
Decision with uncertainties, feasibilities, and utilities:
towards a unified algebraic framework

Cédric Pralet1,3 and Gérard Verfaillie2 and Thomas Schiex3

Abstract. Several formalisms exist to express and solve decision
problems. Each is designed to capture different kinds of knowledge:
utilities expressing preferences, uncertainties on the environment, or
feasibility constraints on the decisions, with a possible sequential as-
pect. Despite the fact that every framework relies on specific prop-
erties exploited by dedicated algorithms, these formalisms present
interesting similarities.

In this paper, we show that it is possible to capture these similari-
ties in a generic algebraic framework for sequential decision making
with uncertainties, feasibilities, and utilities. This framework sub-
sumes several existing approaches, from constraint satisfaction prob-
lems to quantified boolean formulas, Bayesian networks or possi-
bilistic Markov decision processes. We introduce this framework us-
ing a toy example, increasingly sophisticated by uncertainties, fea-
sibilities and possible observations. This leads to a formal definition
of the framework together with dedicated queries representing usual
decision problems. Generic algorithms for solving the considered
queries should allow to both factorize existing algorithmic works and
allow for cross-fertilization between the subsumed formalisms.

1 Introduction and notations

The notion of decision problems covers a large spectrum of prob-
lems, from pure utility optimization problems to problems involv-
ing uncertainties, possible unfeasibilities and partial observability. A
large number of frameworks have therefore been proposed to model
and solve such problems. Our aim here is to define a general frame-
work based on graphical models (to capture locality of information
and independence) enriched by an algebraic framework allowing to
design algorithms and prove properties. All proofs are omitted for
lack of space and available in [27].

In the following, Dom(x) denotes the set of values a variable x
may take. By extension, for a sequence of variables S, Dom(S) =Q

x∈S Dom(x). Given a set E, a local function L is a function
L : Dom(S(L)) → E, where S(L) is the scope of L. The elim-
ination of a set of variables S′ from L with any given associa-
tive commutative operator op on E is defined as (opS′ L)(A) =
opA′∈Dom(S′) L(A.A′) for any assignment A of S − S′. Boolean
values are denoted t and f .

We start with a first basic example using just utilities.

Example John faces three doors A, B, C. One of the doors hides a
treasure, another a gangster. John can decide to open one door. The
gangster will rob him 4,000e but the treasure is worth 10,000e.

1 LAAS-CNRS, Toulouse, France cpralet@laas.fr
2 ONERA, Toulouse, France gerard.verfaillie@onera.fr
3 INRA, Castanet-Tolosan, France tschiex@toulouse.inra.fr

Modeling To compactly represent the environment and the deci-
sions, we introduce three variables: (1) two environment variables:
one for the gangster door (denoted ga), and one for the treasure door
(tr); (2) one decision variable (do), representing the door John de-
cides to open. Every variable has {A, B, C} as domain. Decision
variables are variables whose value is controlled by an agent. Other-
wise they are environment variables.

Then, we need two local utility functions U1, U2 to represent util-
ities: (1) U1 expresses that if John opens the gangster door, he must
pay 4, 000e (soft constraint do = ga, with utility degree −4, 000e
if satisfied, and 0 otherwise); (2) U2 expresses that if John opens the
treasure door, he wins 10, 000e (soft constraint do = tr, with utility
degree 10, 000e if satisfied, and 0 otherwise).

Associated query Which door John should open if he knows that
the gangster is behind door A and that the treasure is behind door C
(no uncertainties)? Obviously, he should open door C.

1.1 Adding uncertainties

In real problems, the environment may not be completely known:
there may be uncertainties (here called plausibilities) as well as pos-
sible observations on this uncertain environment. We sophisticate our
treasure quest problem to integrate such aspects.

Example The treasure and the gangster are not behind the same
door, and all situations are equiprobable. John is accompanied by
Peter. Each of them can decide to listen in to door A, B, or C to try to
detect the dog of the gangster. The probability of hearing something
is 0.8 if one listens in to the gangster door, 0.4 for a door next to the
gangster one, and 0 otherwise.

Modeling To capture these new specifications, we define (1) four
more variables: two decision variables liJ and liP , with {A, B, C}
as domain, model the doors to which John and Peter listen in, and
two environment variables heJ and heP , with {yes, no} as domain,
model whether John and Peter hear the dog; (2) four local plausibility
functions: P1 : ga 6= tr and P2 = 1/6 model probability distribu-
tion on the gangster and treasure positions; P3 = P (heJ | liJ , ga)
defines the probability that John hears something given the door
to which he listens in and the gangster door; similarly, P4 corre-
sponds to P (heP | liP , ga). Implicitly, the local plausibilities sat-
isfy normalization conditions. First, as the treasure and the gangster
are somewhere,

P
ga,tr P1 × P2 = 1. Then, as John and Peter hear

something or not,
P

heJ
P3 = 1 and

P
heP

P4 = 1.

Associated queries What are the decision rules that maximize the
expected utility, if first Peter and John listen in, and then John decides
to open a door knowing what has been heard?

A classical approach to answer such a query is to use a de-
cision tree. In this tree, variables can be considered in the order
liJ → liP → heJ → heP → do → ga → tr (first, John and
Peter choose a door to listen in, then they listen and depending on
the listening, John decides which door to open; finally the gangster
and the treasure are behind a given door with a certain probability).
An internal node n in the tree corresponds to a variable x, and an
edge in the tree is labeled with an assignment x = a of the variable
x associated with the node above. If x is an environment variable,
this edge is weighted by the probability P (x = a |A), where A is
the assignment corresponding to the path from the root to x.

The utility of a leaf node is the global utility (U1 + U2)(A) of the
complete assignment A associated with it. The utility of an internal
decision node is given by the value of an optimal children (and it is
possible to record an associated optimal decision). The utility of an
internal environment node is given by the probabilistic expected util-
ity of the values of its children nodes. The global expected utility is
the utility of the root node. It can be proved [27] that such a decision
tree procedure can be reduced to the computation of

max
liJ ,liP

X
heJ ,heP

max
do

X
ga,tr

((
Y

i∈[1,4]

Pi)× (
X

i∈[1,2]

Ui))

In other words, the decision tree procedure is equivalent to a se-
quence of variable eliminations on a combination of local functions.
Optimal decision rules can be recorded during the computation.

Different elimination sequences capture different problems or sit-
uations: if John thinks that Peter is a traitor and let him choose a door
to listen in first (pessimistic attitude concerning the other agent), the
sequence of elimination minliP maxliJ

P
heJ ,heP

maxdo

P
ga,tr

is adequate (liP is eliminated with min). If one assumes that
Peter does not even tell John what he has heard (John does
not observe heP), then the sequence of elimination becomes
minliP maxliJ

P
heJ

maxdo

P
heP

P
ga,tr .

1.2 Adding feasibilities
In some cases, conditions may have to be satisfied for a decision to
be feasible. Unfeasibility is not infinite negative utility: an adversary
cannot reach the former but seeks the latter.

Example John and Peter cannot eavesdrop to the same door and
door A is locked.

Modeling This is achieved using two local feasibility functions:
F1 : liJ 6= liP and F2 : do 6= A. We assume that at least one deci-
sion is feasible in any situation (no dead-end). It can be represented
with two normalization conditions on feasibilities: ∨liJ ,liP F1 = t
and ∨doF2 = t. A decision tree procedure to answer queries is then
equivalent to compute

min
liP

max
liJ

X
heJ

max
do

X
heP

X
ga,tr

((∧
i∈[1,2]

Fi) ? (
Y

i∈[1,4]

Pi)× (
X

i∈[1,2]

Ui))

which uses a special operator ? for masking unfeasible decisions:
if we denote the utility of unfeasible situations by 3, then 3 should
be an identity for elimination operators (op(e, 3) = e for any
elimination operator op), and annihilator for combination operators
(3⊗ e = 3 for any combination operator ⊗) since the combination
of an unfeasible decision with other decisions is unfeasible. Then ? is
the operator that associates 3 with unfeasible decisions: ? is defined
by f ? α = 3 and t ? α = α. Together, 3 and ? exclude unfeasible
situations from elimination domains.

Globally, the knowledge modeled with variables and local func-
tions forms a composite graphical model defined by a DAG captur-
ing normalization conditions on plausibilities and feasibilities (Fig-
ure 1(a))4, and a network of local functions (Figure 1(b)). The net-
work involves several types of variables (decision and environment
variables) and several types of local functions (local utility, plausi-
bility, and feasibility functions).

plausibilility

feasibility

utility

environment

decision

(b)(a)

do

heJ

ga

heJ

F1

P2P1

U1

U2

P3

P4

F2 tr

liP

liJ

heP

heP
P4

ga,tr

P1,P2F1

P3

do

F2

liJ,liP

Figure 1. Composite graphical model (a) DAG capturing normalization
conditions; (b) Network of local functions.

1.3 Other operators for plausibilities and utilities
The previous problem uses probabilities to model uncertainties. Un-
der independence hypothesis, probabilities are combined with an op-
erator ⊗p = ×, and are eliminated (marginalized) with an operator
⊕p = +. However, other uncertainty theories, such as possibility
degrees [11] or κ-rankings [33], use other instantiations of ⊗p/⊕p

Utilities considered so far are additive (using ⊗u = +). However,
utilities may express preferences combined with ⊗u = min.

Probabilistic expected utility is defined as
P

i pi × ui: plausibil-
ities and utilities are combined with ⊗pu = × and elimination on
utilities weighted by plausibilities is done with ⊕u = +. Other
formalisms use an expected utility defined as ⊕u

i
(pi ⊗pu ui) using

other instantiations of ⊕u and ⊗pu:

Ep ⊕p ⊗p Eu ⊗u ⊕u ⊗pu

1 R+ + × R ∪ {−∞} + + ×
2 R+ + × R+ × + ×
3 [0, 1] max min [0, 1] min max min
4 [0, 1] max min [0, 1] min min max(1−p, u)
5 N ∪ {∞} min + N ∪ {∞} + min +

Table 1. Operators with - 1. probabilistic expected utility - 2. probabilistic
expected satisfaction - 3. optimistic and 4. pessimistic possibilistic expected
utility - 5. qualitative utility with κ-rankings and with only positive utilities.

Towards a generic framework After this informal introduction,
it is now possible to give a formal definition of the Plausibility-
Feasibility-Utility (PFU) framework. This framework combines
graphical models concepts (locality, conditional independence) with
a flexible algebraic definition of expected utility in an algebraic
graphical model (Section 2). We then show how queries on these
networks allow to solve decision problems, with or without partial
observability.

Ideally, such queries should reduce to a sequence of vari-
able eliminations on a combination of local functions such as

max
x1,x2

min
x3

⊕u
x4,x5

max
x6

((∧
Fi∈F

Fi) ? (⊗p
Pi∈P

Pi)⊗pu (⊗u
Ui∈U

Ui))

4 If P denotes the set of local plausibility functions associated with a node
corresponding to a set of variables S, this means that

P
S (

Q
Pi∈P Pi) =

1. If F denotes the set of local feasibility functions associated with a node
corresponding to a set of variable S, this means that ∨S(∧Fi∈F Fi) = t.

2 An algebraic graphical model

2.1 Algebraic structure (plausibility/utility model)

Plausibility structure We define a plausibility structure as a triple
(Ep,⊕p,⊗p), where Ep is a set of plausibility degrees, equipped
with a partial order �p, ⊕p is an elimination operator on plausibili-
ties, and ⊗p is a combination operator on plausibilities. ⊕p and ⊗p

satisfy some sensible axioms inspired by Friedman & Halpern’s alge-
braic plausibility measures [14, 17]. The difference with their work is
that we extend the operators ⊕p and ⊗p so that they become closed
in Ep. This allows to define (Ep,⊕p,⊗p) as a commutative semi-
ring (the identity for ⊕p is noted 0p and the identity for ⊗p is noted
1p), where⊕p and⊗p are monotonic, and where 0p (associated with
impossibility) is the minimum element in Ep.

Utility structure We define a utility structure as a pair (Eu,⊗u),
where Eu is a set of utility degrees, (equipped with a partial order
�u) and⊗u is the operator used to combine utilities. We assume that
⊗u is monotonic and that (Eu,⊗u) is a commutative semi-group
(⊗u associative and commutative, so that combined utilities do not
depend on the way the combination is done).

Expected utility structure To simultaneously take into account
plausibilities and utilities, we define an expected utility struc-
ture. This structure, inspired from Chu-Halpern’s work on gener-
alized expected utility [8] (as in algebraic MDP [26]), is a tu-
ple (Ep, Eu,⊕u,⊗pu) where ⊕u (operator on Eu) together with
⊗pu : Ep × Eu → Eu define the generalized expected utility for-
mula ⊕u

i
(pi ⊗pu ui). We extend [8] in order to be able to deal with

sequential decision processes. For operational reasons, ⊕u and ⊗pu

are also closed. This defines (Ep, Eu,⊕u,⊗pu) as a semi-module
on (Ep,⊕p,⊗p), with monotonicity axioms on ⊕u and ⊗pu. Note
that all the structures in Table 1 are expected utility structures.

Implicit assumptions As a set Ep of plausibility degrees and a set
Eu of utility degrees are defined, plausibilities and utilities must be
cardinal: purely ordinal approaches (e.g. CP-nets [4]) are not cap-
tured. As ⊗pu takes values in Eu, it is implicitly assumed that plau-
sibilities and utilities are commensurable: works as [13] are not cap-
tured either. Finally, some axioms entail that only distributional plau-
sibilities are covered (the plausibility of a set of variable assignments
is determined by the plausibilities of each covered complete assign-
ment): belief functions [30] are not captured.

Algebraic structure for the treasure problem The plausibility
structure is (R+, +,×) (Ep = R+ and not [0, 1] in order for +
to be closed in Ep), the utility structure is (R, +), and the expected
utility structure is (R+, R, +,×).

2.2 A generic graphical model

Following the graphical model concepts, the environment and the
decisions are now represented by environment and decision vari-
ables while the relations between these variables (plausibility, fea-
sibility, and utility relations) are represented as local functions. To-
gether, these define a composite and generic graphical model called
a Plausibility-Feasibility-Utility (PFU) network.

Definition 1 A PFU network is a tuple (V, G, P, F, U) where:

• V is a set of variables, partitioned into VD (set of decision vari-
ables) and VE (set of environment variables).

• G is a DAG whose vertices are a partition of V (vertices of G
are sets of variables called components), such that each vertex
of G is composed of variables of the same nature (decision or
environment). We note CD the set of decision components and CE

the set of environment components.
• P = {P1, P2, . . .} is a finite set of local plausibility functions;

each Pi is associated with a component c ∈ CE denoted c(Pi),
such that the scope S(Pi) ⊂ (c ∪ paG(c)). For any c ∈ CE .
⊕p

c

(⊗pc(Pi)=cPi) = 1p must hold.

• F = {F1, F2, . . .} is a finite set of local feasibility functions;
each Fi is associated with a component c ∈ CD denoted c(Fi),
such that the scope S(Fi) ⊂ (c ∪ paG(c)). For any c ∈ CD , we
have ∨

c
(∧c(Fi)=cFi) = t.

• U = {U1, U2, . . .} is a finite set local utility functions.

The decomposition of global plausibility, feasibility, and utility de-
grees as sets of local functions is semantically justified by the notion
of conditional independence. We provide an intuitive justification for
plausibilities. Let us say that PS is a plausibility distribution on S iff
⊕pS PS = 1p (for probabilities, it simply means that a probability
distribution sums up to 1). PS defines a plausibility distribution on
any subset S′ of S by PS′ = ⊕pS−S′ PS .

To define conditional independence, we introduce a condition-
ing function �p (verifying some sensible properties, see [27]) al-
lowing to define conditional plausibility distributions by PS1 |S2 =
PS1,S2 �p PS2 (for probabilities, �p is the division). Then, for any
disjoint sets of variables S1, S2, S3, we say that S1 is conditionally
independent of S2 given S3 iff PS1,S2 |S3 = PS1 |S3 ⊗p PS2 |S3 .

Last, a DAG G of components is said to be compatible with a
plausibility distribution PS iff for any component c of the DAG, c is
conditionally independent of its non descendants in G given the set
paG(c) of its parents in G. Similarly to Bayesian networks [25], it is
possible to prove [27] that:

Theorem 1 If G is a DAG compatible with PS , then PS =
⊗pc∈G Pc | paG(c).

Thanks to Theorem 15, a DAG compatible with a global plausibil-
ity distribution enables to factorize it as a combination of local func-
tions Lc,paG(c) (Lc,paG(c) = Pc | paG(c)) such that⊕pc Lc,paG(c) =
1p for any component c of G. Each Lc,paG(c) may be further de-
composed to give local plausibility functions Pi associated with c
(denoted c(Pi) = c) thus verifying ⊕pc (⊗pc(Pi)=c Pi) = 1p. This
two-step factorization justifies the DAG in a PFU network and the
normalization conditions it encodes.

Similar results can be established for feasibilities. As for utilities,
PFU networks implicitly assume that a global utility degree UV on
all variables can be decomposed as a set of local utility functions
Ui. One may assume that this decomposition is directly obtained, as
it is done with CSP [22] or is justified by a notion of conditional
independence in the case ⊗u = + as in [1].

Example The PFU network of our example appears in Figure 1.

Subsumption results CSP [22] can be modeled as (V, G, ∅, ∅, U)
where V contains the CSP variables, the DAG G is reduced to
one decision component equal to V and U is the set of constraints
(by normalization, feasibilities cannot represent inconsistent CSP).

5 And with some technical steps induced by the fact that we do not work on
plausibility distributions on V , but on plausibility distributions on VE for
any assignment of VD .

It is also possible to capture valued [2], quantified [3], mixed [12],
stochastic [34] CSP, or SAT, QBF, and extended stochastic SAT [21].

Bayesian networks [25] are captured by a PFU network
(V, G, P, ∅, ∅), where P contains the original probability tables.
Chain graphs [15], Markov random fields [7] are also subsumed.

Finite-horizon probabilistic MDP [28, 23] are captured by
(V, G, P, ∅, U) where VD and VE are the set of decisions dt and
states s− t respectively (one for each time-step t), G is a DAG look-
ing like the unrolled MDP, P contains the probability distributions
Pst+1 | st,dt , and U contains the additive rewards Rst,dt . It is also
possible to model finite-horizon possibilistic MDP [29], MDP based
on κ-rankings, partially observable (PO) MDP, factored or not [5, 6].

Influence diagrams [18], including a possibilistic variant, can be
represented as a tuple (V, G, P, ∅, U). For valuation networks [32],
a set F of local feasibility functions is added.

3 Reasoning about PFU networks via queries
In this section, we assume that a sequence of decisions must be per-
formed, and that the order in which decisions are made and the en-
vironment is observed is known. We also make a no-forgetting as-
sumption, that is, when making a decision, an agent is aware of all
previous decisions and observations. Finally, the order on utility de-
grees is assumed to be total.

Under such assumptions, we want to express sequential decision
making problems on PFU networks, taking into account possible par-
tial observability and cooperative or antagonist agents in the environ-
ment. To capture such problems, we use a sequence Sov of operator-
variable(s) pairs that captures:

• possible unobservabilities: the order in which decisions are made
and environment variables observed is specified by Sov. If the
value of heP is known when John chooses a door to open, then
Sov contains . . . (⊕u, heP) . . . (max, do) Otherwise, a se-
quence like . . . (max, do) . . . (⊕u, heP) . . . is used;

• optimistic/pessimistic attitude concerning the decision makers: if
Peter acts cooperatively (we are optimistic about Peter’s decision)
then (max, liP) appears in Sov. If instead Peter is considered as
an antagonist agent then (min, liP) is used.

Example For the last query in §1.1, Sov equals (min, {liP }).
(max, {liJ}).(+, {heJ}).(max, {do}).(+, {heP }). (+, {ga, tr}).

Definition 2 A query Q on a PFU network is a pair (N , Sov)
where (1) N is a PFU network; (2) Sov is a sequence of operator-
variable(s) pairs such that the operators are min, max or ⊕u, and
such that each variable appears at most once in Sov.

Correct queries Not all queries are meaningful. The main condi-
tion for a query to be correct is that it must not contain a pair x,
y of variables of different nature such that x belongs to an ascen-
dant component of y in the DAG of the PFU network and x appears
after y in Sov. This would mean that x is assigned after y, breaking
causality. For example, the pair . . . (+, heJ) . . . (max, liJ) . . . is not
correct since John cannot hear something at the door he has chosen
to eavesdrop before this choice is done.

3.1 Answering queries
Asnwering a query Q consists in computing the expected utility as-
sociated with the situation modeled by the sequence Sov and the
network N of the query Q.

Decision tree approach A first approach to answer queries in the
general case (not only for probabilistic expected utility) uses deci-
sion trees. In this case, variables are considered as they appear in
Sov, and edges in the tree are weighted by conditional plausibili-
ties of the form P(x = a |A) for the internal nodes associated with
environment variables, and by conditional feasibilities of the form
F(x = a |A) for internal nodes associated with decision variables.

Then the expected utility of a query (and associated optimal deci-
sion rules specifying which decision to take given the previous ob-
served variables) can be defined with a decision tree procedure simi-
lar to the procedure described in 1.1 (the utility of a leaf node is given
by the combination of the local utilities Ui, the utility of an internal
environment node is given by the expected utility of its children, and
the utility of an internal decision node is given by the optimal utility
of its feasible children nodes).

A more operational approach The advantage of the decision tree
procedure is that it has clear semantic foundations. But besides the
possibly exponential size tree, its drawback is that each internal node
of the decision tree may require the computation of P(x = a |A) or
F(x = a |A) which are not usually directly available in the network
N and which may require exponential time to compute. Fortunately,
it is possible to show [27] that the decision tree procedure (called the
semantic answer to Q) is equivalent to a direct algebraic approach
(called the operational answer to Q) which requires only the local
functions available in the original PFU network.

Theorem 2 Answering a query with a decision tree is equivalent to
compute Ans(Q) = Sov((∧

Fi∈F
Fi) ? (⊗p

Pi∈P

Pi) ⊗pu (⊗u
Ui∈U

Ui))

Furthermore, the optimal decision rules obtained are the same as in
the decision tree approach.

3.2 Subsumption of classical queries
Most usual queries on existing formalisms can be reduced to PFU
queries: finding a solution for a SAT problem, a CSP [22] or a valued
CSP [2] corresponds to a sequence Sov = (max, V). For QBF or
quantified CSP [3], Sov alternates min (for universal quantification)
and max (for existential quantification). With mixed or probabilistic
CSP [12], Sov looks like (⊕u, VE).(max, VD) if a conditional deci-
sion is sought and (max, VD).(⊕u, VE) if an unconditional decision
is sought. The situation is similar with conformant or probabilistic
planning [16].

Queries on Bayesian networks [25] look like (+, S) to compute a
probability distribution on V −S, (max, V) to solve a Most Probable
Explanation problem, and (max, VD).(+, VE) to solve Maximum A
Posteriori problems.

With stochastic CSP [34] or influence diagrams [18],
the sequence alternates + on environment variables and
max on decision variables. With finite-horizon MDP, Sov
looks like (max, d1).(⊕u, s2). . . . (max, dT).(⊕u, sT).
With finite-horizon POMDP, observations ot are
added (one for each time-step t), and Sov =
(max, d1).(⊕u, o2). . . . (max, dT).(⊕u, oT).(⊕u, {s1, . . . , sT }):
this captures the fact that states remains unobserved for POMDP.

4 Gains and costs

A better understanding As it subsumes many queries on existing
graphical models, the PFU framework enables to better understand
the similarities and differences between the subsumed formalisms.

It defines a common basis for people of different communities to
communicate.

Increased expressiveness The PFU framework offers several vari-
abilities: (1) variability of the algebraic structure, which captures
probabilistic expected utility, probabilistic expected satisfaction, pos-
sibilistic pessimistic utility, possibilistic optimistic utility or quali-
tative utility with κ-rankings; (2) variability of the network which
exploits oriented and non-oriented independences as well as normal-
ization conditions; (3) variability of the queries which can capture
state (un)observability and ccoperative/antagonist attitudes.

It is therefore more expressive than each of the frameworks it sub-
sumes, and it also covers yet unpublished formalisms (such as possi-
bilistic influence diagrams, or stochastic CSP extended to cope with
the fact that decisions may influence the environment).

Generic algorithms Computing the answer to a correct query is ob-
viously PSPACE-hard since PFU queries capture QBF. It is easy to
define, from Theorem 2, a polynomial space tree search algorithm
which computes the answer to a correct query. Similarly, it is pos-
sible to define a generic variable elimination algorithm to compute
Ans(Q) [10]. The PFU algebraic framework is an opportunity to
identify sufficient or necessary conditions for existing algorithms to
be applicable [24], or to define new techniques from which each
subsumed formalism could benefit. Bounding and local consisten-
cies [22, 9, 20] could be integrated to speed up the resolution.

As a result, the PFU framework can be seen as an opportunity to
integrate in a generic framework techniques developed in different
subsumed formalisms, and thus to allow for cross-fertilization.

5 Conclusion
In this paper6, a generic algebraic framework for sequential deci-
sion making has been defined. It combines an algebraic structure that
specifies how to combine and synthesize information together with
a graphical model specifying local plausibility, feasibility, and utility
functions. Queries can capture possible (un)observabilities or antag-
onist agents.

The generalized expected utility associated with a query can be
computed by a sequence of variable eliminations on a combination
of local functions. Compared to valuation algebras [31, 19], a related
generic framework, the PFU framework uses several combination (∧,
?, ⊗p, ⊗pu, ⊗u) and elimination operators (min, max, ⊕u). More-
over, the semantic justifications of the definition of PFU networks,
which lie in the notion of conditional independence, allow to include
a DAG capturing normalization conditions in the network definition.

The obtained framework not only subsumes many queries on ex-
isting formalisms, but it also enables to define yet unpublished for-
malisms. From an algorithmic point of view, generic schemes that
integrate techniques used in subsumed formalisms can be developed.

References
[1] F. Bacchus and A. Grove, ‘Graphical Models for Preference and Util-

ity’, in Proc. of UAI, (1995).
[2] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and

H. Fargier, ‘Semiring-Based CSPs and Valued CSPs: Frameworks,
Properties and Comparison’, Constraints, 4(3), 199–240, (1999).

[3] L. Bordeaux and E. Monfroy, ‘Beyond NP: Arc-consistency for Quan-
tified Constraints’, in Proc. of the 8th International CP conference,
Ithaca, New York, USA, (2002).

6 This work was partially conducted within the EU IP COGNIRON (”The
Cognitive Companion”) funded by the European Commission Division
FP6-IST Future and Emerging Technologies under Contract FP6-002020.

[4] C. Boutilier, R. Brafman, H. Hoos, and D. Poole, ‘Reasoning With Con-
ditional Ceteris Paribus Preference Statements’, in Proc. of the 15th
UAI Conference, Stockholm, Sweden, (1999).

[5] C. Boutilier, R. Dearden, and M. Goldszmidt, ‘Stochastic Dynamic
Programming with Factored Representations’, Artificial Intelligence,
121(1-2), 49–107, (2000).

[6] Craig Boutilier, Thomas Dean, and Steve Hanks, ‘Decision-theoretic
planning: Structural assumptions and computational leverage’, Journal
of Artificial Intelligence Research, 11, 1–94, (1999).

[7] R. Chellappa and A. Jain. Markov random fields: Theory and applica-
tions. Academic Press, 1993.

[8] F.C. Chu and J.Y. Halpern, ‘Great expectations. part i: On the customiz-
ability of generalized expected utility’, in Proc. of IJCAI, pp. 291–296,
Acapulco, Mexico, (2003).

[9] M. Cooper and T. Schiex, ‘Arc Consistency for Soft Constraints’, Arti-
ficial Intelligence, 154(1-2), 199–227, (2004).

[10] R. Dechter, ‘Bucket Elimination: A Unifying Framework for Reason-
ing’, Artificial Intelligence, 113(1-2), 41–85, (1999).

[11] D. Dubois and H. Prade. Possibility Theory: An Approach to Comput-
erized Processing of Uncertainty. Plenum Press, 1988.

[12] H. Fargier, J. Lang, and T. Schiex, ‘Mixed Constraint Satisfaction: a
Framework for Decision Problems under Incomplete Knowledge’, in
Proc. of the 13th AAAI, pp. 175–180, Portland, USA, (1996).

[13] H. Fargier and P. Perny, ‘Qualitative Models for Decision Under Un-
certainty without the Commensurability Assumption’, in Proc. of UAI,
(1999).

[14] Friedman N., Halpern J., ‘Plausibility Measures : A User’s Guide’, in
Proc. of UAI, Montral, Canada, p. 175-184, (1995).

[15] M. Frydenberg, ‘The Chain Graph Markov Property’, Scandinavian
Journal of Statistics, 17, 333–353, (1990).

[16] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and
Practice, Morgan Kaufmann, 2004.

[17] J.Y. Halpern, ‘Conditional plausibility measures and Bayesian net-
works’, JAIR, 14, 359–389, (2001).

[18] R. Howard and J. Matheson, ‘Influence Diagrams’, in Readings on the
Principles and Applications of Decision Analysis, 721–762, Strategic
Decisions Group, Menlo Park, CA, USA, (1984).

[19] J. Kolhas, Information Algebras: Generic Structures for Inference,
Springer, 2003.

[20] J. Larrosa and T. Schiex., ‘In the quest of the best form of local consis-
tency for weighted CSP’, in Proc. of IJCAI, Acapulco, Mexico, (2003).

[21] M. Littman, S. Majercik, and T. Pitassi, ‘Stochastic Boolean Satisfia-
bility’, Journal of Automated Reasoning, 27(3), 251–296, (2001).

[22] A. Mackworth, ‘Consistency in Networks of Relations’, Artificial Intel-
ligence, 8(1), 99–118, (1977).

[23] G. Monahan, ‘A Survey of Partially Observable Markov Decision Pro-
cesses: Theory, Models, and Algorithms’, Management Science, 28(1),
1–16, (1982).

[24] P. Ndilikilikesha, ’Potential Influence Diagrams’,International Journal
of Approximated Reasoning,3, 251–285, (1994).

[25] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann, 1988.

[26] P. Perny, O. Spanjaard, and P. Weng, ‘Algebraic Markov Decision Pro-
cesses’, in 19th IJCAI Proc., Edinburgh, Scotland, (2005).

[27] C. Pralet, G. Verfaillie, and T. Schiex. An Algebraic Graphical Model
for Decision with Uncertainties, Feasibilities, and Utilities. LAAS-
CNRS Report, http://www.laas.fr/∼cpralet/praletverfschiex.ps, 2005.

[28] M. Puterman, Markov Decision Processes, Discrete Stochastic Dy-
namic Programming, John Wiley & Sons, 1994.

[29] R. Sabbadin, ‘A Possibilistic Model for Qualitative Sequential Decision
Problems under Uncertainty in Partially Observable Environments’, in
Proc. of the 15th UAI Conference, Stockholm, Sweden, (1999).

[30] G. Shafer, A mathematical theory of evidence, Princeton University
Press, 1976.

[31] P. Shenoy, ‘Valuation-based Systems for Discrete Optimization’, Un-
certainty in Artificial Intelligence, 6, 385–400, (1991).

[32] P.P. Shenoy, ‘Valuation network representation and solution of asym-
metric decision problems’, European Journal of Operational Research,
121, 579–608, (2000).

[33] W. Spohn, ‘A general non-probabilistic theory of inductive reasoning’,
in Uncertainty in Artificial Intelligence 4, 149–158, North-Holland,
Amsterdam, (1990).

[34] T. Walsh, ‘Stochastic Constraint Programming’, in Proc. of the 15th
ECAI Conference, Lyon, France, (2002).

