
ample of semi-convex function w.r.t. a single variable is
x, y 7→ x2 − y2. It is semi-convex w.r.t. x but not to y.

If the costs functions are semi-convex w.r.t. every variable,
like x, y 7→ x+ y, the minima can be found in constant time
because they are located in the corner of the cost matrices.
If the costs functions are semi-convex w.r.t. a single variable,
the minimum cost is reached by a value on the edge of the
cost matrix and so can be found in O(d) time.

4. COMPARISON WITH RELATED WORKS

4.1 2B-consistency
The definition of 2B-consistency, as defined in [9] for nu-

meric non-binary CSP (NCSP) is:

Definition 6. x ∈ X is 2B-consistent if ∀c : D(x)×D(x1)×
. . . × D(xr) ∈ C if: ∃(v1, . . . vr) ∈ D(x1) × . . . × D(xr),
c(lb, v1, . . . , vr) and ∃(v1, . . . vr) ∈ D(x1)× . . .×D(xr),
c(ub, v1, . . . , vr). A NCSP is 2B-consistent iff every variable
is 2B-consistent.

(x2)

c

b 1

1

1

a b c d

120a

0 2 1

10 2

1

1

2

2

0

0

0

1

1

dc

b

c

(x3)

a 1 2

a b

1

(x1) (x1)

Figure 2: Two cost matrices

Obviously, a WCSP such that k = 1 which is BAC* is 2B-
consistent.

Besides, it is possible to express a WCSP in classic CSP
by reifying the costs [10].

Definition 7. Consider the WCSP P = 〈S ,X ,D, C〉 Let
P ′ = 〈X ′,D′, C′〉 be the classic CSP such that:

• the set X ′ of variables is X augmented with a cost vari-
able x.

E per constraint: x
ij
E for the binary constraint

cij , xi
E for the unary constraint ci;

• the domain of x is D(x) if x is in X , E if x is a cost
variable x.

E; the set of the domains is D′;

• the set C′ of constraints contains: the reified constraints
c′ij defined by the set of tuples {(vi, wj , e) : vi ∈ D(xi),
wj ∈ D(xj), e = cij(vi, wj)}; the reified constraints c′i
defined by the set of tuples {(vi, e) : vi ∈ D(xi), e =
ci(vi)}; an extra constraint c′E that applies on the cost
variables x.

E:
P

cij∈C
x

ij
E +

P

ci∈C
xi

E < k.

The problem P ′ has a solution iff P has a solution. The
aim of enforcing a property is usually to find inconsistencies
as soon as possible. This leads to a definition of the strength
of a consistency:

Definition 8. A property T is at least as strong as another
property T ′ iff for any problem P , when the enforcement of
T ′ finds an inconsistency, then T finds an inconsistency too.

Consider now the little WCSP defined by three variables
(x1, x2 and x3) and two binary constraints (c1,2 and c1,3).
D(x1) = {a, b, c, d}, D(x2) = D(x3) = {a, b, c} (we suppose
a ≺ b ≺ c ≺ d). The costs of the binary constraints are
described Fig. 2. We set k to 2.

Let us show that the reified is 2B-consistent. Obviously,
the bounds of every variable x1, x2 and x3 have a support
w.r.t. to the binary constraints. Moreover, the bounds of
cost variables x

1,2
E and x

1,3
E also have a support: for example,

it is c1,2(b, a) for the lower bound of x
1,2
E and c1,2(c, a) for

its upper bound. The extra constraint c′E is also satisfied,
hence the problem is 2B-consistent.

On the other hand, BAC* would detect an inconsistency
by projecting the costs to x1 and reducing little by little its
domain. This shows that BAC* is at least not dominated
by 2B-consistency for reified WCSPs. The fact that BAC*
with ∅-inverse consistency always dominates 2B-consistency
is still an open problem.

4.2 Range-based algorithm
In [11], an algorithm called RMA is presented. It exploits

a bound-based filtering algorithm to infer a lower bound,
but only for the Max-CSP problem. A generalization in the
WCSP framework of this work could be the piecewise BAC*,
where every domain is splitted into smaller domains, with
a proper lower and upper bounds for each sub-domain. In

the Max-CSP case, a domain is splitted into the consistent
and the inconsistent part w.r.t. to a subset of constraints
that applies on it. In this configuration, piecewise BAC*
performs at least as well as RMA.

5. EXPERIMENTAL RESULTS
We have applied BAC* to the problem of non-coding RNA

(ncRNA) detection. RNA sequences can be considered as
oriented texts (left to right) over the four letter alphabet {A,
C, G, U}. An RNA molecule can fold on itself through pair-
ings between the nucleotides G–C, C–G, A–U and U–A. Such
a folding gives rise to characteristic structural elements such
as helices (a succession of paired nucleotides), and various
kinds of loops (unpaired nucleotides surrounded by helices).

Thus, the information contained both in the sequence it-
self and the structure can be viewed as a biological signal
to exploit and search for. These common structural char-
acteristics can be captured by a signature that represents
the structural elements which are conserved inside a set of
related RNA molecules.

We call motif the elements of the secondary structure that
define a RNA family. To a first approximation, a motif can
be decomposed into strings (cf. Fig. 3(a)) and helices (cf.
Fig. 3(b)). Two elements can be separated by spacers (cf.
Fig. 3(c)). These elements of description are modeled by
soft constraints and the costs are given by editing distances
(for strings and helices) or analytic function (for spacers).

xi

A G C A C G U U

(a) constraint
strings(xi, ACGU)

xi xj

xl xk

A G

C

C

G

G

C A

C

G

U

U

(b) constraint
helix(xi, xj , xk, xl)

xi xj

d nt.

(c) constraint
spacer(xi, xj , d)

x3

x6

x13

x10

x12

x8 x9

x7

x5

x4

x16

x15x2

x1

x14

x11

NCCA

NU

NUUC

(d) tRNA

x1

x5x4

x8

NCAGNGN

x2
NC x7

x6x3

(e)
IRE

Figure 3: A few motifs

Our aim is to find all the occurrences in the sequence that
match the given motif, and the cost of these solutions. We
have tried to detect the structure of tRNA [2] (cf. Fig. 3(d)),
modeled by 16 variables, 15 spacers, 3 strings and 4 helices
as well as an IRE motif [3] (cf. Fig. 3(e)) modeled by 8
variables, 7 spacers, 2 strings and 2 helices on parts of the
genome of Saccharomyces Cerevisiæ of different sizes and on
the whole genome of Escherichia coli. For tRNA, we used
two different models, the first being much tighter than the
second.

For each soft constraint, there is an hard constraint that
prunes all the inconsistent values faster through 2B-consistency

tRNA, tight definition
Size /] solutions 10k / 16 50k / 16 100k / 16 500k / 16 1M / 24 ecoli / 140
AC* (nodes/time) 23 / 29 35 / 545 - - - -

BAC* (nodes/time) 32 / 0 39 / 0 51 / 0 194 / 1 414 / 2 1867 / 7

tRNA, loose definition
Size /] solutions 10k / 84 50k / 84 100k / 84 500k / 111 1M / 164 ecoli / 702
AC* (nodes/time) 215 / 401 495 / 7041 - - - -

BAC* (nodes/time) 347 / 0 1036 / 1 1775 / 2 8418 / 4 17499 / 8 83476 / 34

IRE
Size /] solutions 10k / 0 50k / 0 100k / 0 500k / 1 1M / 4 ecoli / 8
AC* (nodes/time) 0 / 3 0 / 57 0 / 223 - - -

BAC* (nodes/time) 0 / 0 0 / 0 0 / 0 20 / 0 44 / 2 237 / 8

Table 1: Number of nodes explored and time in seconds spent to solve several instances of the ncRNA
detection problem

for classic CSPs. As the helix is a 4-ary constraint, we used
a generalized bound arc consistency to propagate the costs.
∅IC has been enforced for spacers (which are semi-convex
functions) but not for strings nor for helices. We used a
2.4Ghz Intel Xeon with 8 GB RAM to solve these instances.
The results on our comparison between our algorithm and
the classic AC* are displayed on Fig. 1. For each instance of
the problem, we write its size (10k is sequence of 10.000 nu-
cleotides of the genome of Saccharomyces Cerevisiæ and the
genome of Escherichia coli contains more than 4.6 millions
nucleotides) and the number of solutions. We also show the
number of nodes explored and the time in seconds spent. A
“-” means the instance could not be solved due to memory
reasons despite all the memory optimizations.

The reason of the superiority of BAC* over AC* is twofold.
First, AC* needs to store all the unary cost for every variable
to project cost from binary constraints to unary constraint.
Thus, the space complexity of AC* is at least O(nd). For
very long domains (in our experiment, greater than 50.000
values), the computer cannot allocate sufficient memory and
the program is aborted. For the same kind of projection,
BAC* only needs to store the costs of the bounds of the
domains, leading to a space complexity of O(n). A similar
conclusion would have been drawn after a comparison be-
tween BAC* and Max-CSP algorithms like PFC-MRDAC
(cf. [7]).

Second, the distance constraints dramatically reduce the
size of the domains. Concretely, when a single variable is
assigned, and when all the distance costs have been prop-
agated, all the other domains have a size that is a con-
stant with respect to d. As BAC* behaves particularly well
with this kind of constraints, the instance becomes quickly
tractable.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a new local consistency for

weighted CSPs, called bound arc consistency. It is specially
devoted to problems with large domains and time and space
complexities are lower than the well-known arc consistencies.
An extension have been proposed for constraints with good
characteristics, like semi-convex functions, and ∅IC seems
particularly efficient for this kind of functions. Finally, we
showed that maintaining BAC* is much better than AC* for
the problem of ncRNA detection.

In the future, we will try to implement better heuristics

for boosting the search.

7. REFERENCES
[1] M. Cooper and T. Schiex. Arc consistency for soft

constraints. Artificial Intelligence, 154:199–227, 2004.

[2] D. Gautheret, F. Major, and R. Cedergren. Pattern
searching/alignment with RNA primary and
secondary structures: an effective descriptor for
tRNA. Comp. Appl. Biosc., 6:325–331, 1990.

[3] J. Gorodkin, L. L. Heyer, and G. D. Stormo. Finding
the most significant common sequence and structure
motifs in a set of RNA sequences. Nucleic Acids
Research, 25:3724–3732, 1997.

[4] P. V. Hentenryck, Y. Deville, and C.-M. Teng. A
generic arc-consistency algorithm and its
specializations. Artificial Intelligence,
57(2–3):291–321, 1992.

[5] L. Khatib, P. Morris, R. Morris, and F. Rossi.
Temporal constraint reasoning with preferences. In
Proc. IJCAI 2001, pages 322–327, 2001.

[6] J. Larrosa. Node and arc consistency in weighted
CSP. In Proc. AAAI’02, 2002.

[7] J. Larrosa, P. Meseguer, and T. Schiex. Maintaining
reversible DAC for Max-CSP. Artificial Intelligence,
17(1):149–163, 1999.

[8] J. Larrosa and T. Schiex. Solving Weighted CSP by
Maintaining Arc-consistency. Artificial Intelligence,
159(1-2):1–26, 2004.

[9] O. Lhomme. Consistency techniques for numeric
CSPs. In Proc. IJCAI 1993, pages 232–238, 1993.

[10] T. Petit, J.-C. Régin, and C. Bessière.
Meta-constraints on violations for over constrained
problems. In Proc. ICTAI’00, pages 358–365, 2000.

[11] T. Petit, J.-C. Régin, and C. Bessière. Range-based
algorithm for Max-CSP. In Proc. CP’02, pages
280–294, 2002.

[12] T. Schiex. Arc consistency for soft constraints. In
Proc. CP’00, pages 411–424, 2000.

[13] T. Schiex, H. Fargier, and G. Verfaillie. Valued
constraint satisfaction problems: Hard and easy
problems. In Proc. IJCAI 1995, 1995.

