Guaranteed Diversity & Quality
for the Weighted CSP

Manon Ruffini*, Jelena Vucinic’, Simon de Givryi, George Katsirelos?, Sophie Barbe¥ and Thomas Schiex!!

*H”MIAT, Université de Toulouse
INRA, Auzeville-Tolosane, France
Email: firstname.name @inra.fr

Abstract—In many applications of constraint programming, it
is often impossible to capture all the relevant information in one
numerical criterion. In this case, it is useful to produce a set
of high-quality yet diverse solutions. In this paper, motivated
by a Computational Protein Design application, we consider
the general problem of producing a diverse set of high-quality
solutions of a given Weighted Constraint Satisfaction Problem,
with guarantees both on solution quality and diversity. We use
weighted automata decomposed in functions of bounded arity,
incremental Cost Function Network solving, a simple form of
predictive bounding, and compressed representations of distance
constraints for improved efficiency. We show that this approach
can be successfully applied to a variety of problems that include
both Protein Design Problems but also large Bayesian networks
represented as CFNs. We also show that our approach has the
capacity to enumerate so-called local ) modes and that it does
provide improved protein designs.

Index Terms—Diversity, Semi-metric, Constraint Program-
ming, WCSP, Cost Function Networks, Local consistency, Au-
tomata, Dual Hidden representation, Protein Design

I. INTRODUCTION

Constraint Programming (CP) is a modeling paradigm that
is effective to build models of problems where solutions and
non-solutions can be separated by a set of properties, or
constraints, that solutions must satisfy. When more gradual
information is available, capturing costs or uncertainty, two ap-
proaches can be followed: Constraint Optimization (COP [1])
reduces optimization to a series of feasibility requests by
introducing specific cost variables and functional constraints
to represent a criterion that must be sufficiently optimized. The
main advantage is that existing CP tools can be directly used.
Alternatively, Cost Function Networks (CFNs) directly model
a criterion and feasibility constraints as a sum of cost func-
tions, where infinite or intolerable costs capture infeasibility.
When the criterion to optimize decomposes naturally in a sum
of small functions, CFNs do not require the introduction of
additional variables and constraints while providing dedicated
powerful processing algorithms [2], [3].

When the optimized criterion is not a perfect representation
of the real problem, optimization queries are often insufficient
to identify a single universally satisfying assignment. In the
CSP (Constraint Satisfaction Problem) or SAT problems, all

Funded by the Agence Nationale de la Recherche, ANR-16-CE40-0028.

SMIA-Paris UMRSI8
Paris, France
Email: georgios.katsirelos @inra.fr

ﬂLISBP, Université de Toulouse
CNRS, INRA, INSA, Toulouse, France
Email: sophie.barbe @insa-toulouse.fr

solutions are equivalent. In COP or CFNs, there are often
additional criteria that could not be captured in the model.
In these cases, optimal solutions may possibly be not the best
“in practice”. This can happen if the criterion has been learned
from data or when it is an approximate representation of
an otherwise highly intractable mathematical model. In these
cases, it intuitively makes sense to produce a set of diverse
low-cost solutions.

In this paper, we are specifically motivated by the Com-
putational Protein Design (CPD [4]) problem. A protein is
a chain of simple molecules called amino acids. All amino
acids consist of a constant common core of carbon, nitrogen
and oxygen atoms and a variable and flexible side chain, with
varying chemical properties. There are 20 natural side chains
defining 20 natural amino acids. In a protein, the constant parts
of successive amino acids are linked in a chain to form the
backbone of the protein. In water, most proteins fold into a
specific 3D shape which is determined by the sequence of its
amino acids. The side chain of amino acids are flexible and can
be rotated along up to 4 axes relative to the backbone. The
3D shape defined by the backbone and the set of rotations
is called a conformation of the protein and determines its
chemical function. In CPD, we are given a rigid 3D backbone
and we need to identify sequences of amino acids that should
fold in this target backbone. To solve this problem, it is
usual to rely on a pairwise decomposable energy function
which, given the nature and orientation of all its side chains,
provides an approximation of the energy of the protein. It then
becomes possible to identify the nature and conformation of
the side chains by minimizing the protein energy (maximizing
stability). The energy function being pairwise decomposable
and the backbone assumed to be rigid, the protein energy can
be described as a pairwise Cost Function Network with one
variable for every position in the protein chain, with a domain
that describes a discrete ensemble of possible side chain
natures, each with a set of statistically preferred orientations
(called a rotamer library). An assignment of minimum energy
defines an amino-acid sequence that can then be synthesized
and tested for proper function. Because proteins govern much
of how cells work, in humans, animals, plants, and microbes,
newly designed proteins have a large potential for applications
in medicine, biofuels, green chemistry. ..



In CPD, as in many other real problems, the criteria opti-
mized only approximates the real criteria: the actual energy
of the protein. This makes the protein design process unreli-
able: typical workflow includes the expensive production and
experimental testing of several proteins. Ideally, this library
should therefore be a set of diverse and low energy solutions.
The hope is that diversity will improve the likelihood that a
working protein is found. The diversity can be defined by the
Hamming distance between sequences or can be a “chem-
ical” diversity that can be estimated with existing protein
dissimilarity matrices. Because of their important applications,
protein sequences can also be subject to patents: in this case, a
newly designed sequence must absolutely satisfy a Hamming
distance constraint to existing patented sequences.

It has been recently shown that exact algorithms Main-
taining Soft Local Consistencies (MSLC) during tree-search
often outperformed alternative exact approaches for finding
optimal CFN assignments [3]. On the rigid backbone CPD
problem, this approach outperforms a variety of solvers includ-
ing Integer Linear and Quadratic Programming solvers, Partial
Weighted MaxSAT solvers or COP solvers as well as CPD-
dedicated exact algorithms [5]. Recently, MSLC algorithms
have even been used to bring to light the limitations of a
CPD-dedicated Simulated Annealing implementation [6] and
to produce a hyper-stable self-assembling protein [7].

In this paper, we are interested in producing a set of
solutions that have low cost and that satisfy inter-solutions
distance constraints. Beyond the specific Protein Design prob-
lem, diversity appears to be a very usual requirement and
many approaches to this problem already exist. However, none
fits our needs. After a quick tour of existing approaches, we
precisely define the general problem we tackle and prove that
it generalizes the closely related problem of producing a set of
M $-modes [8] (or local minima). Because of the previously
shown efficiency of MSLC algorithms, we consider enforcing
soft local consistency on such distance requirements and show
that it is NP-hard, even for the weakest nontrivial soft local
consistencies. We represent distance constraints using global
(high-order) automaton-based functions and optimize a non-
homogeneous decomposed representation by exploiting the
distance function semantics. We explore how the dual/hidden
representations of Constraint Satisfaction problems can be
lifted to CFNs to accelerate filtering. Similarly to the in-
cremental SAT framework, we solve a sequence of WCSPs
(Weighted Constraint Satisfaction Problems), relying on a sim-
ple but effective predictive bounding approach. We evaluate
the algorithm on a set of problems that includes very large
Bayesian networks benchmark problems and CPD instances,
both encoded as CFNs. Our results show that the protein
design process can be improved thanks to diversity. We also
compare our approach, when feasible, to a closely related re-
cent algorithm computing §-modes [9]. All problems and code
are available at https://forgemia.inra.fr/thomas.schiex/toulbar2
in the ’tschiex/incremental’ branch.

II. BACKGROUND

We use capital letters to denote variables, lowercase letters
for values and bold letters for sets, sequences or tuples.

Definition 1. A Cost Function Network (CFN) is a pair
(X, W) where X = {X1,...,Xn} is a set of n variables
and W is a set of cost functions. Each variable X; € X
has a finite domain D; of values that can be assigned to it.
For a set of variables S C X, Dg denotes the Cartesian
product of the domains of the variables in S. For a given
tuple of values t, t[S] denotes the projection of t over S. A
cost function wg € W, with scope S C X, is a function ws
that maps tuples in Dg to integer costs less than a maximum
cost k € ZU {oo}, used for forbidden tuples. We say that
a CFN is in Normal Form if all wg € W with S # & are
non-negative and W contains one constant empty scope cost
function wg with arbitrary value in Z.

A CFN N = (X, W) defines a joint integer cost function
IN(X) = D sew ws, Where a©b = min(k, a+b) is the k-
bounded addition. In the rest of the paper, we assume that all
CFNs are in Normal Form (linear time computable) and in this
case, wy is a lower bound on Jy (X). A function wg that uses
only costs 0 and k is a constraint. An assignment of X that has
cost strictly less than k is feasible. The Weighted Constraint
Satisfaction Problem (WCSP) is to find a feasible assignment
of X minimizing Jx (X). The WCSP is decision NP-complete.
If &k = 1, the WCSP is the Constraint Satisfaction Problem
(CSP). As described in [5], the CPD problem reduces to a
binary WCSP where there is one variable per position to
design in the sequence of the considered protein. Each value in
a domain contains a pair that describes both the nature of the
amino acid used and its conformation (typically a few hundred
values per domain). The energy of the designed protein is de-
scribed by unary and binary cost functions forming an almost
complete graph. Typical protein design problems involve less
than 100 mutable amino acids or variables.

One of the most successful techniques for solving the WCSP
consists of maintaining Soft Local Consistencies (MSLC) dur-
ing Branch and Bound Search [2], [3], [10]. These algorithms
explore a (usually) binary tree where a CFN is associated with
every node. The root is the CFN N to solve. To branch, an
unassigned variable X; is selected as well as a value r in
its domain. On the left branch, X; is assigned to r and on
the right branch, r is removed from the possible values for
X;. To avoid exploring the whole tree, a lower bound /b on
the cost of the best complete assignment below the current
node is computed. If b is larger than or equal to the cost k,
the branch is pruned with no loss of information. If a leaf is
reached, it is a feasible assignment and the upper bound % is
updated to its cost, enforcing the fact that a better solution is
sought. In practice, there are two crucial components in this
combination: the branching variable selection, that should first
assign variables that are likely to lead to strong pruning, and
the use of wy as a lower bound, following the application of
generalization of Arc Consistency to CFNs, called Soft Local



Consistencies [2].

Soft Local Consistencies (SLCs) are properties that can be
enforced on a CEN (X, W), transforming it into an equivalent
CEN (X, W') that satisfies the enforced SLC property, has a
non-decreased lower bound wg and possibly smaller domains:
any value which can be easily shown to lead to assignments
of cost k can be safely pruned. There is a variety of SLCs
providing increasingly tight lower bounds: Node, &-inverse,
Directional, Arc, Existential, Virtual and Optimal consisten-
cies [2], [11]. Except for the first three, they all reduce to Arc
Consistency [12] when k£ = 1 (CSP).

To measure the distance between solutions, we consider
semi-metrics defined by a sum of variable-wise dissimilarities
defined in a zero-diagonal symmetric positive matrix D. Given
two assignments tg and t’s of a set of variables S, we assume
that d(ts,ts) = > x, cs D(ts[Xi], tg[Xi]). The properties
of D guarantee that a semi-metric is defined. The Hamming
distance is defined by H(i,j) = 1(i # j). In biology,
protein sequences are often compared using dedicated protein
similarity matrices, such as the BLOSUMG62 matrix. A protein
similarity matrix S can be transformed into a dissimilarity
matrix by D(i, j) = £(S(i,7) + S(j,5)) — S(i, j).

Definition 2. Given a set Z of solutions, we define its average
dissimilarity as d(Z) = ﬁ > tztez At, t7) and its minimum
dissimilarity as d(Z) = mingsy ez d(t,t').

Definition 3. Given two sets of variables S and S' of
the same cardinality, a dissimilarity matrix D and a diver-
sity lower bound 6, we define the high-order cost function
Di1sT(S, S’, D, ) which is equal to 0 if sign(d).d(S,S") > ¢
and k otherwise.

Problem 1 (DIVERSESET). Given a CFN N = (X, W),
a dissimilarity matrix D, an integer M and a dissimilarity
threshold 6, the problem DIVERSESET(N, D, M, ) consists of
producing a set Z of M solutions of N such that V't # t' € Z,
DisT(t,t',D,0) = 0 and ), 5 In(t) is minimum.

For a CFN N with n variables, solving DIVERSESET
requires to simultaneously decide the value of nM variables. It
can be solved by makin§ M copies of N with variable sets X!
to XM and adding %ﬁl) constraints DIST(X?, X7, D, )
forall 1 <14 < j < M (if k is finite, all occurrences of k£ must
also be replaced by M.(k—1)+1). Because this problem may
be very hard to solve on even tiny problems, we consider a

closely related problem.

Problem 2 (DIVERSESEQ). Given a CFN N = (X, W),
a dissimilarity matrix D, an integer M and a dissimi-
larity threshold ¢, the problem DIVERSESEQ(N, D, M, )
consists of producing a sequence Z of M solutions of N
such that for any 1 < i < M, Z[i] is such that Vj <
i, DIST(Z[i], Z[j], D, ) = 0 and Z[i] has minimum cost.

DIVERSESEQ can be solved greedily by iteratively deciding
n variables M times which, given the NP-hardness of WCSP,
may be exponentially faster.

Definition 4. Given a set of solutions Z, we define the global
cost function DIV yin(X,Z, D, 0) = @4 DIST(X, t, D, 9).

We  repeatedly solve the CFN (X,W U
{D1Vpmin(X,Z, D, §)}) starting from Z = @& and adding the
solution found to Z iteratively until |Z| = M or no solution
exists. Because the CFNs solved are increasingly constrained,
the cost of successive solutions must be non-decreasing. If
pre-existing (patented) solutions t exist, they can be taken
into account by adding the corresponding DIST(X, t, D, )
constraints before the first iteration.

III. RELATION WITH EXISTING WORK

In the case of Boolean functions, [13] considers the op-
timization of M or § using average or minimum dissim-
ilarity. The authors prove that enforcing Arc Consistency
on a constraint requiring sufficient average dissimilarity d
is polynomial but NP-complete for minimum dissimilarity d
and evaluate an algorithm for incremental production of a
set maximizing d. [14] and [15] later addressed the same
problems using global constraints and knowledge compilation
techniques. More recently, [16] proposed a COP approach to
provide diverse high-quality solutions. Their approach how-
ever trades diversity for quality.

The idea of producing diverse solutions has also been
explored in the related area of discrete stochastic Graphical
Models (such as Markov Random Fields), which are closely
related to CFNs. [17] exploits the fact that the Lagrangian
relaxation of minimum dissimilarity constraints adds only
unary cost functions. However, the duality gap is non zero even
for simple dissimilarities and an exact method only available
for submodular problems. This was extended in [18] using
high-order functions (or potentials) to approximately optimize
a trade-off between diversity and quality. More recently, [19]
addressed the DIVERSESET problem, but using optimization
techniques that provide no guarantee.

In the end, we observe that none of these approaches
simultaneously provides guarantees on quality and diversity.
Closest to our target, [20] considered the problem of incre-
mentally producing the set of the best M J-modes of the joint
distribution Jy (X).

Definition 5 ( [9]). A solution t is said to be a d-mode iff
there exists no better solution than t in the Hamming ball of
radius § centered in t (implying that t is a local minimum).

In [8], [9], [20], [21], an exact dynamic programming
algorithm, combined with a A* heuristic search and tree-
decomposition was proposed to exactly solve this problem
with the Hamming distance. This algorithm relies however on
NP-complete lower bounds and is restricted to a fixed variable
order. It however provides a diversity guarantee: indeed, a -
mode will always be strictly more than 6 away from another
one and will be produced by greedily solving DIVERSESEQ.

Theorem 1. Given N, §, and H the Hamming dissimilarity
matrix, for any §-mode t, there exists a value M’ such that
the solution of DIVERSESEQ(N, H, M', 6 + 1) contains t.



Proof. If a d0-mode t is not in the solution of
DIVERSESEQ(N, H,M’,§ + 1) , this must be because
it gets forbidden by a DIST constraint. Consider the iteration
1 which forbids t for the first time: a solution with a cost
lower than the cost of t was produced (else t would have been
produced instead) but this solution is strictly less than § 4 1
away from t (since t gets forbidden). But this contradicts the
fact that t is a J-mode. O

For a sufficiently large M, the sequence Z solution of
DIVERSESEQ(N, H, M,§ + 1) will therefore contain all §-
modes and possibly some extra solutions. Interestingly, it is
not difficult to separate modes from non-modes.

Theorem 2. Any assignment t of a CFN N = (X, W) is
a d-mode iff it is an optimal solution of the CFN (X, W U
{D1s1(X,t, H,—0)}). For bounded 6, this problem is in P.

Proof. The function DIST(X,t, H,—§) restricts X to be
within § of t. If t is an optimal solution of (X,W U
{DisT(X, t, H,—d})) then there is no better assignment than
t in the J-radius Hamming ball and t is a §-mode. For §
bounded, a CFN with n variables and at most d values in
each domain, there is O((nd)?) tuples within the Hamming
ball and the problem of checking if t is optimal is in P. [

IV. SOFT LOCAL CONSISTENCY AND DIVyin

In order to iteratively solve the CFN (X, W U
{D1Vin (X, Zmin, D,0)}) using an MSLC approach,
we need to enforce some SLC on DIVy,. In the CSP
case, [13] proved that enforcing arc consistency on DIV,
is NP-complete. Since Soft Arc Consistency and stronger
variants generalize Arc Consistency (AC) in CSP, we know
that enforcing soft arc consistency on DIV,,;, is NP-complete
too. However, there are SLCs that are weaker than AC
in CSP and one could hope that they could be enforced
efficiently on D1v,,;,,. One of the weakest non-naive soft local
consistency is J-inverse consistency [22]. A cost function
wg 1s said to be T-inverse consistent if its minimum is 0.
To enforce @-inverse consistency, one subtracts the minimum
of wg from wg and adds it to wg. These operations that
shift costs between scopes are called equivalence preserving
transformations (EPT) [2]. They generalize the AC Revise
operation to CFNs to enforce soft local consistencies.

Theorem 3. J-inverse consistency is NP-hard to enforce on
Divyin(X,Z, D, 6).

Proof. Checking AC on D1V ,;, is NP-complete. By definition
of AC, DIV, is AC iff for any X; € X, for any r € D,
there exists an assignment of X — {X;} that has cost 0 or,
equivalently, that if we reduce the domain X; to {r}, DIVyin
is @-inverse consistent. It is therefore possible to reduce AC to
a linear number of calls to a @-inverse consistency oracle. [

For this reason, in this paper, we do not consider enforc-
ing Soft Local Consistencies on DIV ,;, directly but instead
exploit the fact that D1v,,;, is defined as a combination of

DisT(X,t, D, d) functions on which SLC can be indepen-
dently enforced in polynomial time.

V. USING AUTOMATA

For a CSP, given an order on its variables, any constraint
is defined by its finite set of authorized tuples. This set
defines a regular language which can be encoded into a finite
state automaton [23] and AC enforced on the corresponding
REGULAR constraint in time linear in the automaton size. The
DIV, and DIST constraints can therefore be encoded as
automata. The NP-completeness of DIV, means that there
is no compact automaton for DIV, (unless P=NP). For
D1isT, it is well-known that a compact automaton exists [23]
and that the REGULAR constraint can be decomposed in
a set of ternary constraints such that enforcing AC on the
decomposition is equivalent to enforcing AC on the original
high-order constraint [24].

Inside a CFN, equivalence preserving transformations used
to enforce SLC can shift costs between the scopes of various
cost functions. Therefore, any function initially defining a con-
straint, such as the DIvy,;, constraints, will quickly be trans-
formed into a function using costs other than just {0, k} costs.
SLC can still be enforced in such a WEIGHTEDREGULAR
global cost function using a weighted automaton [25] defining
the weighted language of all tuples with their associated cost.

A weighted automaton .4 encoding DI1ST(X, t, D, §):

e has (6 +1).(n + 1) states s¢ that represent the fact that
the first ¢ values of X have distance d to the first ¢ values
of ¢ (or distance > ¢ for states sf)

« for every value r of X, there is a 0-cost transition from

d min(d+D(r,t[i+1]),6)
s; 105,14 .

« the starting state is s) and the accepting state is s

n
This weighted automaton contains O(n.(d + 1).d) transitions.
An assignment t' of X is accepted by this automaton iff
d(t,t') > 0.

It has been previously been shown that SLCs can be
enforced on WEIGHTEDREGULAR in polytime in the au-
tomaton size using min-cost flow or dynamic programming
algorithms [25]. As in the CSP case, the WEIGHTEDREGULAR
cost function can also be decomposed into a sequence of
ternary cost functions [26]. This can be achieved by adding
n + 1 CFN state variables @);,0 < ¢ < n and n ternary
functions w?@i7).(i.+l7Qi+l} such that wig, v | oy = ciff
there is a transition from state Q); to ;41 through value
X1 with cost ¢ in the automaton. Variables () and @Q,, have
restricted domains containing respectively only the starting and
accepting states.

Contrarily to the CSP case, enforcing an SLC on the
decomposition may be weaker than on the high-order function.
To preserve the strength of SLCs, the order of the variables
used to build the automaton must be consistent with the
order used for Directional AC [26]. This condition is however
easy to satisfy for the DIV,,;, and DIST constraints as their
definitions make them order insensitive: the set of solutions
forbidden by a constraint DI1ST(X,t, D, d) does not depend
on the order on X and DIV,,;, inherits this property from



DiST. The ordering condition of [26] can therefore always
be satisfied by reordering variables in the scope of DIST or
D1V, constraint as required. This makes decomposition an
attractive approach for DIST and D1v,,;, encoding.

In the case of the DIST constraint, each state variable has
(8 + 1).(n + 1) values and the cost table of the ternary w*
function has size (§+1)2.(n+1)2.d where d is the domain size.
DIV i, instead would require a (6 + 1)2M.(n + 1)2.d table.
To make SLC enforcing faster, we exploit the properties of
Di1sT and D to reduce this complexity.

VI. COMPRESSING THE DIST ENCODING

In this section, we show how the encoding of a DIST
constraint in a sequence of n+ 1 ternary constraints described
in cost tables of size (§+1)2.(n+1)2.d can be reduced along
several lines. For DIST, we know that states sf can only be
reached after ¢ transitions and are specific to variable @);: the
domains of all variables @);,0 < ¢ < n can be restricted to the
§ + 1 states s¢. Furthermore, our semi-metrics being defined
by a non-decreasing sum of non-negative elements of D, any
state s¢ can reach the accepting state s° iff the maximum
dissimilarity (denoted md;) that can be achieved from variable
i to variable n is larger than § — d. All such maximum dis-
similarities can be pre-computed in one pass over all variables
in X as md; = 0;md; = md;_1 + max, scp,xp,., D(r, 5).
In the Hamming case, the distance can increase by 1 at most,
this is just n —¢. A symmetric argument holds for the starting
state sJ. These simplifications reduce the ternary cost tables
to O((6 + 1)%.d).

A. Dual and hidden representations for DIST

For a given dissimilarity matrix D, we denote as #D
the number of distinct values that appear in D. If variables
have domains of maximum size d and ignoring the useless
0 matrix, we know that 2 < #D < 1+ %71). However,
distance matrices are usually more structured. For Hamming,
we have #H = 2 (the BLOSUMS62 protein similarity matrix
contains 12 different similarity levels). In the Hamming case,
this means that a state s can only reach states s¢, ; or s{f].
To exploit the sparsity of the transition matrix, we need to
make it visible. This can be achieved using extended variants
of the Dual or Hidden encoding of Constraint Networks [27].

In Constraint Satisfaction, the dual representation of a
constraint network (a CFN (X, W) with & = 1) is a new
network (X', W') that contains one variable Xg for every
function wg € W with a domain defined by all tuples t € DS
such that ws(t) # k. Furthermore, for any pair of functions
ws,ws: € W such that SN S’ # &, there is a function
involving Xg and Xg- that maps all pairs of tuples in the
domains Xg and Xg to 0 if t[SNS'] = t'[SNS'] and &k
otherwise.

The hidden representation of (X, W) is a CFN (X", W"')
that contains all the variables in X plus the variables Xg from
the dual network. For any dual variable Xg, and every variable
X; € S, W” contains a function involving X; and Xg that
maps a pair (a,t) to 0 if t[{X;}] = a and k otherwise.

These transformations are known to preserve the set of
solutions and their costs [27], [28]. Instead of applying these
transformations on all the functions of a CFN, we consider
the idea of applying suitable transformations to the reduced
wéh X:,Q:4, functions only.

The dual variable of wj. x o, , is a variable X;' that
contains all pairs (s,s’) of Q; x Q;+1 such that there is a
transition from s to s’. For Hamming case, this variable has at
most 20+ 1 values. It is connected to variable X; by a pairwise
function that maps a pair ((s, s’), a) from the domain of X
and X; to O iff there is a transition from s to s’ with label a
and k otherwise. It contains O(d.J) pairs only.

In this new dual representation, for every pair of dual
variables X', and X7, we add a function involving these
two variables that maps a pair ((s;—1,5; 1), (s:,s;)) to 0 iff
s,_y = s; or k otherwise. In the worst case, this function has
size O(#D?2.6?) and O(6%) in the Hamming case. Only n
extra variables are required.

In the new hidden representation, we keep variables Q;
and create two pairwise functions involving each (); and
respectively X/ and X', that map a pair (s”,(s,s’)) to 0
iff s” = s for the function connecting @Q; to X! (respectively
s" = s’ for the function connecting Q; to X/ ). In the worst
case, these functions have size O(#D.5%) and O(6?) in the
Hamming case.

These dedicated dual and hidden representations require the
description of O(d.d + #D?.62) and O(d.d + #D.5?) tuples
respectively (O(8.d+ 62) in the Hamming case) instead of the
O(d.6?) tuples in wSivX1,7Q7i+1'

VII. GREEDY DIVERSESEQ

To tackle the DIVERSESEQ(N, D, M, §) problem, one can
use the following greedy approach: starting from the CFN N,
we solve it using a MSLC Branch and Bound algorithm. If
a solution t is found, it is added to the ongoing solution
sequence Z. If M solutions have been produced, we stop
there. Otherwise, a DIST(X, t, D, J) constraint is added to the
previously solved problem and we loop and solve the problem
again. If no solution exists, the sequence Z can provably not
be extended to length M and the problem has no solution (but
a shorter sequence has been produced).

We have improved this basic schema in three different ways:

« since the problems solved are increasingly constrained, all
the equivalence preserving transformations and pruning
that have been applied to enforce Soft Local Consis-
tencies at iteration ¢ — 1 are still valid in the fol-
lowing iterations. Instead of restarting from a problem
N = (X, W Ui<j<; {D1sT(X, Z[j], D, d}), we reuse
the problem solved at iteration ¢ — 1 after it has been
made locally consistent, add the DisT(X, Z[i — 1], D, §)
constraint and reinforce Soft Local Consistency. Similarly
to incremental SAT solvers, adaptive variable ordering
heuristics that have been trained at iteration 7« — 1 are
reused at iteration ¢.

¢ since the problems solved are increasingly constrained,
we know that the optimal cost oc’ obtained at iteration



i cannot have a lower cost than the optimum cost oc'~!
reported at iteration ¢ — 1. When large plateaus are present
in the energy landscape, this allows stopping the search
as soon as a solution of cost oct~1 is reached, avoiding
a useless repeated proof of optimality.

o even if there are no plateaus in the energy landscape,
there may be large regions with similar variations in
energy. In this case, the difference in energy between
oc'~! and oc® will remain similar for several iterations.
Let A = maxyax(2,i—n)<j<i(0¢/ — oc/~1) be the
maximum variation observed in the last A iterations (we
used h = 5). At iteration ¢, we can first solve the problem
with a temporary upper bound &' = min(k, oc; 1 +2.Al)
that should preserve a solution. If k¥’ < k, this will lead
to increased determinism, additional pruning and possibly
exponential savings. Otherwise, if no solution is found,
the problem is solved again with the original upper bound
k. We call this predictive bounding.

Each of these three improvements has the capacity to offer
exponential time savings and all are used in the following
experiments (unless mentioned otherwise).

VIII. EXPERIMENTS

We implemented the iterative approach described above in
its direct (ternary) decomposition as well as in the dedicated
hidden and dual versions for Hamming Divy,;, decomposed
in a conjunction of DIST functions above the CFN open
source C++ solver toulbar2 [3]. Toulbar2 implements a variety
of preprocessing algorithms dedicated to exact optimization.
We had to deactivate all preprocessing algorithms that do
not preserve suboptimal solutions: variable elimination, dead-
end-elimination and variable merging were all deactivated at
the root node. We chose to enforce the strong Virtual Arc
Consistency [2] on the first problem solved. The computa-
tional cost of VAC, in O(%z'k), where ¢ is the smallest
representable cost in the fixed decimal point representation
used, is important but is amortized over the M resolutions.
During tree search, the default EDAC local consistency was
used. All the experiments were performed on one core of
a Xeon E5-2680 CPU at 2.50GHz with ¢ = 1075, The
source code and benchmark problems are available on the Git-
Lab repository https://forgemia.inra.fr/thomas.schiex/toulbar2,
in the ’tschiex/incremental’ branch.

A. Bayesian networks

To show that our algorithm is not restricted to CPD prob-
lems and to compare it with the related d-mode algorithm
of [9], we first experimented on discrete Bayesian networks
from http://www.bnlearn.com/bnrepository in the medium,
large, very large, and massive categories. We used all the
complete networks, with no change. Solving the Maximum
Probability Explanation (MPE) problem on a Bayesian net
(BN) reduces easily to the WCSP: the probability in a BN is
the product of conditional probabilities: minimizing the sum
of the —log of probabilities is equivalent to maximizing the
product.

dual hidden 3ary
name n d 4-d 3-m CPU 4d 4-d
alarm 37 4 147 28 0.38 128 141
andes 223 2 102 8 496 87 110
barley 48 67 126 92 2.74 125 113
child 20 6 172 8 1.65 153 154
diabetes 413 21 0 0 TO 0 0
hailfinder 56 11 109 24 0.65 92 102
hepar2 70 4 96 1 TO 87 93
insurance 27 5 186 30 0.40 164 153
link 724 4 117 117  6.69 113 93
mildew 35 100 107 25 7.71 100 97
munin 1041 21 16 2 TO 16 14
pathfinder 109 63 118 15 246 90 124
pigs 441 3 162 162 6.28 134 138
water 32 4 183 17 0.48 161 174
win95 76 2 132 21 0.93 115 119

TABLE I: For each network, we give the network name, number of
variables, and maximum domain size. Then for the dual encoding,
we report the number of 4-diverse solutions found in 5 minutes,
the number of 3-modes among these, and the CPU-time taken to
produce four 3-modes, as in [9]. We then give the number of 4-
diverse solutions produced in the same amount of time using the
hidden and ternary encoding.

Table I below reports the number of variables n, the
maximum domain size d and the number of 4-diverse solutions
found within a maximum of 300 CPU seconds per instance for
each representation. Even though this is not our main target,
in the dual (fastest) case, we also computed the number of 4-
diverse solutions that are 3-modes for comparison with [9].
As shown in Th. 2, checking if an assignment t is a J-
mode of CFN (X, W) can be checked in polytime by solving
(X, WU{Dist(X,t,D,—0)}. We report the total CPU-time
taken to find four 3-modes. These times include both the time
to find all 4-diverse solutions and to filter out those that are
not 3-modes (the filtering time was always small compared to
the time needed to produce the 4-diverse solutions: checking
all 4-diverse solutions of all problems took less than 6 minutes
overall). For the two problems (child and alarm) that we share
with the benchmarks used in [9], we see very similar CPU-
times. We could not compare our approach on the 3 remaining
problems used by [9]. They were learned from data and the
authors could not provide us with the estimated parameters
(these problems are small: the largest has 45 variables and
Boolean domains ; it however took 380s to the algorithm
of [9] to provide four 3-modes on it). The energy landscape
of each problem has a strong influence on the fraction of
(6 + 1)-diverse solutions that are §-modes: on the link and
pigs problems, which present a large plateau at optimum, our
approach is very fast. Instead, the hepar2 instance shows a
very large nonflat basin around the optimum, which offers
plenty of 4-diverse solutions but just one local minimum.

We also compared our greedy DIVERSESEQ-solving ap-
proach to a globally optimal approach which solves the
harder DIVERSESET problem. As described in Section II,
we made M = 4 copies of the child medium-size Bayesian
network. We decomposed each DIST(X?, X7, H, §) constraint
on copy variable sets X° and X’ in a sequence of ternary



cost functions using extra Boolean variable set E®J, with
V1 <1 < n,E4[l] = 1(X[I] # X7[l]) supplementary dise-
quality constraints. The resulting DIVERSESET child problem
has 320 variables. We solved it with toulbar2 version 1.0,
varying § from 1 to 15. It took more than 23 hours (resp.
3 hours) to solve the § = 15 (resp. § = 14) DIVERSESET
problem. Instead, solving DIVERSESEQ took 0.28 second for
6 = 15 and produced a sequence of fifteen solutions in 1.1
seconds. This efficiency comes with little side-effects in terms
of cost: Figure 1 shows the total cost ), ., Jn(t) for the two
approaches. A solution to the DIVERSESEQ problem can still
be a solution of the DIVERSESET problem for large Hamming
distances (up to & = 11) and remains less than 12.9% above
the optimum for § = 15.

2.6x107

‘Greedy biverseSéq —T
DiverseSet —«—

2.4x107
2.2x107

2x107
1.8x107
1.6x107
1.4x107

1.2x107

Total cost of four diverse solutions

1x107

8)(106 1 1 1 1 1 I I
2 4 6 8 10 12 14

Hamming distance diversity lower bound

Fig. 1: Comparison between greedy DIVERSESEQ and DIVERSESET
on the child Bayesian network.

B. Computational Protein Design

Following our initial and main motivation for protein design,
we extracted a set of 20 prepared protein backbones for full
redesign from the benchmark set built by [6]. We selected
the 20 proteins that had required the least CPU-time to
solve in this paper, as indicated in Column S of the Excel
sheet provided in the supplementary information of the paper)
(protein laho, 169w, 1194, lhyp, luln, luoy, lyzm, 2cg7,
2erw, 2fht, 2fjz, 2gkt, 2pne, 2pst, 2qt4, 3ca7, 3i8z, 3rdy,
3vdj and 4pti). We used the provided scripts with the Rosetta
ref2015 energy function [29] to build the CFN model for
each backbone. The number of variables in these problems
ranges from 46 to 109 with maximum domain sizes from
329 to 414 values. For each problem, we generated sets of
M = 10 diverse solutions with small (§ = 1) and large
(0 € {7,8,9,10}) diversity requirements. For 6 = 1, the set
of solutions produced is just the set of the 10 best sequences.

In terms of CPU, the maximum CPU-time spent on one
problem was 32 minutes when predictive bounding was not
used. This maximum CPU-time was reduced to 17 minutes
when predictive bounding was activated, with an average time
of 201s per problem. This shows that predictive bounding
provides a simple and efficient boost, and that real CPD

é 1 7 8 9 10
nsr 45.5 47.0 46.6 46.9 46.7
p-value 0.004 0.007 0.008 0.016
nssr 60.1 61.1 61.5 61.9 61.3
p-value 0.015 0.003 0.002 0.021

TABLE II: For each § in {1,7,8,9,10} we give the average over all
proteins of the best nsr (line 2) and nssr (line 4) among the 10 4-
diverse sequences produced. Lines 3 and 5 give the p-values, testing
for improvement of nsr (resp nssr) for each § compared to 6 = 1.

instances can be solved in a reasonable time, even when
relatively large diversity requirements are required.

In the case of CPD problems using real protein backbones
obtained by X-ray crystallography, it is possible to measure
the improvements that diversity brings. Traditional metrics to
evaluate protein design protocols are the so-called “native se-
quence recovery” (nsr) and “native similarity sequence recov-
ery” (nssr) which measure how much the redesigned protein
resembles the natural protein in terms of sequence identity
(nsr: percentage of positions with the same amino acid) or
similarity (nssr: percentage of positions with a positive score
in the BLOSUMG62 similarity matrix). If solution diversity
helps, the maximum nsr/nssr over the 10 sequences should
improve when ¢ is large compared to a small d, as long as
the cost (which represents energy in this case) remains close
to the optimum. Even with § = 10, the maximum difference
in energy we observed with the global minimum energy never
exceeded 2.7 kcal/mol (with an average of 1.21 kcal/mol),
which is reasonably small. We therefore compared, for each
protein, the best nsr and nssr that could be obtained with
§ € {7,8,9,10} to the best obtained with 6 = 1. As the
Table II shows, we observe a systematic increase in the average
best nsr and nssr for § > 1 compared to § = 1 (p-values for a
unilateral Wilcoxon signed ranked test comparing the sample
of 20 best nsr/nssr for each § compared to § = 1) showing
that large diversity requirements do lead to improved results.

IX. CONCLUSION

Producing a sequence of diverse solutions is a very usual
requirement when an approximate or learned model is used
for optimal decoding. In this paper, we show that using an
incremental CFN approach using diversity constraints repre-
sented as weighted automata that are densely encoded in a
dedicated dual encoding together with predictive bounding,
it is possible to produce sequences of solutions that satisfy
guarantees on diversity on large Bayesian networks (in the
“massive” category of the BN repository) as well as for large
Computational Protein Design instances. This guarantee is
obtained on dense problems with non-submodular functions
while also guaranteeing that each new solution produced is
the best given the previously identified solutions.

We also showed that the stream of diverse solutions that our
algorithm produces can be filtered and each solution efficiently
identified as being a §-mode or not. Compared to the results
of [9], our approach looks computationally at least as efficient,



while providing a much more extensive report on the shape of
the energy landscape around the optimum.

On real protein design problems, we observe that suffi-
ciently large diversity requirements do improve the quality of
sequence libraries when native proteins are fully redesigned.

Although guaranteed diversity is necessary for the context
of e.g. legal requirements, in the context of optimizing an ap-
proximate or learned function, the requirement for an optimal
cost solution may be considered as exaggerated. However,
given that even computationally expensive approaches with
asymptotic convergence results such as Simulated Annealing
may fail with unbounded error [6], some finite time guarantee
remains desirable. The requirement for optimality that we have
used in our experiments can be trivially relaxed to a relative or
absolute approximation guarantee using artificially tightened
pruning rules as originally proposed in [30]. This is already
implemented in the toulbar2 solver (using the —agap flag).

There are two directions that could extend our work. The
first direction is brought to light by the diabetes problem for
which even the first element of DIVERSESEQ could not be
produced in five minutes of CPU-time. This problem has tree-
width less than 4 and can be solved by toulbar2 in less than 40
seconds if one exploits a min-fill tree decomposition during
Branch and Bound search [10], [31], [32]. It would be there-
fore desirable to show that the decomposed ternary or binary
functions we use for encoding DIST can be arranged in such
a way that tree-width can be preserved or not exaggeratedly
increased. The second more obvious direction would be to
identify a relaxed version of the NP-hard D1v,,;, constraint
that would produce tighter bounds thanks to SLCs. Despite
non-negligible efforts in this direction using relaxed Multi-
Valued Decision Diagrams [33], this has eluded us up to now.

REFERENCES

[1] J.-C. Régin, T. Petit, C. Bessiere, and J.-F. Puget, “An original constraint
based approach for solving over constrained problems,” in International
Conference on Principles and Practice of Constraint Programming.
Springer, 2000, pp. 543-548.

[2] M. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and
T. Werner, “Soft arc consistency revisited,” Artificial Intelligence Jour-
nal, vol. 174, pp. 449-478, 2010.

[3] B. Hurley, B. OSullivan, D. Allouche, G. Katsirelos, T. Schiex, M. Zyt-
nicki, and S. de Givry, “Multi-language evaluation of exact solvers in
graphical model discrete optimization,” Constraints, pp. 1-22, 2016.

[4] S. Traoré, D. Allouche, I. André, S. De Givry, G. Katsirelos, T. Schiex,
and S. Barbe, “A new framework for computational protein design
through cost function network optimization,” Bioinformatics, vol. 29,
no. 17, pp. 2129-2136, 2013.

[5] D. Allouche, I. André, S. Barbe, J. Davies, S. De Givry, G. Katsirelos,
B. O’Sullivan, S. Prestwich, T. Schiex, and S. Traoré, “Computational
protein design as an optimization problem,” Artificial Intelligence, vol.
212, pp. 59-79, 2014.

[6] D. Simoncini, D. Allouche, S. de Givry, C. Delmas, S. Barbe, and
T. Schiex, “Guaranteed discrete energy optimization on large protein
design problems,” Journal of chemical theory and computation, vol. 11,
no. 12, pp. 5980-5989, 2015.

[71 H. Noguchi, C. Addy, D. Simoncini, S. Wouters, B. Mylemans,
L. Van Meervelt, T. Schiex, K. Y. Zhang, J. Tame, and A. Voet, “Com-
putational design of symmetrical eight-bladed [B-propeller proteins,”
IUCvr/J, vol. 6, no. 1, 2019.

[8] C. Chen, H. Liu, D. Metaxas, and T. Zhao, “Mode estimation for high
dimensional discrete tree graphical models,” in Proceedings of Advances
in neural information processing systems, 2014, pp. 1323-1331.

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]
[29]
(30]
[31]

[32]

[33]

C. Chen, C. Yuan, Z. Ye, and C. Chen, “Solving m-modes in loopy
graphs using tree decompositions,” in Proc. of the International Confer-
ence on Probabilistic Graphical Models, 2018, pp. 145-156.

D. Allouche, S. De Givry, G. Katsirelos, T. Schiex, and M. Zytnicki,
“Anytime hybrid best-first search with tree decomposition for weighted
csp,” in Proc. of Principles and Practice of Constraint Programming
(CP’15). Springer, 2015, pp. 12-29.

T. Schiex, “Arc consistency for soft constraints,” in Principles and
Practice of Constraint Programming - CP 2000, ser. LNCS, vol. 1894,
Singapore, Sep. 2000, pp. 411-424.

F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of Constraint
Programming. Elsevier, 2006.

E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh, “Finding diverse and
similar solutions in constraint programming,” in Proceedings of AAAI
2005, vol. 5, 2005, pp. 372-3717.

E. Hebrard, B. O’Sullivan, and T. Walsh, “Distance constraints in
constraint satisfaction.” in IJCAI, vol. 2007, 2007, pp. 106-111.

T. HadZi¢, A. Holland, and B. OSullivan, “Reasoning about optimal
collections of solutions,” in International Conference on Principles and
Practice of Constraint Programming. Springer, 2009, pp. 409-423.
T. Petit and A. C. Trapp, “Finding diverse solutions of high quality to
constraint optimization problems,” in Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

D. Batra, P. Yadollahpour, A. Guzman-Rivera, and G. Shakhnarovich,
“Diverse m-best solutions in markov random fields,” in European
Conference on Computer Vision. Springer, 2012, pp. 1-16.

A. Prasad, S. Jegelka, and D. Batra, “Submodular meets structured:
Finding diverse subsets in exponentially-large structured item sets,” in
Advances in Neural Information Processing Systems, 2014, pp. 2645—
2653.

A. Kirillov, B. Savchynskyy, D. Schlesinger, D. Vetrov, and C. Rother,
“Inferring m-best diverse labelings in a single one,” in Proceedings of
the IEEE International Conference on Computer Vision, 2015, pp. 1814—
1822.

C. Chen, V. Kolmogorov, Y. Zhu, D. Metaxas, and C. Lampert, “Com-
puting the m most probable modes of a graphical model,” in Proc. of
Artificial Intelligence and Statistics, 2013, pp. 161-169.

C. Chen, C. Yuan, and C. Chen, “Solving m-modes using heuristic
search.” in Proc. of IJCAI’'16, 2016, pp. 3584-3590.

M. Zytnicki, C. Gaspin, S. de Givry, and T. Schiex, “Bounds Arc
Consistency for Weighted CSPs,” Journal of Artificial Intelligence
Research, vol. 35, pp. 593-621, 2009.

G. Pesant, “A regular language membership constraint for finite se-
quences of variables,” in International conference on principles and
practice of constraint programming. Springer, 2004, pp. 482-495.

C. Bessiere and P. Van Hentenryck, “To be or not to be ... a global
constraint,” in Proceedings of CP’03, 2003, pp. 789-794.

J. H. M. Lee and K. L. Leung, “Consistency Techniques for Global
Cost Functions in Weighted Constraint Satisfaction,” Journal of Artificial
Intelligence Research, vol. 43, pp. 257-292, 2012.

D. Allouche, C. Bessiere, P. Boizumault, S. De Givry, P. Gutierrez,
J. H. Lee, K. L. Leung, S. Loudni, J.-P. Métivier, T. Schiex et al.,
“Tractability-preserving transformations of global cost functions,” Arti-
ficial Intelligence Journal, vol. 238, pp. 166-189, 2016.

F. Bacchus and P. Van Beek, “On the conversion between non-binary
and binary constraint satisfaction problems,” in Proceedings of AAAI
1998, 1998, pp. 310-318.

J. Larrosa and R. Dechter, “On the dual representation of non-binary
semiring-based CSPs,” in CP2000 workshop on soft constraints, 2000.
R. Das and D. Baker, “Macromolecular modeling with rosetta,” Annu.
Rev. Biochem., vol. 77, pp. 363-382, 2008.

I. Pohl, “Heuristic search viewed as path finding in a graph,” Artificial
intelligence, vol. 1, no. 3-4, pp. 193-204, 1970.

P. Jégou and C. Terrioux, “Decomposition and good recording,” in Proc.
of ECAI-04, Valencia, Spain, 2004, pp. 196-200.

S. de Givry, T. Schiex, and G. Verfaillie, “Exploiting Tree Decomposi-
tion and Soft Local Consistency in Weighted CSP,” in Proc. of AAAI-06,
Boston, MA, 2006.

D. Bergman, W.-J. Van Hoeve, and J. N. Hooker, “Manipulating mdd
relaxations for combinatorial optimization,” in International Conference
on Al and OR Techniques in Constriant Programming for Combinatorial
Optimization Problems. Springer, 2011, pp. 20-35.



