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Abstract
In this paper, we extend a Burer-Monteiro style
method to compute low rank Semi-Definite Pro-
gramming (SDP) bounds for the MAP problem on
discrete graphical models with an arbitrary num-
ber of states and arbitrary pairwise potentials. We
consider both a penalized constraint approach and
a dedicated Block Coordinate Descent (BCD) ap-
proach which avoids large penalty coefficients in
the cost matrix. We show our algorithm is decreas-
ing. Experiments show that the BCD approach
compares favorably to the penalized approach and
to usual linear bounds relying on convergent mes-
sage passing approaches.

1. Introduction
Graphical models (GMs) (Koller & Friedman, 2009) are
descriptions of decomposable multivariate functions. A va-
riety of frameworks in Computer Science, Logic, Constraint
Satisfaction/Programming, Machine Learning, Statistical
Physics, Operations Research and Artificial Intelligence can
be considered as specific sub-classes of graphical models.
In this paper we consider discrete pairwise graphical mod-
els. The maximum a posteriori (MAP) assignment problem
on probabilistic GMs consists in finding an assignment of
all variables that maximizes the posterior probability. It
is also known as the weighted constraint satisfaction prob-
lem (WCSP) for deterministic GMs (Cooper et al., 2020;
Schiex et al., 1995). This problem has applications in image
processing, computational biology (Simoncini et al., 2015),
resource management (Bensana et al., 1999), configuration,
etc.

A GM M = ⟨X,Φ⟩ is specified by a set of n variables
X = {x1, . . . , xn}, where xi can take di possible states
and a set Φ of potential functions θS involving variables in
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S ⊂ X , the scope of θS . We note d =
∑n
i=1 di the total

number of states. A graphical model defines a joint function
ΘM over X as ΘM =

∑
θS∈Φ θS . When all scopes have

maximum cardinality 2, the model is pairwise and the graph
with vertices in X and edges defined by scopes is the graph
of the pairwise GM.

The MAP problem is decision NP-complete (Shimony,
1994). There exist some well studied polynomial classes, in-
cluding structural restrictions, like bounded tree-width, and
restrictions on the type of potential functions θS . The latter
has been fully characterized by showing that, depending on
the potential functions, the problem is either polynomial or
NP-hard (Thapper & Živnỳ, 2016) and includes, for exam-
ple, models defined by submodular functions (Cooper et al.,
2020). Outside of polynomial cases, a vast array of poly-
nomial time heuristics have been developed. One strand of
research exploits the tight connection of GMs to Linear Pro-
gramming (LP). Convergent belief propagation algorithms
such as TRW-S (Kolmogorov, 2005) for MAP or the Virtual
Arc Consistency (VAC) (Cooper et al., 2008; 2010) algo-
rithm for WCSP give approximate LP-dual bounds through
reparametrizations. Combined with primal heuristics, they
offer post-hoc guarantees through an optimality gap, making
such algorithms useful in time-constrained scenarios.

In many cases, these bounds correspond to high quality
solutions and a small optimality gap. On the hardest in-
stances however, the obtained bounds become increasingly
loose. One natural direction for improvement is to climb
up in the Sherali & Adams (1990) hierarchy by reasoning
on more than two variables simultaneously (Yedidia et al.,
2000; Sontag et al., 2012; Nguyen et al., 2017). The associ-
ated time and space costs quickly become extreme however,
as moving up one step in the hierarchy increases time and
space complexity by a factor equal to the average domain
size. Another approach is to use SDP bounds, which pro-
vide superior guarantees (Goemans & Williamson, 1995)
compared to approximate LP bounds.

However, SDP has found limited application in MAP/WCSP.
The main reason lies in the fact that Goemans and
Williamson’s SDP relaxation of MAXCUT, a specializa-
tion of MAP with binary variables, requires θ(n2) variables
and memory resulting in an O(n6) complexity for usual
interior point methods. The algorithm doesn’t scale well
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and becomes impractical except on small very hard random
problems. For this reason, approximate LP methods such as
those we describe above are preferred because they achieve
a better trade off between tightness and computational cost.

The suitability of SDP for MAP and other applications has
improved with the non-convex low-rank Burer-Monteiro
approach (Burer & Monteiro, 2003). Exploiting the result
of Barvinok (1995) and Pataki (1998), who showed that the
rank of solutions of SDP problems is bounded by O(

√
n),

this approach uses a low-rank factorisation X = VVT of
the semi-definite matrix X in the SDP relaxation of these
combinatorial problems. It has since been observed that,
in practice, the rank of solutions is often lower, with some
software using a constant O(1) rank. Therefore, the number
of variables and the memory requirements can be reduced
to O(nr) where r is the rank used in the decomposition.
As a side benefit, the decomposition guarantees the semi-
definiteness of the matrix X, at the cost of addressing a
non-convex optimization problem. Combined with row-by-
row updates (Javanmard et al., 2016; Wang et al., 2017),
Riemannian gradient descent (Javanmard et al., 2016; Mei
et al., 2017) or Riemannian trust-region methods (Absil
et al., 2007), the Burer-Monteiro approach provides empir-
ically very efficient methods to solve SDP relaxations of
various combinatorial optimization problems with binary
variables such as MAXCUT, MAXSAT (Wang & Kolter,
2019) or MAP over Ising. The row-by-row update methods,
with their efficient O(nr) updates are especially attractive.

Multi-state Potts model MRFs, where pairwise functions are
weighted identity matrices, can still be directly dealt by us-
ing simple row-by-row updates (Pabbaraju et al., 2020). In
contrast, arbitrary pairwise GMs, with multi-state variables
and arbitrary potential functions need to explicitly deal with
an additional constraint for each original variable of the con-
sidered GM. In the usual one-hot encoding of finite domain
variables, a GM variable xk with dk states is encoded as dk
binary variables, each representing whether a state is used
or not. The new constraints specify that each variable is
assigned exactly one state. In the associated SDP relaxation,
one may naturally dualize such constraints with a suitable
penalty (Lasserre, 2016). The ability to represent arbitrary
pairwise potentials on an arbitrary number of states is not
only useful for better mathematical modeling in, e.g., image
segmentation and labelling (Krähenbühl & Koltun, 2011),
but also for improving deep learning approaches trying to
“learn how to reason”. These architectures rely on efficient
differentiable convex optimization layers, as approximations
of discrete reasoning as in MAXSAT (Wang et al., 2019).

The main contributions of the paper are:

• the formal definition and characterization of two vari-
ants of Burer-Monteiro algorithms solving an SDP
relaxation of the discrete MAP problem with arbitrary

pairwise potentials.

• empirical results showing that the Block Coordinate
Descent-based variant can outperform usual LP bounds
(exact or message-passing based) in terms of tightness,
and also outperforms exact LP and other SDP penal-
ized variant in terms of efficiency on dense random
problems as well as on a real computational biology
problem.

2. SDP relaxation for pairwise GMs
Throughout the paper, matrices are denoted with a capital
boldface font and all vectors are column vectors. For matrix
A, Aij represents the entry at the i-th row and j-th column
of A. Ai represents its i-th row as a column vector. For
a vector g, ||g|| denotes its Euclidean norm. The vector
defined by the diagonal of A is diag(A), the Frobenius
inner product of matrices A,B is denoted as ⟨A,B⟩.

A pairwise GM M = ⟨X,Φ⟩ with associated graph
(X,E) defines the joint function ΘM =

∑
(xi,xj)∈E θij +∑

xi∈X θi + θ∅. We assume that the potential functions
θS ∈ Φ are described as tensors, which in our case means
matrices, vectors and scalar, respectively. For optimization,
the constant term θ∅ can be ignored. Before building an
SDP relaxation, the problem is reduced to a quadratic form
by representing every finite domain variable xk ∈ X as
a vector bk of dk Booleans. The jth element of bk will
take value 1 when variable xk = j and value 0 other-
wise. The value of θij(xi, xj) is bTi Θijbj and the value
of θi(xi) is then bTi θi. If we denote by b the stacked vector
bT = [bT1 , . . . , b

T
n ], we then have ΘM (x) = bTΘBb+ bT θB

where θB is the stacked vector of all θi and 2×ΘB is a sym-
metric block matrix having block Θij when (xi, xj) ∈ E
and the di × dj zero matrix otherwise. Note that ΘB is
sparse by block, according to the connectivity of the graph
ofM . More importantly, ΘB has zero blocks on its diagonal
since no pairwise function in Φ connects a variable xk to
itself. This property will later be useful for BCD updates.

When optimizing over b instead of x, one must enforce
the fact that only one element of every Boolean vector
bk is set to 1, i.e., that ∀xk ∈ X,

∑dk
j=1(bk)j = 1. This

set of constraints can be gathered in a linear constraint
Ab = 1n where A is a Boolean matrix in Bn×d with
ATi = [0Td1 · · · 0Tdi−1

1Tdi 0Tdi+1
· · · 0dn ] and where 1n is

an n-vector of 1. Finally, minimizing ΘM becomes equiva-
lent to solving the following constrained quadratic program:

min
b∈Bd

bTΘBb+ bTθB s.t Ab = 1n (1)

To build an SDP relaxation of the quadratic program above,
centered {−1, 1} variables are used and relaxed to norm-1
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vectors of dimension n. The problem above can be reduced
to such formulation by using the {−1, 1} variables c =
2b − 1d. After this variable change, denoting Θ = ΘB/4,
θ = (θB +ΘB1d)/2, F = A/2 and u = 1n −A1d/2, the
problem becomes:

min
c∈{−1,1}d

cTΘc+ cT θ s.t Fc = u (2)

Here, the initial exactly-one constraints
∑
bi = 1 be-

come 2Fic = 2 − di, with Fi ∈ Rd, 2FTi =
[0Td1 · · · 0Tdi−1

1Tdi 0Tdi+1
· · · 0dn ]. This change of vari-

ables creates a constant term in the objective value which
can be ignored for optimization purposes. In this formula-
tion, the matrix Θ has the same exact sparsity as ΘB.

2.1. Lassere dualization of linear constraints

In order to get an unconstrained quadratic program, we must
remove the linear constraints in (2). A usual approach to do
this is to dualize the linear constraint with a penalty ρ that
must be appropriately chosen (Lasserre, 2016). This reduces
the problem to a pure MAXCUT problem on which the
Burer-Monteiro approach can be directly applied and solved
using efficient row-by-row updates (Wang et al., 2017). The
relaxed problem becomes:

min
c∈{−1,1}d

cTΘc+ cT θ + (2ρ+ 1)||Fc− u||2 (3)

As soon as ρ ⩾ max{|cTΘc+ cT θ| : c ∈ {−1, 1}d}, the
solution of (3) and (1) are the same (Lasserre, 2016). One
can note at this point that if any potential function in the
GM at hand contains potentials of large amplitude, ρ will
need to take a large value to ensure the above property.

We next homogenize the problem by converting linear terms
to quadratic terms. We introduce the extended vector eT =
[cT 1] ∈ {−1, 1}d+1 and reformulate (3) in terms of e.
Then, (3) equivalently asks to minimize eTQe where e ∈
{−1, 1}d+1 and Q is the symmetric matrix: (2ρ+ 1)FTF+Θ 1

2 (θ
T − 2(2ρ+ 1)uTF)T

1
2 (θ

T − 2(2ρ+ 1)uTF) (2ρ+ 1)uTu


The usual SDP relaxation of the MAX-CUT problem can
then be written using the new rank 1 matrix variable X =
eeT ∈ R(d+1)×(d+1). Dropping the rank-1 constraint, the
SDP relaxation is:

min
X

{⟨Q,X⟩ : X ⪰ 0; Xii = 1, i = 1, . . . , d+ 1} (4)

Burer & Monteiro (2003) introduced the idea of using a
low-rank factorization of X to solve the SDP (4). This

factorization was motivated by a proof by Barvinok (1995)
and Pataki (1998) of the following theorem:

Theorem 2.1. There exists an optimum X∗ of (4) with rank
r such that r(r+1)

2 ⩽ m. With m the number of constraints.

Every positive semi-definite matrix of rank r can be factor-
ized as a product of two rank r matrices: X = VVT , V ∈
R(d+1)×r. Then, (4) becomes:

min
V∈R(d+1)×r

〈
Q,VVT

〉
s.c ||Vi|| = 1 , i = 1, . . . , d+ 1

(5)
With Vi ∈ Rr the row vector i of V, this reduces the number
of variables from (d+1)2 to r(d+1) and the semi-definite
constraint X ⪰ 0 now becomes implicit as VVT is always
positive semi-definite. Several approaches exploit this idea.
We use the mixing method (Wang et al., 2017), a row-by-
row update method which uses efficient O(rd) updates. It
consists in cyclic updates of the row vectors Vi, all other
row vectors being fixed:

Vi = − gi
||gi|| , gi =

d+1∑
j=1

Qi,jVj ∀i = 1, . . . , d+ 1

The mixing method is known to recover the optimum of
the convex SDP (4) as long as r >

√
2(d+ 1). One issue

with using the mixing method in the presence of dualized
constraints generated by Lassere’s approach is that the row-
by-row updates will be sensitive to the magnitude of the
penalty ρ. As we observed previously, ρ may be large if the
input GM has large terms. The large value of ρ will create
large coefficients in Q and then the value of gi will be dom-
inated by few terms, possibly slowing down convergence.

A feasible solution of (1) always satisfies the so-called gang-
ster constraint (Zhao et al., 1998). This constraint specifies
that the off-diagonal entries of the matrix bkbTk must be all
zeros. If we consider the Boolean vector bk that corresponds
to the variable xk ∈ X , then bikb

j
k = 0 ∀ i ̸= j, since at

least one of the two terms is equal to zero. It is important
to notice that if the solution to (4) nullifies the quadratic
penalty term induced by the Lasserre dualization, it will
implicitly satisfy this gangster constraint.

Proposition 2.2. If tr(PVVT ) = 0, where P =(
FTF −FTu
−uTF uTu

)
, then V satisfies the gangster con-

straint

The full proof is provided in Appendix A.6.

2.1.1. SDP BOUND USING BLOCK-COORDINATE
DESCENT

We now consider an approach that exploits the specific struc-
ture of the matrix Q in the constrained quadratic formulation
(2). As previously, using the extended vector e, the rank-1
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matrix variable X = eeT , dropping the rank-1 constraint
and using a low rank factorization X = VVT as above, the
quadratic optimization problem (2) can be relaxed into the
SDP:

min
V

⟨R,VVT ⟩ s.t

{
⟨Ui,VVT ⟩ = 2− di, i = 1, . . . , n

diag(VVT ) = 1d+1

(6)

with R =

(
Θ 1

2θ
1
2θ
T 0

)
and Ui =

(
0 Fi
FTi 0

)
. The

diagonal constraint can be rewritten ||Vi|| = 1,∀i. We
note s1 = 1, si = si−1 + di−1, i = 2, . . . , n. For
a given GM variable xk, sk represents the position of
the first row representing xk in b, c and e. The exactly-
one constraint ⟨Ui,VVT ⟩ = 2 − di can be rewritten
V Td+1(

∑si+di−1
j=si

Vj) = 2− di.

Instead of doing row-by-row updates, we exploit the prop-
erty that the Θ matrix has zero blocks on the diagonal. For
a given GM variable xk, we simultaneously optimize all
the rows of V that correspond to xk while keeping all other
rows fixed. To simultaneously update all these rows, noting
gi =

∑d+1
j=1 Ri,jVj as before, we have to solve:

min
Vi,sk⩽i⩽sk+1

sk+dk−1∑
i=sk

V Ti gi s.t.


V Td+1(

sk+dk−1∑
j=sk

Vj) = 2− dk

||Vi|| = 1, sk ≤ i < sk+1

(7)
Notice that since the corresponding dk × dk diagonal block
matrix of R is all zero, the gi do not depend on the optimized
Vi and can be considered as fixed. In the following, we
make the assumption that the vectors gi and Vd+1 are never
colinear. The approaches suggested by Wang et al. (2017)
also apply here.

By the second constraint, every solution row vector Vi must
lie in the unit spherical manifold.

Proposition 2.3. At the optimum of (7), every optimized
vector Vi lies in the dimension 2 subspace generated by gi
and Vd+1.

The full proof is provided in Appendix A.1. Given that Vi
lies on the unit sphere and in this dimension 2 subspace,
it is therefore entirely defined by the angle it makes with
Vd+1. With vectors on the sphere, the problem above can
be rewritten using trigonometric functions, omitting the di
norm-1 constraints which are implicitly satisfied. To deal
with the remaining exactly-one constraint, we write the
Lagrangian dual using multiplier λ.

Theorem 2.4. If we denote as ϕi the angle from gi to Vd+1,

the dual Lagrangian of problem (7) is:

h(λ) = −
sk+dk−1∑
i=sk

√
||gi||2 + 2λ||gi|| cos(ϕi) + λ2

+ (dk − 2)λ (8)

The proof in Appendix A.2 is obtained using angle variables
in the Lagrangian, differentiating, solving for equality to
zero and injecting the solution back in the Lagrangian.

We could not exhibit a closed form of the optimum λ∗.
However, the function f = −h can be optimized using the
Newton algorithm:

Proposition 2.5. The second derivative of f is Lipschitz on
R and is strictly positive whenever the gi’s and Vd+1 are
not colinear.

The full proof is available in Appendix A.3. To reach
quadratic convergence with the Newton method, we need
to find a starting point which is close enough to λ∗. This
starting point can be produced by solving the Lagrangian
dual of a relaxation of the BCD problem (7):

min
v
vT g s.t v′T v = 2− dk, ||v||2 = dk (9)

where gT = [gT1 . . . gTd1 ], v
′T = [V Td+1 . . . V Td+1] and

vT = [V T1 . . . V Td1 ].

Thankfully, a solution of this relaxation can be identified
analytically.

Theorem 2.6. Let us define p = 4− 4
dk

and γ = ||g||2 −
1
dk
(v′T g)2. The solution to (9) is given by v∗ = αv′ + βg

with

α = − 1
dk
(βv′T g + dk − 2) β = −

√
p
γ

The full proof is provided in Appendix A.4.

The block-coordinate descent algorithm that we propose
cycles over blocks and optimizes each, using the Newton
method. It uses the solution identified in Theorem 2.6 to
start the Newton iteration. We have not proved that this
algorithm converges to the optimum solution of (6), but it
does converge, as we show next.

Proposition 2.7. The block-coordinate descent with fixed
last column Vd+1 is decreasing.

Proof sketch. We can show that the difference in the objec-
tive value between successive iterations is positive, using
the Cauchy-Schwartz inequality and trigonometric identities.
The full proof is provided in Appendix A.5

This last theorem ensures that the block-coordinate descent
will converge, since (6) is bounded. The convergence speed
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using random row-by-row updates is linear in the neigh-
borhood of a local optimum when the rank is sufficiently
large (Wang et al., 2017; Erdogdu et al., 2018).

Computational Complexity. The update rule for the New-
ton method is λj+1 = λj − [∇2f(λj)]−1∇f(λj) and the
first and second derivative of f are:

f ′(λ) =

sk+dk−1∑
i=sk

gTi V
T
d+1 + λ

||gi + λV Td+1||
− (dk − 2) (10)

f ′′(λ) =

sk+dk−1∑
i=sk

||gi||2 − (gTi V
T
d+1)

2

||gi + λV Td+1||3
(11)

Given that all the vectors we are dealing with have size
r, by pre-computing the dot products with gi, comput-
ing the first derivative requires O(dkr) operations. For
the second derivative, we can pre-compute the numerators
||gi||2 − (gTi V

T
d+1)

2 and the evaluation of the second deriva-
tive is againO(dkr). Overall, one update step of the Newton
method will require only O(dkr) operations, which is also
what a single round of row-by-row updates over the dk rows
associated with xk would require. The BCD updates how-
ever benefit from the efficient Newton updates. In practice,
we observe that only few iterations of the Newton method
are needed in our experiments.

2.2. Producing an integer primal solution

To produce a primal integer solution from the optimal
solution of the convex relaxation, we use random round-
ing. Let Vr be a normalized vector sampled from a Gaus-
sian distribution. We assign each variable to the value
xk =

(
maxsk⩽i⩽sk+1

V Ti Vr
)
− sk. The integer solution

obtained is then submitted to a simple greedy search where,
for every variable, the best improving change of state (if
any) is applied. This is done on every variable repeatedly
until a local minimum is reached. The same process is used
for every convex relaxation considered in the paper.

3. Experiments
3.1. Description of solvers

We implemented the row-by-row updates with the du-
alized exactly-one constraints (LR-LAS) as well as the
BCD update method (LR-BCD) in C++ (code available
at github.com/ValDurante/LR-BCD) with the Eigen3 (Guen-
nebaud et al., 2010) sparse matrix library (MPL2 licence).
We use rank r = ⌈

√
2(d+ 1)⌉ by default for LR-LAS and

r = ⌈
√
2(n+ d+ 1)⌉ for LR-BCD but also tried variants

with fixed lower ranks. The penalty coefficient ρ is set as the
sum of the maximum of all the binary and unary functions.
Thus, it enforces the theoretical assumption of the Lasserre
dualization result.

They are compared with exact LP (local polytope) bounds
and message passing MAP/MRF algorithms Min-Sum and
TRW-S. The LP bounds are computed using CPLEX
20.1.0.0. We used Open-GM2 (Kappes et al., 2015), an effi-
cient C++ MIT-licensed library, in release 3.3.7, available at
https://github.com/opengm for Min-Sum (maxi-
mum number of iterations of 100, minimal message distance
of 0.01 and damping of 0.8) and TRW-S (maximum num-
ber of iterations 100, 000, tolerance of 10−5, TABLE mode).
Min-Sum provides only upper bounds.

Overall, we therefore have five solvers: LR-LAS and LR-
BCD (parameterized by their rank), LP, Min-Sum and
TRW-S. We also considered using the ECOS interior point
method available in CVXPY (Agrawal et al., 2018), but
preliminary tests showed that it ran several orders of mag-
nitude slower than the Mixing Method on small problems
with 120 binary variables from the BiqMac library at http:
//biqmac.uni-klu.ac.at/biqmaclib.html.

All experiments were run on a single thread on a server
equipped with a Xeon®Gold 6248R CPU@3.00GHz and
1TB of RAM running Debian Linux 4.19.98-1.

3.2. Experiments on random instances

Following (Park et al., 2019), we first used random pair-
wise MAP problems. The pairwise potentials are sampled
uniformly from [0, s] with s = 5. The unary potentials are
sampled uniformly from [0, 1] using fixed precision num-
bers with 9 digits precision. The magnitude of s controls
the importance of pairwise couplings which are the source
of NP-hardness. Empirically, we found that solution time
and quality was insensitive to the value of s except for very
low s (where coupling effects become negligible). We gen-
erated random problems varying the number of variables
(100-1000) and number of states (3-10). All the random
problems have a complete graph. For each point the results
are averaged over 10 instances. We observed that the stan-
dard deviations of the measures were very low on the 10
generated samples and we therefore do not report it.

3.2.1. CPU-TIME.

We present in Figure 1 a summary of the cpu-time perfor-
mance of all solvers on problems of increasing size (100
to 1,000 MRF variables) and increasing number of states
(and therefore increasing size d). TRW-S is clearly the most
efficient algorithm here, often one order of magnitude faster
than LR-BCD. LR-LAS, instead, is considerably slower
than LR-BCD, often by more than two orders of magnitude.
On instances of 300 MRF variables and more than 3 states
(d > 900), it times-out. The CPLEX-based exact local
polytope solver is even slower. It times-out on 100 MRF
variables instances with 7 states.

https://github.com/ValDurante/LR-BCD
https://github.com/opengm
http://biqmac.uni-klu.ac.at/biqmaclib.html
http://biqmac.uni-klu.ac.at/biqmaclib.html
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Figure 1. Cpu-time for all solvers on problems of increasing size (100, 300, 500 and 1000 variables) as a function of the problem size
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function of the number of states (domain size). The best integer primal solution value is taken as reference.
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3.2.2. BOUNDS.

Figure 2 shows normalized upper and lower bounds on the
same families of instances. Considering upper bounds, mes-
sage passing algorithms show slightly inferior performance
compared to other solvers. The most important differences
appear in the lower bounds, where LP only slightly im-
proves over TRW-S and where LR-LAS and LR-BCD really
stand out. Thanks to its implicit enforcing of the gang-
ster constraints, LR-LAS offers slightly imporved lower
bounbds, but this extra tightness comes at an extreme com-
putational cost. It is interesting to notice that for LR-BCD,
the optimality gap decreases as the ratio of (number of vari-
ables)/(number of states) increases. This means that for a
fixed number of states, increasing the number of variables
will make the LR-BCD bounds more precise.

3.2.3. VERY LOW RANK RELAXATIONS.

One interesting feature of Burer-Monteiro style methods is
the ability to control their efficiency through the rank r. As
far as integer solutions are concerned, it is perfectly fine
to use low or very low ranks, below the theoretical limits
of ⌈
√
2(d+ 1)⌉ and ⌈

√
2(n+ d+ 1)⌉: rounding will still

provide a feasible integer solution. To compare the ability
of TRW-S, LR-LAS and LR-BCD to quickly provide an
integer solution, we ran all three algorithms with increas-
ing time-outs and measured the cost of the integer solution
produced as a function of time. Because LR-LAS times-out
on all but the smallest instances, we tested this on a 100
variables, 5 states instance (we observed very consistent be-
havior among all samples from a given family of instances).
This is illustrated in Figure 3. TRW-S is extremely fast
and immediately produces its best possible integer solution.
Surprisingly, LR-LAS and LR-BCD are able to produce a
better integer solution, even from the first iteration. This
integer solution also improves in quality as the number of
iterations grows.

The effect of strong rank reduction is different between
LR-LAS and LR-BCD. For best performance, LR-BCD
is best used with a large rank: it reaches its best solution
after less than 25 iterations (0.2 seconds). Instead LR-LAS
may benefit from an intermediate rank, where it produces
a comparable solution well before convergence. With the
highest rank, the quality of the integer solutions produced
by LR-LAS improves very slowly. This could be explained
by the fact that the primal relaxed solutions that LR-LAS
computes do not exactly satisfy the exactly-one constraints
of each MRF variable until the very end.

3.2.4. EMPIRICAL CONVERGENCE RESULTS.

In this section, we empirically study the convergence of
LR-BCD and the effect of the rank r on the value of the
optimized criteria with increasing cpu-time and number of it-

erations. For an instance with 500 variables and three states,
we computed a tight solution of (6) using Mosek (ApS,
2022). Figure 4 shows the relative error of the solutions
produced by LR-BCD compared to the Mosek solution as a
function of cpu-time. We observe that, even when the rank
is high, LR-BCD converges very quickly to solutions with a
very low tolerance, a tolerance of 10−3 being reached in less
than 0.5 seconds. As the rank decreases, the convergence to
a certain precision accelerates without any loss in precision,
until a very low rank is reached where the quality of the
solution cannot be pushed to tight tolerance. On the right,
we also plot the relative error against the number of BCD
iterations. Each iteration corresponds to an entire update
of the low rank matrix V. As the rank reduces, the num-
ber of iterations grows to the point where faster iterations
are almost compensated by the increased number of iter-
ations. In comparison, the industrial solver Mosek, with
default settings, took 111 seconds to solve this relatively
small instance.

3.3. Experiments on a real instance

We applied the same algorithms on a genomic assem-
bly related problem which reduces naturally to a pair-
wise MAP/MRF problem with 8, 574 variables having 4
states (34, 296 Boolean variables) and 80, 763 pairwise fac-
tors. This instance has been made available in the Cost
Function Library, in the real/fish category. On this
instance,TRW-S provides a lower bound of 0 and an integer
solution with cost 127, 878 in 0.069 seconds. The LP bound
is also 0 with a running time of 80.04 seconds. Min-Sum
provides an integer solution of cost 479, 924 in 0.270 sec-
onds (and seems stuck there, with no improvement with
more iterations). LR-BCD produces a bound of 102, 900
and an integer solution of cost 122, 694, reducing the opti-
mality gap from 100% (TRW-S) to 16.1% (LR-BCD). LR-
BCD took 68.6 minutes on this instance while LR-LAS did
not finish after several hours.

4. Conclusion
An increasing number of algorithms for solving convex
relaxations of discrete optimization problems rely on the
Burer-Monteiro approach (Burer & Monteiro, 2003). These
approaches are fast and offer a lower bound on the discrete
instance as well as an upper bound through rounding. This
makes them highly desirable when efficiency is required.
They can also offer tighter gaps than the more usual LP-
related convergent message passing, especially on the hard-
est dense problems. However, to the best of our knowledge,
all existing Burer-Monteiro algorithms deal only with the
simple case where only diagonal-one constraints exist. This
is enough for MAXCUT, MAX2SAT, and MAP/Ising and
even MAP/Potts (where potential functions are weighted

https://forgemia.inra.fr/thomas.schiex/cost-function-library/-/tree/master/real/fish
https://forgemia.inra.fr/thomas.schiex/cost-function-library/-/tree/master/real/fish
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Figure 3. Comparison of the best integer solution as a function of time for TRW-S and LR-BCD (left) and TRW-S and LR-LAS (right) on
a 100 variables instance with five states. Note the different time scales.

Figure 4. Relative error with a high quality solution vs. cpu-time (left) and number of iterations (whole matrix update, right) using
different ranks for the relaxation. The experiment was made on a 500 variables, three states instance (d = 1500) and is representative of
the behavior on all instances.
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identity matrices) or MAXSAT (at the cost, however, of a
significantly weakened relaxation for k-clauses, k > 2).

But a variety of real world problems expressed as optimiza-
tion over graphical models, in resource allocation, com-
putational biology or image processing, naturally involve
variables with many states and arbitrary pairwise functions.
Convex relaxations of discrete optimization problems such
as MAXSAT have also been used as differentiable layers
inside deep neural nets targeted at learning “how to rea-
son” (Wang et al., 2019), a situation where categorical data
with several states abound.

This work shows that the extension of the Burer-Monteiro
approach to arbitrary domain sizes and functions is not
straightforward: even if it improves over usual interior
points methods, as implemented in CVXPY, the direct dual-
ization of the required “exactly-one” constraints with ade-
quate penalization leads to slow convergence, removing
most of the practical interest of the Burer-Monteiro ap-
proach. Dedicated ways of dealing with these exactly-one
constraints are needed. The BCD approach introduced here
is a clear step forward in this direction. With its fast New-
ton updates, it offers important speed-ups compared to the
dualized variant, at the sole cost of relaxing the gangster
constraint. On the hardest instances, where LP-based meth-
ods can only provide very large gaps, the BCD approach
we described is several orders of magnitude faster than in-
terior points methods and orders of magnitude faster than
the Lassere-dualized approach, while offering much tighter
optimality gaps than LP. It becomes the method of choice
for hard problems and can be used in parallel with the ap-
proximate linear bounds provided by convergent message
passing to get the best of both worlds, at modest additional
runtime.

The possibility of relying on extremely low rank is an-
other attractive capacity of the Burer-Monteiro method. In
our empirical experiments, we observe that the CPU-time
that is required to produce an upper bound can be signifi-
cantly reduced with essentially no loss in quality. A dual
bound would then be able to produce an optimality gap
that could be exploited in the context of Branch-and-Bound
methods (Allouche et al., 2015), providing a desirable tight
bounding method with an adjustable cpu/tightness compro-
mise.
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Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger,
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A. Full proofs
A.1. Proof of Theorem 2.3

Proof. Let V ∗
i be the value of Vi in an optimum of the problem above and assume that V ∗

i does not lie in the dimension 2
subspace generated by gi and Vd+1. Let u = Vd+1, v be the orthonormal basis of this subspace such that gi has a positive
coordinate over v. Then, Vi can be written as Vi = αu+βv+γw where w lies in the r−2 dimensional subspace orthogonal
to the subspace generated by gi and Vd+1 and γ ̸= 0. Since, when β > 0, changing the sign of β improves the criteria
without changing the status of the “exactly-one” and norm-1 constraints, we must have β < 0. Let β′ = −

√
β2 + γ2

and V ∗
i
′ = αu + β′v. If we now consider a solution where V ∗

i has been replaced by V ∗
i
′, the “exactly one” constraint

is still satisfied because the scalar product of V ∗
i
′ with Vd+1 is unchanged. The norm 1 constraint is still satisfied as

||V ∗
i
′||2 = α2 + β′2 = α2 + β2 + γ2 = 1. Then, the new solution improves the criteria given that β′ < β < 0 and that

gTi v > 0.

A.2. Proof of Theorem 2.4

Proof. With Vi being norm one and lying in the dimension 2 subspace generated by gi and Vd+1, let ψi be the angle from
Vd+1 to Vi in this subspace. We can rewrite the problem (7) as:

min
ψi∈[0,π]

sk+dk−1∑
i=sk

||gi|| cos(ϕi + ψi) s.t
sk+dk−1∑
i=sk

cos(ψi) = 2− dk (12)

The Lagrangian is:

L(λ,Ψ) =

d1∑
i=1

||gi|| cos(ϕi + ψi) + λ(

sk+dk−1∑
i=sk

cos(ψi) + dk − 2)

The partial derivatives of L are ∂L
∂ψi

= −||gi|| sin(ϕi + ψi)− λ sin(ϕi) which must all be equal to zero at the optimum. We
use the fact that the sum of sinusoids with the same period and different phases is also a sinusoid:

A sin(ωt+ ϕ) +B sin(ωt) =
√
A2 +B2 + 2AB cos(ϕ) sin

(
ωt+ arctan

(
A sin(ϕ)

A cos(ϕ) +B

))
We have:

−||gi|| sin(ϕi + ψi)− λ sin(ϕi) =
√
||gi||2 + λ2 + 2λ||gi|| cos(ϕi) sin

(
ψi + arctan

(
||gi|| sin(ϕi)

||gi|| cos(ϕi) + λ

))
which implies that

ψi + arctan

(
||gi|| sin(ϕi)

||gi|| cos(ϕi) + λ

)
= ±π

Since − 3
2π < −π − arctan

(
||gi|| sin(ϕi)

||gi|| cos(ϕi)+λ

)
< −π

2 < 0, we have:

ψi = π − arctan

(
||gi|| sin(ϕi)

||gi|| cos(ϕi) + λ

)
By trigonometric identities, noting γi =

||gi|| sin(ϕi)
||gi|| cos(ϕi)+λ

, we have:

cos(ψi) = − cos(arctan(γi)) = − 1√
1 + γ2i

Developing and simplifying (1 + γ2i ) and plugging the result back above, we get:

cos(ψi) = −||gi|| cos(ϕi) + λ

||gi + λVd+1||



Efficient Low Rank Convex Bounds for Pairwise Discrete Graphical Models

Similarly, one can derive:

cos(ϕi + ψi) = −||gi||+ λ cos(ϕi)

||gi + λVd+1||

Plugging this back into the Lagrangian, we get:

L(λ,Ψ) =

sk+dk−1∑
i=sk

(
−||gi||

||gi||+ λ cos(ϕi)

||gi + λVd+1||

)
+ λ

(
sk+dk−1∑
i=sk

(
−||gi|| cos(ϕi) + λ

||gi + λVd+1||

)
+ dk − 2

)

= −
sk+dk−1∑
i=sk

(||gi + λVd+1||) + λ(dk − 2)

So the dual problem is to find λ that maximizes h(λ) = −
∑sk+dk−1
i=sk

(||gi + λVd+1||) + λ(dk − 2). The first derivative of
h is:

h′(λ) = −
sk+dk−1∑
i=sk

(
gTi Vd+1 + λ)

||gi + λVd+1||

)
+ (dk − 2)

and the second derivative:

h′′(λ) = −
sk+dk−1∑
i=sk

(
||gi||2 − (gTi Vd+1)

2

||gi + λVd+1||3

)

One can see that h′′(λ) < 0 whenever gi and Vd+1 are not colinear which proves h is strictly concave and guarantees the
unicity of the optimum. Being strictly concave, we just have to find λ∗ such that h′(λ∗) = 0.

A.3. Proof of Proposition 2.5

Proof. We need to show that the second derivative of f is Lipschitz on R. In order to prove this, we will show that the
derivative of f ′′ is bounded on R. Let u = Vd+1, we will show that the derivative of each term fi(λ) =

||gi||2−(gTi u)
2

||gi+λu||3 in the
sum is bounded.

f ′i(λ) = − 3(||gi||2−(gTi u)
2)(gTi u+λ)

||gi+λu||5

= − 3(||gi||2−(gTi u)
2)(gTi u)

||gi+λu||5 − 3(||gi||2−(gTi u)
2)λ

||gi+λu||5

Using the assumption that gi and u are not colinear there exists ki > 0 such that ||gi + λu||5 ⩾ ki > 0. Thus, we have :∣∣ 3(||gi||2−(gTi u)
2)(gTi u)

||gi+λu||5
∣∣ ⩽ |3(||gi||2−(gTi u)

2)(gTi u)|
ki

Now we need to show that the second term is also bounded. Let ai = 3(||gi||2 − (gTi u)
2), we can rewrite the absolute value

of the second term as : ∣∣ aiλ
||gi+λu||5

∣∣ = |ai| (λ2)
1
2

(||gi||2+2gTi uλ+λ
2)

5
2

= |ai|( λ2

(||gi||2+2gTi uλ+λ
2)5

)
1
2

If we consider the function :

l(λ) = λ2

(||gi||2+2gTi uλ+λ
2)5

We know that l is a continuous function on R. Moreover, we have that :
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l(λ) ∼
λ→±∞

λ2

λ10 = 1
λ8 −→

λ→±∞
0

We can conclude that l is a continuous function with finite limits at ±∞ thus it is bounded. So, we have the result that there
exists M ∈ R∗

+ such that the second term is bounded by |ai|
√
M .

A.4. Proof of Theorem 2.6

Let us first introduce a lemma that will be useful for the proof of this theorem.

Lemma A.1. The solution v∗ to (9) must lie in the subspace vec(v′, g).

Let us consider P1 :
{
v ∈ Rn | v′T v = 2−dk

}
and D1 :

{
v ∈ Rn | ||v||2 = dk

}
. For y ∈ P1, we have y = y0+ z with y0

a particular solution to the linear equation v′T y0 = 2− dk and z a vector such that v′T z = 0. For y0, we take y0 = 2−di
||v′||2 v

′

which gives us the desired solution v′T y0 = 2−dk
||u||2 v

′T v′ = 2− dk. Since y ∈ D1, the squared norm of z must also satisfies
||z||2 = dk − (2− dk)

2.
Then, we compute the dot product gT y = (2−dk)

||v′||2 v
′T g + zT g. The first term is constant for all y that lies in the feasible set

P1 ∩D1. We just have to check the value of the second term zT g. Let ΠP1
(g) be the projection of g into the hyperspace

orthogonal to v′. We can write the dot product : zT g = zT (g − ΠP1
(g) + ΠP1

(g)) = zT (g − ΠP1
(g)) + zTΠP1

(g) =
zTΠP1

(g) since zT (g −ΠP1
(g)) = 0. Thus we only worry about the value of the dot product zTΠP1

(g) which is minimal
in the direction −ΠP1(g). Since ΠP1(g) lies in the space generated by v′ and g we proved that the solution to (9) must lie in
the space generated by v′ and g.

Proof. Let us consider v ∈ vec(v′, g) e.g. v = αv′ + βg for some α, β ∈ R. The first constraint gives us:

α = − 1
dk
(βv′T g + dk − 2)

By developing the squared norm we have:

β2( 1
dk
(v′T g)2 − 2

dk
(v′T g)2 + ||g||2) + (dk−2)2

dk
= dk

β2(||g||2 − 1
dk
(uT g)2) = dk − (dk−2)2

dk

β2(||g||2 − 1
dk
(v′T g)2) = 4− 4

dk

Using the Cauchy-Schwartz inequality we know that ||g||2 − 1
dk
(v′T g)2 > 0 whenever v′ and g are not colinear. Thus using

the notation p = 4− 4
dk

:

β = ∓
√

p
γ with γ = ||g||2 − 1

dk
(v′T g)2

One can see that the objective value is smaller for β = −
√

p
γ which gives us the result.

A.5. Proof of Proposition 2.7

Proof. Let us show that the objective difference before and after a BCD update of V is always positive. For a given column
Vi the objective difference before and after the update is:

f(Vi)− f(V̂i) = gTi (Vi − V̂i)

with V̂i = αiVd+1 + βigi

⇒ gi =
1
βi
(V̂i − αiVd+1)

gTi (Vi − V̂i) =
1
βi
(V̂i − αiVd+1)

T (Vi − V̂i)
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= 1
βi

(
(V̂i

T
Vi − 1)− αiV

T
d+1(Vi − V̂i)

)
Let us first check the first term. We know that:

1
βi
(V̂iVi − 1) = − 1

2βi
||Vi − V̂i||2

Moreover:

βi =
||gi||cos(ϕi+ψi)−cos(ψi)V

T
d+1gi

||gi||2−(V T
d+1gi)

2

Using the Cauchy-Schwartz inequality, we already know that ||gi||2 − (V Td+1gi)
2 ⩾ 0. Next we will rewrite the numerator:

||gi||cos(ϕi + ψi)− cos(ψi)V
T
d+1gi = ||gi||(cos(ϕi + ψi)− cos(ψi)cos(ϕi))

= −||gi||sin(ϕi)sin(ψi)

Since ϕi ∈ [0, π] and ψi ∈ [0, π] the sinus are positive so we can conclude that βi ⩽ 0. We proved that the first term is
positive, let us now check the second term.

−αiV Td+1(Vi − V̂i) = −αiV Td+1(Vi − (αiVd+1 + βigi))

= −αiV Td+1Vi + α2
i + αiβiV

T
d+1gi.

Using αi = V Td+1Vi − βiV
T
d+1gi we have:

−αiV Td+1(Vi − V̂i) = −(V Td+1Vi − βiV
T
d+1gi)V

T
d+1Vi + α2

i + (V Td+1Vi − βiV
T
d+1gi)βiV

T
d+1gi

= −(V Td+1Vi)
2 + βi(V

T
d+1gi)(V

T
d+1Vi) + α2

i + βi(V
T
d+1Vi)(V

T
d+1gi)− β2

i (V
T
d+1gi)

2

= 2βi(V
T
d+1Vi)(V

T
d+1gi)− β2

i (V
T
d+1gi)

2 − (V Td+1Vi)
2 + α2

i

= −(βi(V
T
d+1gi)− V Td+1Vi)

2 + (V Td+1Vi − βi(V
T
d+1gi))

2 = 0

Thus, the second term is equal to 0 so we proved that f(Vi)− f(V̂i) ⩾ 0

A.6. Proof of Theorem 2.2

Before going through the proof, we describe how the gangster constraint can be formulated in our SDP. First, if we consider
the Boolean vector bk that corresponds to the variable xk ∈ X , the goal of the gangster constraint is to ensure that the
of-diagonal entries of the matrix bkbTk are all zeros. To ensure that bk will satisfy the gangster constraint, we can use the
following matrix Hk ∈ Rdk×dk

Hk =


0 1 · · · 1

1
. . . . . .

...
...

. . . . . . 1
1 · · · 1 0


Thus, for each k = 1, . . . , n, we must have, bTkHkbk = 0. If we think in terms of the concatenated vector b ∈ Rd we must
have bTHb = 0 with

H =

H1 0 0

0
. . . 0

0 0 Hn

, H ∈ Rd×d
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Now, going from {0, 1} to {−1, 1}, bTHb = 0 ⇐⇒ cTGc + cT q + r = 0 with G = 1
4H, q = 1

2H1d, r = 1
41
T
dH1d.

Using the enhanced vector e = [c 1] ∈ {−1, 1}d+1:

tr(ReeT ) = 0 with R =

(
G 1

2q
1
2q
T r

)
∈ R(d+1)×(d+1)

Then we can use the usual relaxation and the usual low-rank factorisation :

X = eeT ∈ R(d+1)×(d+1), tr(RX) = 0

X = VVT , tr(RVVT ) = 0

Proof.

tr(PVVT ) = 0 ⇒ V satisfies the exactly one constraint. With P =

(
FTF −FTu
−uTF uTu

)
⪰ 0

We can factorize the matrix P, P = STS with S =
(
F −u

)
∈ RN×(d+1). Thus, tr(PVVT ) = 0 becomes:

tr(STSVVT ) = 0 ⇐⇒ tr(VTSTSV) = 0

tr((SV)TSV) = 0

||SV||2 = 0

SV = 0

One can see that this last equality is equivalent to the exactly one constraint as in the BCD formulation (6). Now we will
prove that

tr(PVVT ) = 0 ⇒ tr(RVVT ) = 0

with R =

(
G 1

2q
1
2q
T r

)
∈ R(d+1)×(d+1) the gangster constraint matrix. We will rewrite P = M+R with M a matrix we

will describe later. The objective is to show that:

tr(PVVT ) = 0 ⇒ tr(MVVT ) = 0

Thus, tr(PVVT ) = 0 ⇒ tr((M+R)VVT ) = 0

tr(PVVT ) + tr(RVVT ) = 0

tr(RVVT ) = 0

First,

M = P−R =

(
D −FTu− 1

2q
−uTF− 1

2q
T uTu− r

)
With D = diag( 14 ) ∈ Rd×d. For i = 1, ..., d

(−FTu− 1

2
q)i =

di
4

− 1

2
− 1

4
(di − 1) = −1

4

and

uTu− r =

n∑
i=1

(1− di
2
)2 − 1

4

n∑
i=1

di(di − 1)

= n− d+
d

4
= n− 3

4
d
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Next, tr(MVVT ) =
∑
i

∑
j

Mi,jV
T
i Vj with



Mi,j =
1
4 , i = j, i, j = 1, ..., d

Mi,j = − 1
4 , i = d+ 1, j = 1, ..., d

Mi,j = − 1
4 , j = d+ 1, i = 1, ..., d

Mi,j = n− 3
4d, i = j = d+ 1

Thus,

tr(MVVT ) =

d∑
i=1

Mi,i||Vi||2 + 2

d∑
j=1

Md+1,jV
T
j Vd+1 + n− 3

4
d

=
1

4
d+ n− 3

4
d− 1

2

d∑
j=1

V Td+1Vj

We showed that tr(PVVT ) = 0 ⇒V satisfies the exactly-one constraint. We can simplify the last term:

d∑
j=1

V Td+1Vj =

n∑
j=1

(2− dj)

Finally,

tr(MVVT ) =
1

4
d+ n− 3

4
d− 1

2

n∑
j=1

(2− dj)

=
1

4
d+ n− 3

4
d− n+

1

2
d = 0

We can now conclude that tr(PVVT ) = 0 ⇒ tr(MVVT ) + tr(RVVT ) = tr(RVVT ) = 0, so V satisfies the gangster
constraint.


