
Decomposition of multi-operator queries on

semiring-based graphical models

Cédric Pralet12, Thomas Schiex2, and Gérard Verfaillie3

1 LAAS-CNRS, Toulouse, France cpralet@laas.fr
2 INRA, Castanet Tolosan, France tschiex@toulouse.inra.fr

3 ONERA, Centre de Toulouse, France gerard.verfaillie@onera.fr

Abstract. In the last decades, the Satisfiability and Constraint Satis-
faction Problem frameworks were extended to integrate aspects such as
uncertainties, partial observabilities, or uncontrollabilities. The resulting
formalisms, including Quantified Boolean Formulas (QBF), Quantified
CSP (QCSP), Stochastic SAT (SSAT), or Stochastic CSP (SCSP), still
rely on networks of local functions defining specific graphical models, but
they involve queries defined by sequences of distinct elimination oper-
ators (∃ and ∀ for QBF and QCSP, max and + for SSAT and SCSP)
preventing variables from being considered in an arbitrary order when
the problem is solved (be it by tree search or by variable elimination).
In this paper, we show that it is possible to take advantage of the actual
structure of such multi-operator queries to bring to light new ordering
freedoms. This leads to an improved constrained induced-width and doing
so to possible exponential gains in complexity. This analysis is performed
in a generic semiring-based algebraic framework that makes it applica-
ble to various formalisms. It is related with the quantifier tree approach
recently proposed for QBF but it is much more general and gives theo-
retical bases to observed experimental gains.

1 Introduction

Searching for a solution to a Constraint Satisfaction Problem (CSP [1]) is equiv-
alent to searching for an assignment of the problem variables maximizing the
quantity given by the constraints conjunction, i.e. to eliminating variables using
max.4 As max is the only elimination operator involved in such a mono-operator
query, variables can be considered in any order. The situation is similar with the
Satisfiability problem (SAT) but not with Quantified CSP (QCSP [2]) or Quanti-
fied Boolean Formulas (QBF), where min (equivalent to ∀) and max (equivalent
to ∃) operators can alternate, or with Stochastic SAT (SSAT [3]) or Stochastic
CSP (SCSP [4]), involving max and + operators: these frameworks define multi-
operator queries for which the order in which variables can be considered is not
free.
4 Eliminating variables in a set S′ with an operator ⊕ from a function ϕ defined on

the set dom(S) of assignments of a set of variables S means computing the function
⊕S′ ϕ defined by (⊕S′ ϕ)(A) = ⊕A′∈dom(S′) ϕ(A.A′) for all assignments A of S−S′.
⊕S′ ϕ synthesizes the information given by ϕ if we disregard variables in S′.

To overcome this difficulty, variables are usually considered in an order com-
patible with the sequence of eliminations (if this sequence is “∀x1, x2 ∃x3” for
a QCSP, then x1 and x2 are considered after x3 in a variable elimination algo-
rithm). This suffices to obtain the correct result but does not take advantage
of all the actual structural features of multi-operator queries. For example, as
shown by the quantifier trees approach [5] recently introduced for QBF, analyz-
ing hidden structures of “flat” prenex normal form QBF can lead to important
gains in terms of solving time.

After the introduction of some notations, we define a generic systematic
approach for analyzing the actual macrostructure of multi-operator queries by
transforming them into a tree of mono-operator ones (Section 3). Being defined
in a generic algebraic framework, this approach extends and generalizes the
all quantifier tree proposal [5]. It is applicable to multiple formalisms, includ-
ing QCSP, SSAT, or SCSP. Its efficiency, experienced on QBF with quantifier
trees, is interpreted theoretically in terms of a parameter called the constrained
induced-width. Last, we define on the built macrostructure a generic variable
elimination (VE) algorithm exploiting cluster tree decompositions [6] (Section 4).

2 Background notations and definitions

The domain of values of a variable x is denoted dom(x). By extension, the domain
of a set of variables S is dom(S) =

∏

x∈S dom(x). A scoped function ϕ on S is a
function dom(S) → E. S is called the scope of ϕ and is denoted sc(ϕ).

In order to reason about scoped functions, we need to combine and synthesize
the information they express: e.g., to answer a QCSP ∀x1, x2 ∃x3(ϕx1,x3

∧ϕx2,x3
),

we need to aggregate local constraints using ∧ and to synthesize the result using
∃ on x3 and ∀ on x1, x2. The operator used to aggregate scoped functions is
called a combination operator and is denoted ⊗. The multiple operators used
to synthesize information are called elimination operators and are denoted ⊕.
More precisely, the algebraic structure we consider, defining elimination and
combination operators, is a Multi Commutative Semiring (MCS).

Definition 1. (E,⊕,⊗) is a commutative semiring iff E is a set such that ⊕
and ⊗ are binary associative, commutative operators on E, ⊕ has an identity
0⊕ ∈ E (x⊕0⊕ = x), ⊗ has an identity 1⊗ ∈ E (x⊗1⊗ = x), and ⊗ distributes
over ⊕ (x⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x⊗ z)).5

(E, {⊕i, i ∈ I},⊗) is a Multi Commutative Semiring (MCS) iff for all i ∈ I,
(E,⊕i,⊗) is a commutative semiring.

Table 1 shows MCS examples and frameworks in which they are used. There
exist many other examples, such as (E, {∩,∪},∩).

Definition 2. A graphical model on a MCS (E, {⊕i, i ∈ I},⊗) is a pair (V, Φ)
where V is a finite set of finite domain variables and Φ is a finite multiset of
scoped functions taking values in E and whose scopes are included in V .

5 Compared to other definitions of commutative semirings, 0⊕ is not assumed to be an
annihilator for ⊗, so that e.g. (N∪{∞}, max, +) is seen as a commutative semiring.

E {⊕i, i ∈ I} ⊗ Frameworks

R
+ ∪ {∞} {max, +} × SSAT [3], SCSP [4], Bayesian networks [7]

R
+ ∪ {∞} {min, max, +} × Extended-SSAT [3]

N ∪ {∞} {min, max} + MDPs based on kappa-rankings [8]
[0, 1] {min, max} min possibilistic optimistic MDPs [9]
{t, f} {∧,∨} (i.e. {∀,∃}) ∧ QBF, QCSP [2]

Table 1. Examples of MCS (t stands for true and f for false).

A CSP is a graphical model (V, Φ) where Φ contains constraints on V . We intro-
duce operator-variables sequences and queries to reason about graphical models.

Definition 3. Let � be a partial order on V . The set of linearizations of �,
denoted lin(�), is the set of total orders �′ on V satisfying (x � y) → (x �′ y).

Definition 4. Let (E, {⊕i, i ∈ I},⊗) be a MCS. A sequence of operator-variables
on a set of variables V is defined by SOV = op1S1

· op2S2
· . . . · oppSp

, where

{S1, S2, . . . , Sp} is a partition of V and opj ∈ {⊕i, i ∈ I} for all j ∈ {1, . . . , p}.
The partial order �SOV induced by SOV is given by S1 ≺SOV S2 ≺SOV . . . ≺SOV

Sp (it forces variables in Sj to be eliminated before variables in Si whenever
i < j). An elimination order o : xo1

≺ xo2
≺ . . . ≺ xoq

on V is a total order on
V . It is compatible with SOV iff o ∈ lin(�SOV). If op(x) corresponds to the
elimination operator of x in SOV , SOV (o) denotes the sequence of operator-
variables op(xo1

)xo1

· op(xo2
)xo2

· . . . · op(xoq
)
xoq

.

For the MCS (R+∪{∞}, {min,max,+},×), a sequence of operator-variables
on V = {x1, x2, x3, x4, x5} is e.g. SOV = minx1,x2

∑

x3,x4
maxx5

. The partial
order it induces satisfies {x1, x2} ≺SOV {x3, x4} ≺SOV x5. The elimination
order o : x1 ≺ x2 ≺ x4 ≺ x3 ≺ x5 is compatible with SOV (and SOV (o) =
minx1

minx2

∑

x4

∑

x3
minx5

), whereas o′ : x4 ≺ x2 ≺ x1 ≺ x3 ≺ x5 is not.

Definition 5. Given a MCS (E, {⊕i, i ∈ I},⊗), a query is a pair Q = (SOV,N)
where N = (V, Φ) is a graphical model and SOV is a sequence of operator-
variables on V . The answer to a query is Ans(Q) = SOV (⊗ϕ∈Φ ϕ).

All the elimination operators considered here being commutative and asso-
ciative, every elimination order compatible with �SOV can be used to answer a
query, i.e. for every o ∈ lin(�SOV), Ans(Q) = SOV (o) (⊗ϕ∈Φ ϕ).

The definition of the answer to a query covers various decision problems
raised in many formalisms. Among the multi-operator ones, one can cite:

1. Quantified Boolean Formulas in conjunctive prenex normal form and Quan-
tified CSPs [2], looking like ∀x1, x2∃x3∀x4 (ϕx1,x3,x4

∧ ϕx2,x4
);

2. Stochastic Satisfaction problems (SSAT and Extended-SSAT [3]) and some
queries on Stochastic CSPs [4] looking like maxd1,d2

∑

s1
maxd3

(
∏

ϕ∈Φ ϕ),
where Φ contains both constraints and conditional probability distributions;

3. some types of finite horizon Markov Decision Processes (MDPs [10]), on
which queries look like maxd1

⊕s1
. . .maxdn

⊕sn
(⊗ϕ∈Φ ϕ), where (⊕,⊗) equals

(+,×) (MDPs optimizing an expected satisfaction), (max,min) (optimistic
possibilistic MDPs [9]), or (max,+) (MDPs based on kappa-rankings [8]).

It also covers queries in other frameworks like Bayesian Networks (BN [7]), or
in yet unpublished frameworks such as quantified VCSPs (i.e. VCSPs [11] using
an alternation of min and max operations on a combination of soft constraints)
or semiring CSPs [11] with multiple elimination operators.

As only one combination operator is involved in the definition of the answer
to a query, formalisms such as influence diagrams [12], classical probabilistic
MDPs [10], or pessimistic possibilistic MDPs [9] are not basically covered but
can be if transformed using so-called “potentials” [13]. However, in these cases,
more direct efficient approaches can be proposed. See [14] for further details.

3 Macrostructuring a multi-operator query

Analyzing the macrostructure of queries means bringing to light the actual con-
straints on the elimination order and the possible decompositions. We first give
a parameter, the constrained induced-width, for quantifying the complexity of a
VE algorithm on multi-operator queries and then show how this complexity can
be decreased. This leads us to define a systematic method for structuring an
unstructured multi-operator query into a tree of mono-operator ones.

3.1 Constrained induced-width

A parameter defining an upper bound on the theoretical complexity of standard
VE algorithms on mono-operator queries is the induced-width [15]. In the multi-
operator case however, there are constraints on the elimination order because the
alternating elimination operators do not generally commute. The complexity can
then be quantified using the constrained induced-width [16, 17] as defined below.

Definition 6. Let G = (VG, HG) be a hypergraph6 and let � be a partial or-
der on VG. The constrained induced-width wG(�) of G with constraints on the
elimination order given by � (“x ≺ y” stands for “y must be eliminated before
x”) is defined by wG(�) = mino∈lin(�) wG(o), wG(o) being the induced-width of
G for the elimination order o (i.e. the size of the largest hyperedge created when
eliminating variables in the order given by o).7

The basic hypergraph associated with a graphical model N = (V, Φ) is G =
(V, {sc(ϕ) |ϕ ∈ Φ}) and the constraints on the elimination order imposed by a
query Q = (SOV,N) can be described by �SOV (cf Definition 4). An upper
bound on the theoretical complexity of a VE algorithm for answering a query
is then O(|Φ| · d1+wG(�SOV)), d being the maximum domain size (for all the
complexity results of the paper, we assume that operations like a ⊗ b or a ⊕ b
take a bounded time). Since a linear variation of the constrained induced width
yields an exponential variation of the complexity, it is worth working on the two
parameters it depends on: the partial order �SOV and the hypergraph G.

6 VG is a set of variables and HG is a set of hyperedges on VG, i.e. a subset of 2VG .
7 To be more formal, we should speak of the induced-width of the primal graph of G

(the graph containing an edge {x, y} iff there exists h ∈ HG s.t. {x, y} ⊂ h) since
the usual definition of the induced-width holds on graphs (and not on hypergraphs).

Weakening constraints on the elimination order is known to be useless
in contexts like Maximum A Posteriori hypothesis [17], where there is only one
alternation of max and sum marginalizations. But it can decrease the constrained
induced-width as soon as there are more than two levels of alternation.

Indeed, assume that a Stochastic CSP query is equivalent to computing

maxx1,...,xq

∑

y maxxq+1

(

ϕy × ϕy,x1
×

∏

i∈{1,...,q}ϕxi,xq+1

)

(this may occur if ϕy

is a probability distribution on y, the other ϕS model constraints, and the value of
y is observed only before making decision xq+1). If one uses G = (VG, HG), with
VG = {x1, . . . , xq+1, y} and HG = {{y}, {y, x1}} ∪ {{xi, xq+1}, i ∈ {1, . . . , q}},
together with �1=�SOV ({x1, . . . , xq} ≺1 y ≺1 xq+1), the constrained induced-
width is wG(�1) = q, because xq+1 is then necessarily eliminated first (elimi-
nating xq+1 from G creates the hyperedge {x1, . . . , xq} of size q).

However, the scopes of the functions involved enable us to write the quantity

to compute as maxx1

((

∑

y ϕy × ϕy,x1

)

×
(

maxx2,...,xq+1

(

∏

i∈{1,...,q} ϕxi,xq+1

)))

.

This rewriting shows that the only constraint on the elimination order is that x1

must be eliminated before y. This constraint, modeled by �2 defined by x1 ≺2 y,
gives wG(�2) = 1 (e.g. with the elimination order x1 ≺ xq+1 ≺ x2 ≺ x3 ≺ . . . ≺
xq ≺ y). Hence, the complexity decreases from O((q+2) ·d1+q) to O((q+2) ·d2)
(there is a q + 2 factor because there are q + 2 scoped functions).

This example shows that defining constraints on the elimination order from
the sequence of operator-variables only is uselessly strong and may be exponen-
tially suboptimal compared to a method considering the scopes of the functions
involved. It is also obvious that weakening constraints on the elimination order
can only decrease the constrained induced-width: if G = (VG, HG) is a hyper-
graph and if �1, �2 are two partial orders on VG such that (x �2 y) → (x �1 y)
(�2 is weaker than �1), then wG(�1) ≥ wG(�2).

Working on the hypergraph There may exist decompositions enabling to
use more than just the distributivity of ⊗ over ⊕.

Indeed, let us consider the QCSP ∃x1 . . . ∃xq∀y
(

ϕx1,y ∧ . . . ∧ ϕxq,y

)

. Using
G1 = ({x1, . . . , xq, y}, {{xi, y}, i ∈ {1, . . . , q}}) and �1 defined by {x1, . . . , xq} ≺1

y gives wG1
(�1) = q (because y is then necessarily eliminated first). How-

ever, it is possible to duplicate y and write ∃x1 . . . ∃xq∀y
(

ϕx1,y ∧ . . . ∧ ϕxq,y

)

=

∃x1, . . . ,∃xq

(

(∀y1ϕx1,y1
) ∧ . . . ∧

(

∀yqϕxq,yq

))

. The complexity is then given by
G2 = ({x1, . . . , xq, y1, . . . , yq}, {{xi, yi}, i ∈ {1, . . . , q}}) and �2 defined by xi ≺2

yi, leading to the constrained induced-width wG2
(�2) = 1. Therefore, duplicat-

ing y decreases the theoretical complexity from O(q · dq+1) to O(q · d2).

Proposition 1 shows that such a duplication mechanism can be used only in
one specific case, applicable for eliminations with ∀ on QBF, QCSP, or with min
on possibilistic optimistic MDPs. Proposition 2 proves that duplicating is always
better than not duplicating.

Proposition 1. Let (E, {⊕i, i ∈ I},⊗) be a MCS and let ⊕ ∈ {⊕i, i ∈ I}. Then,
(⊕x (ϕ1 ⊗ ϕ2) = (⊕x ϕ1) ⊗ (⊕x ϕ2) for all scoped functions ϕ1, ϕ2) ↔ (⊕ = ⊗).

Proof. If ⊕ = ⊗, then ⊕x (ϕ1 ⊕ ϕ2) = (⊕x ϕ1) ⊕ (⊕x ϕ2) by commutativity and asso-
ciativity of ⊕. Conversely, assume that for all scoped functions ϕ1, ϕ2, ⊕x (ϕ1 ⊗ ϕ2) =
(⊕x ϕ1) ⊗ (⊕x ϕ2). As (E, {⊕i, i ∈ I},⊗) is a MCS, ⊗ has an identity 1⊗ and ⊕ has
an identity 0⊕. Let us consider a boolean variable x and two scoped functions ϕ1, ϕ2

of scope x, s.t. ϕ1((x, t)) = a, ϕ1((x, f)) = ϕ2((x, t)) = 1⊗, ϕ2((x, f)) = b. Then,
the initial assumption implies that (a ⊗ 1⊗) ⊕ (1⊗ ⊗ b) = (a ⊕ 1⊗) ⊗ (1⊗ ⊕ b), i.e.
a ⊕ b = (a ⊕ 1⊗) ⊗ (1⊗ ⊕ b). Taking a = b = 0⊕ gives 0⊕ = 1⊗. Consequently, for all
a, b ∈ E, a⊕ b = (a⊕ 1⊗)⊗ (1⊗ ⊕ b) = (a⊕ 0⊕)⊗ (0⊕ ⊕ b) = a⊗ b, i.e. ⊕ = ⊗. ⊓⊔

Note that ⊕ = ⊗ implies that ⊕ is idempotent: indeed, given the properties
of a MCS, “⊕ = ⊗” implies that a⊕ a = a⊗ (1⊗ ⊕ 1⊗) = a⊗ (1⊗ ⊕ 0⊕) = a.

Proposition 2. Let (E, {⊕i, i ∈ I},⊗) be a MCS and let ⊕ ∈ {⊕i, i ∈ I}. Let
ϕx,Sj

be a scoped function of scope {x} ∪ Sj for all j ∈ {1, . . . ,m}. The direct
computation of ψ = ⊕x(ϕx,S1

⊗ · · · ⊗ ϕx,Sm
) always requires more operations

than the one of (⊕xϕx,S1
) ⊗ · · · ⊗ (⊕xϕx,Sm

). Moreover, the direct computation
of ψ results in a time complexity O(m · d1+|S1∪...∪Sm|), whereas the one of the
m quantities in the set

{

⊕xϕx,Sj
| j ∈ {1, . . . ,m}

}

is O(m · d1+maxj∈{1,...,m} |Sj|).

Proof. It can be shown that computing directly ⊕x(ϕx,S1
⊗ · · · ⊗ ϕx,Sm) requires n1 =

|dom(S1∪. . .∪Sm)|(m|dom(x)|−1) = O(md1+|S1∪...∪Sm|) operations. Directly comput-
ing the quantities in

˘

⊕xϕx,Sj
|j ∈ {1, . . . , m}

¯

requires n2 = (
P

j∈{1,...,m} |dom(Sj)|) ·

(|dom(x)| −1) = O(m·d1+maxj∈{1,...,m} |Sj |) operations. Directly computing (⊕xϕx,S1
)⊗

· · · ⊗ (⊕xϕx,Sm) therefore requires n3 = n2 + |dom(S1 ∪ . . . ∪ Sm)|(m − 1) opera-
tions. The result follows from n1 − n3 = (|dom(x)| − 1)(m|dom(S1 ∪ . . . ∪ Sm)| −
P

j∈{1,...,m} |dom(Sj)|) ≥ 0. ⊓⊔

3.2 Towards a tree of mono-operator queries

The constrained induced-width can be decreased and exponential gains in com-
plexity obtained thanks to an accurate multi-operators query analysis. The latter
corresponds to determining the actual constraints on the elimination order and
the possible additional decompositions using duplication. To systematize it, we
introduce rewriting rules transforming an initial unstructured multi-operator
query into a tree of mono-operator ones

The basic elements used for such a transformation are computation nodes.

Definition 7. A computation node n on a MCS (E, {⊕i, i ∈ I},⊗) is:

– either a scoped function ϕ (atomic computation node); the value of n is then
val(n) = ϕ and its scope is sc(n) = sc(ϕ);

– or a pair (SOV,N) s.t. SOV is a sequence of operator-variables on a set of va-
riables S and N is a set of computation nodes; the value of n is then val(n) =
SOV (⊗n′∈N val(n′)), the set of variables it eliminates is Ve(n) = S, its scope
is sc(n) = (∪n′∈N sc(n′)) − Ve(n), and the set of its sons is Sons(n) = N .

We extend the previous definitions to sets of computation nodes N by val(N) =
⊗n′∈Nval(n

′), sc(N) = ∪n′∈Nsc(n
′), and, if all nodes in N are non-atomic,

then Ve(N) = ∪n′∈NVe(n
′) and Sons(N) = ∪n′∈NSons(n

′). Moreover, for all
⊕ ∈ {⊕i, i ∈ I}, we define the set of nodes in N performing eliminations with
⊕ by N [⊕] = {n ∈ N |n = (⊕S, N

′)}.

For example, if N = {(minx,y, N1), (
∑

z, N2), (mint, N3)}, then N [min] =
{(minx,y, N1), (mint, N3)} and N [+] = {(

∑

z, N2)}. Informally, a computation
node (SOV,N) specifies a sequence of eliminations on the combination of its
sons and can be seen as the root of a tree of computation nodes. It can be
represented as in Figure 1. Given a set of computation nodes N , we define N+x

(resp. N−x) as the set of nodes of N whose scope contains x (resp. does not
contain x): N+x = {n ∈ N |x ∈ sc(n)} (resp. N−x = {n ∈ N |x /∈ sc(n)}).

SOV ϕ1 ϕ2 ϕk

nln2n1

Fig. 1: A computation node (SOV,N). Note that atomic sons (in N ∩ Φ =
{ϕ1, . . . , ϕk}) and non-atomic ones (in N −Φ = {n1, . . . , nl}) are distinguished.

The value of computation nodes can easily be linked to the answer to a query.
Indeed, given a query Q = (SOV, (V, Φ)) defined on a MCS (E, {⊕i, i ∈ I},⊗),
Ans(Q) = val(n0) where n0 = (SOV,Φ). The problem consists in rewriting n0

so as to exhibit the query structure. To do so, we consider each variable from
the right to the left of SOV , using an elimination order o compatible with SOV
(cf Definition 4), and simulate the decomposition induced by the elimination of
the |V | variables from the right to the left of SOV (o). More precisely, we start
from the initial Computation Nodes Tree (CNT):

CNT0(Q, o) = (SOV (o), Φ)

In the example in Figure 2, this initial CNT corresponds to the first node. For all
k ∈ {0, . . . , |V |−1}, the macrostructure at step k+1, denoted CNTk+1(Q, o), is
obtained from CNTk(Q, o) by considering the rightmost remaining elimination
and by applying two types of rewriting rules:

1. A decomposition rule DR, using the distributivity of the elimination oper-
ators over ⊗ (so that when eliminating a variable x, only scoped functions
with x in their scopes are considered) together with possible duplications.
Note that DR implements both types of decompositions.

DR (sov.⊕x, N)

{

(sov,N−x ∪ {(⊕x, {n}) |n ∈ N+x}) if ⊕ = ⊗
(sov,N−x ∪ {(⊕x, N

+x)}) otherwise

In Figure 2, DR transforms the initial structure CNT0(Q, o) = (minx1
maxx2

maxx3
minx4

maxx5
, {ϕx3,x4

, ϕx1,x4
, ϕx1,x5

, ϕx2,x5
, ϕx3,x5

}) to CNT1(Q, o) =
(minx1

maxx2
maxx3

minx4
, {ϕx3,x4

, ϕx1,x4
, (maxx5

, {ϕx1,x5
, ϕx2,x5

, ϕx3,x5
})})

(case ⊕ 6= ⊗). Eliminating x4 using min = ⊗ then transforms CNT1(Q, o)
to CNT2(Q, o) = (minx1

maxx2
maxx3

, {(minx4
, {ϕx3,x4

}), (minx4
, {ϕx1,x4

}),
(maxx5

, {ϕx1,x5
, ϕx2,x5

, ϕx3,x5
})}).

2. A recomposition rule RR which aims at revealing freedoms in the elimination
order for the nodes created by DR.

RR (⊕x, N)
(

⊕x∪Ve(N [⊕]), (N −N [⊕]) ∪ Sons(N [⊕])
)

In Figure 2, RR transforms the computation node (minx1
maxx2

, {(minx4
,

{ϕx1,x4
}), (maxx3

, {(minx4
, {ϕx3,x4

}), (maxx5
, {ϕx1,x5

, ϕx2,x5
, ϕx3,x5

})})})
into CNT3(Q, o) = (minx1

maxx2
, {(minx4

, {ϕx1,x4
}), (maxx3,x5

, {(minx4
,

{ϕx3,x4
}), ϕx1,x5

, ϕx2,x5
, ϕx3,x5

})}), because the structure shows that although
x3 ≺SOV x5, there is actually no need to eliminate x5 before x3. RR can-
not make one miss a better variable ordering, since what is recomposed will
always be decomposable again (using the techniques of Section 4).

More formally, for rewriting rule RR : n1 n2, let us denote n2 = RR(n1).
Then, for all k ∈ {0, . . . , |V |−1}, CNTk+1(Q, o) = rewrite(CNTk(Q, o)), where

rewrite((sov · ⊕x, N)) =

{

(sov,N−x ∪ {RR((⊕x, {n})), n ∈ N+x}) if ⊕ = ⊗
(sov,N−x ∪ {RR((⊕x, N

+x))}) otherwise

This means that when eliminating variable x, we decompose the computations
(using duplication if ⊕ = ⊗), and recompose the created nodes in order to
reveal freedoms in the elimination order. At each step, a non-duplicated variable
appears once in the tree and a duplicated one appears at most once in each
branch of the tree. The final computation nodes tree, denoted CNT (Q, o), is

CNT (Q, o) = CNT|V |(Q, o) = rewrite|V |(CNT0(Q, o))

3.3 Some good properties of the macrostructure obtained

The soundness of the created macrostructure is provided by Proposi-
tions 3 and 4, which show that the rewriting process preserves nodes value.

Proposition 3. Let Q = (SOV,N) be a query and let o ∈ lin(�SOV). Then,
val(CNTk+1(Q, o)) = val(CNTk(Q, o)) for all k ∈ {0, . . . , |V | − 1}.

Proof. We use four lemmas.
Lemma 1. Rewriting rule DR : n1 n2 is sound, i.e. val(n1) = val(n2) holds.
Proof of Lemma 1. As ⊗ distributes over ⊕, val((sov·⊕x, N)) = sov·⊕x (⊗n∈Nval(n)) =
sov((⊗n∈N−xval(n))⊗⊕x(⊗n∈N+xval(n))) (eq1). If ⊕ = ⊗, Proposition 1 implies that
⊕x (⊗n∈N+xval(n)) = ⊗n∈N+x (⊕xval(n)) = val({(⊕x, {n}) |n ∈ N+x}). Therefore,
using (eq1), val ((sov · ⊕x, N)) equals val

`

(sov, N−x ∪ {(⊕x, n) |n ∈ N+x})
´

. Other-
wise (⊕ 6= ⊗), one can just write ⊕x (⊗n∈N+xval(n)) = val

`

(⊕x, N+x)
´

. This means
that (eq1) can be written as val ((sov · ⊕x, N)) = val

`

(sov, N−x ∪ {(⊕x, N+x)})
´

.
Lemma 2. Let RR′ : (⊕S, N1∪{(⊕S′ , N2)}) (⊕S∪S′ , N1∪N2). If S′∩(S∪sc(N1)) =
∅ and N1 ∩N2 = ∅, then RR′ is a sound rewriting rule.
Proof of Lemma 2. Given that ⊗ distributes over ⊕ and S′ ∩ sc(N1) = ∅, one can
write val((⊕S, N1 ∪ {(⊕S′ , N2)})) = ⊕S ((⊗n∈N1

val(n))⊗⊕S′ (⊗n∈N1
val(n))) = ⊕S ·

⊕S′ ((⊗n∈N1
val(n))⊗ (⊗n∈N1

val(n))). As N1 ∩ N2 = ∅ and S ∩ S′ = ∅, the latter
quantity also equals ⊕S∪S′ (⊗n∈N1∪N2

val(n)), i.e. val((⊕S∪S′, N1 ∪N2)).

CNT1(Q, o)

CNT5(Q, o)

CNT3(Q, o)

CNT0(Q, o)

CNT2(Q, o)

ϕx2,x5
maxx5

ϕx1,x5

ϕx3,x5
ϕx2,x5

maxx5

ϕx3,x4
minx4

minx4
ϕx1,x5

ϕx3,x4

minx1
maxx2

maxx3
minx4

maxx5

ϕx3,x4
minx4

ϕx3,x5
ϕx2,x5

maxx3,x5
ϕx1,x5

minx4
ϕx1,x4

minx1
maxx2

minx1
maxx2

maxx3

ϕx2,x5
ϕx1,x5

ϕx3,x4
minx1

maxx2
maxx3

minx4

maxx5
ϕx3,x5

ϕx3,x4
ϕx2,x5

ϕx1,x5
ϕx1,x4

ϕx3,x5

maxx3

ϕx3,x5

maxx2,x3,x5
ϕx2,x5

ϕx3,x4
minx4

minx1 minx1,x4
ϕx1,x4

ϕx3,x5
ϕx1,x5

minx4
ϕx1,x4

minx4
ϕx1,x4

minx1
maxx2

ϕx1,x4

DR,x5

DR,x3

DR,x4

+DR,x1

+RR,x2

RR,x3

+RR,x1

DR,x2

Fig. 2: Application of the rewriting rules on a QCSP example:
minx1

maxx2,x3
minx4

maxx5
(ϕx3,x4

∧ ϕx1,x4
∧ ϕx1,x5

∧ ϕx2,x5
∧ ϕx3,x5

), with the
elimination order o : x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5.

Lemma 3. ∀k ∈ {0, . . . , |V |}∀n = (sov, N) ∈ CNTk(Q, o), if ⊕ 6= ⊗, then for all
n′ ∈ N [⊕], Ve(n

′) ∩ (Ve((N − {n
′})[⊕]) ∪ sc(N − {n′})) = ∅.

Proof of Lemma 3. The property holds for k = 0 since CNT0(Q,o) = (SOV, Φ) and
Φ[⊕] = ∅. If it holds at step k, it can be shown to hold at k+1 (the main point being that
DR splits the nodes with x in their scopes and the ones not having x in their scopes)
Lemma 4. RR is a sound rewriting rule.
Proof of Lemma 4. If the variable eliminated uses ⊕ 6= ⊗ as an operator, then, thanks
to Lemma 3 and the fact that all computation nodes are distinct, and since variable x
considered at step k satisfies x /∈ Ve(N [⊕]), it is possible to recursively apply Lemma 2
to nodes in N [⊕], because the two conditions looking like S′∩ (S∪sc(N1)) and N1∩N2

then always hold. This shows that RR is sound when ⊕ 6= ⊗. If ⊕ = ⊗, then the nodes
to recompose look like (⊕x, {(⊕S , N ′)}). As S ∩ {x} = ∅, Lemma 3 entails that RR is
sound.

As both DR and RR are sound, Proposition 3 holds. ⊓⊔

Proposition 4. Let Q = (SOV,N) be a query. Then, val(CNT (Q, o)) = Ans(Q)
for all o ∈ lin(�SOV).

Proof. Follows from Proposition 3 and from val(CNT0(Q,o)) = Ans(Q). ⊓⊔

Independence with regard to the linearization of �SOV Proposition 5
shows that the final tree of computation nodes is independent from the arbitrary
elimination order o compatible with SOV chosen at the beginning. In this sense,
the structure obtained is a unique fixed point which can be denoted simply by
CNT (Q).

Proposition 5. Let Q = (SOV,N) be a query. Then, for all o, o′ ∈ lin(�SOV),
CNT (Q, o) = CNT (Q, o′)

Sketch of the proof. (a) It can be shown that for all ⊕ ∈ {⊕i, i ∈ I}, if CNT = (sov ·
⊕x · ⊕y, N) and CNT ′ = (sov · ⊕y · ⊕x, N), then rewrite2(CNT) = rewrite2(CNT ′).
(b) Given an elimination order o ∈ lin(�SOV), any elimination order o′ ∈ lin(�SOV)
can be obtained from o by successive permutations of adjacent eliminations. (a) and (b)
entail that CNT (Q,o) = CNT (Q,o′). ⊓⊔

3.4 Comparison with an unstructured approach

Building the macrostructure of a query can induce exponential gains in theoret-
ical complexity, as shown in Section 3.1. Stronger results can be stated, proving
that the structured approach is always as least as good as existing approaches
in terms of constrained induced-width.

Let us define the width wn of a node n = (⊕S , N) as the induced width of
the hypergraph G = (sc(N), {sc(n′), n′ ∈ N) for the elimination of the variables
in S (i.e. the minimum size, among all elimination orders of S, of the largest
hyperedge created when eliminating variables in S from G). The induced-width
of a tree of computation nodes CNT is wCNT = maxn∈CNT wn. One can say
that 1 +wCNT is the maximum number of variables to consider simultaneously
when using an optimal elimination order in a VE algorithm. Theorem 1 shows
that the macrostructuration of a query can only decrease the induced-width.

Theorem 1. Let Q = (SOV, (V, Φ)) be a query and G = (V, {sc(ϕ), ϕ ∈ Φ}).
Then, wCNT (Q) ≤ wG(�SOV).

Sketch of the proof. Let o∗ be an elimination order s.t. wG(�SOV) = wG(o∗). The idea
is to apply the rewriting rules on CNT0(Q, o∗). Let Hk denote the set of hyperedges in
the hypergraph Gk obtained after the k first eliminations in o∗. More precisely, G0 = G
and, if Gk = (Vk, Hk) and x is eliminated, then Gk+1 = (Vk−{x}, (Hk−H+x

k)∪{hk+1}),
where hk+1 = ∪

h∈H
+x
k

h− {x} is the hyperedge created from step k to k + 1. It can be

proved that for all k ∈ {0, . . . , |V | − 1}, if CNTk(Q, o∗) = (sov · ⊕x, N), then for all
n ∈ N , there exists h ∈ Hk s.t. sc(n) ⊂ sc(h). This property easily holds at step 0, and
if it holds at step k, then sc((⊕x, N+x)) ⊂ sc(hk+1). Moreover, if duplication is used,
then for all n ∈ N+x, sc((⊕x, {n})) ⊂ sc(hk+1). Rewriting rule RR can be shown to be
always advantageous in terms of induced-width. This entails the required result. ⊓⊔

For the QCSP example in Figure 2, wCNT (Q) = 1, whereas the initial con-
strained induced-width is wG(�SOV) = 3 (and without duplication, wCNT (Q)

would equal 2): the complexity decreases from O(|Φ| · d4) to O(|Φ| · d2).
More important gaps between wCNT (Q) and wG(�SOV) can be observed

on larger problems. More precisely, we performed experiments on instances of

the QBF library (only a limited number are reported here). The results are
shown in Table 2. In order to compute induced-widths and constrained induced-
widths, we use usual junction tree construction techniques with the so-called
min-fill heuristic. The results show that there can be no gain in analyzing the
macrostructure of queries, as is the case for instances of the “robot” problem
(which involve only 3 alternations of elimination operators), but that as soon
as the number of alternation increases, revealing freedoms in the elimination
order can be greatly beneficial. Note that these results provide a theoretical
explanation to the experimental gains observed when using quantifier trees on
QBF [5].

Theorem 1 shows that working directly on the structure obtained can be
a good option, because it can decrease the induced-width. However, given an
existing solver, an alternative approach is to see the macrostructuration of a
query only as a useful preprocessing step revealing freedoms in the elimination
order, thanks to Proposition 6.

Proposition 6. Let Q = (SOV, (V, Φ)) be a query. Assume that duplication
is not used. CNT (Q) induces a partial order �CNT (Q) on V , defined by “if
((⊕S1

, N ∪ {(⊕′
S2
, N ′)}) ∈ CNT (Q)), then for all x ∈ S1 ∩ sc(N ′), x ≺CNT (Q)

S2. Then, for all o ∈ lin(�CNT (Q)), SOV (o) (⊗ϕ∈Φ ϕ) = Ans(Q). Moreover,
�CNT (Q) is weaker than �SOV .

Sketch of the proof. The idea is that if o ∈ lin(�CNT (Q)), it is possible to do the

inverse operations of RR and DR, considering first smallest variables in o. These

inverse operations are naturally sound and lead to the structure (SOV (o), Φ), which

proves that SOV (o) (⊗ϕ∈Φ ϕ) = Ans(Q).
If o ∈ lin(�SOV) and x �o y, then, for all n = (⊕S1

, N ∪ {(⊕′
S2

, N ′)}) ∈
CNT (Q) = CNT (Q,o), it is impossible that y ∈ S1 and x ∈ S2 (because y is consid-
ered before x during the rewriting process). As this holds for all x, y such that x �o y,
this entails that ¬(y �CNT (Q) x). (x �o y) → ¬(y �CNT (Q) x) can also be writ-
ten (y �CNT (Q) x) → (y ≺o x), which implies that o ∈ lin(CNT (Q)). Therefore,
lin(�SOV) ⊂ lin(CNT (Q)), i.e. �CNT (Q) is weaker than �SOV ⊓⊔

Problem instance w w′ nbv,nbc,nba Problem instance w w′ nbv,nbc,nba

adder-2-sat 12 24 332, 113, 5 k-branch-n-1 22 43 133, 314, 7
adder-4-sat 28 101 726, 534, 5 k-branch-n-2 39 103 294, 793, 9
adder-8-sat 60 411 1970, 2300, 5 k-branch-n-3 54 185 515, 1506, 11
adder-10-sat 76 644 2820, 3645, 5 k-branch-n-4 70 296 803, 2565, 13
adder-12-sat 92 929 3822, 5298, 5 k-branch-n-5 89 427 1149, 3874, 15

robots-1-5-2-1.6 2213 2213 6916, 23176, 3 k-branch-n-6 107 582 1557, 5505, 17
robots-1-5-2-1.7 1461 1461 7904, 26810, 3 k-branch-n-7 131 761 2027, 7482, 19
robots-1-5-2-1.8 3933 3933 8892, 30444, 3 k-branch-n-8 146 973 2568, 10117, 21
robots-1-5-2-1.9 1788 1788 9880, 34078, 3 k-branch-n-9 166 1201 3163, 12930, 23

Table 2. Comparison between w = wCNT (Q) and w′ = wG(�SOV) on some instances of
the QBF library (nbv, nbc, nba denote respectively the number of variables, the number
of clauses, and the number of elimination operator alternations of an instance).

3.5 Complexity results

The macrostructure is usable only if its computation is tractable. Based on the
algorithm in Figure 3, implementing the macrostructuration of a query, Propo-
sition 7 gives an upper bound on the complexity, showing that rewriting a query
as a tree of mono-operator computation nodes is easy.

begin

root← newNode(∅, ∅, Φ, ∅)
while (SOV = SOV ′ · ⊕x) do

SOV ← SOV ′

if ⊕ 6= ⊗ then

n← newNode(⊕, {x}, ∅, ∅)
foreach n′ ∈ Sons(root) s.t. x ∈ sc(n′) do

sc(n)← sc(n) ∪ sc(n′)
Sons(root)← Sons(root) − {n′}
if op(n′) = ⊕ then

Ve(n)← Ve(n) ∪ Ve(n
′)

Sons(n)← Sons(n) ∪ Sons(n′)

else Sons(n)← Sons(n) ∪ {n′}

sc(n)← sc(n)− {x}
Sons(root)← Sons(root) ∪ {n}

else

foreach n′ ∈ Sons(root) s.t. x ∈ sc(n′) do

if op(n′) = ⊕ then

Ve(n
′)← Ve(n

′) ∪ {x}
sc(n′)← sc(n′)− {x}

else

n← newNode(⊕, {x}, {n′}, sc(n′)− {x})
Sons(root)← (Sons(root)− {n′}) ∪ {n}

return (root)
end

Fig. 3: MacroStruct(SOV, (V, Φ)) (instruction newNode(op, Ve, Sons, sc)
creates a computation node n = (opVe

, Sons) and sets sc(n) to sc.

In the algorithm in Figure 3, the root node of the tree of computation nodes is
rewritten. With each node n = (opS , N) are associated an operator op(n) = op,
a set of sons Sons(n) = N modeled as a list, and a set of variables eliminated
Ve(n) = S modeled as a list too. The scope of n is modeled using a table
of |V | booleans. As long as the sequence of operator-variables is not empty, the
rightmost remaining elimination is considered. The pseudo-code just implements
the rewrite function, which dissociates the cases ⊕ 6= ⊗ and ⊕ = ⊗.

Proposition 7. The time and space complexity of the algorithm in Figure 3 are
O(|V |2 · |Φ|) and O(|V | · |Φ|) respectively (if Φ 6= ∅ and V 6= ∅).

Proof. At each rewriting step and for each son n′ of the root node, tests like “x ∈ sc(n′)”
and operations like “sc(n) ← sc(n) ∪ sc(n′)” or “sc(n′) ← sc(n′) − {x}” are O(|V |),
since a scope is represented as a table of size |V |. Operations like “Sons(root) ←
Sons(root) − {n′}”, “Sons(root) ← Sons(root) ∪ {n}”, “Ve(n) ← Ve(n) ∪ Ve(n

′)”
(with Ve(n) ∩ Ve(n

′) = ∅), or “Ve(n)← Ve(n) ∪ {x}” are O(1), since Ve and Sons are
represented as lists. Therefore, the operations performed for each rewriting step and for
each son of the root are O(|V |). As at each step, |Sons(root)| ≤ |Φ|, and as there are
|V | rewriting steps, the algorithm is time O(|V |2 · |Φ|). As for the space complexity,
given that only the scopes of the root sons are used, we need a space O(|V | · |Φ|) for the
scopes. As it can be shown that the number of nodes in the tree of computation nodes
is always O(|V |+ |Φ|), recording op(n) and Sons(n) for all nodes n is O(|V |+ |Φ|) too.
Last, recording Ve(n) for all nodes n is O(|V | · |Φ|) because the sum of the number of
variables eliminated in each node is lesser than |V | · |Φ| (the worst case occurs when all
variables are duplicated). Hence, the overall space complexity is O(|V | · |Φ|). ⊓⊔

4 Decomposing computation nodes

4.1 From computation nodes to multi-operator cluster trees

Once the macrostructure is built (in the form of a tree of mono-operator com-
putation nodes), we use freedoms in the elimination order so as to minimize the
induced-width. As (E,⊕,⊗) is a commutative semiring for every ⊕ ∈ {⊕i, i ∈ I},
this can be achieved by decomposing each mono-operator computation node into
a cluster tree using usual cluster tree construction techniques. This cluster tree is
obtained by considering for each computation node n = (opS , N) the hypergraph
G(n) = (∪n∈Nsc(n), {sc(n), n ∈ N}) associated with it.

The structure obtained then contains both a macrostructure given by the
computation nodes and an internal cluster tree structure given by each of their
decompositions. It is then sufficient to choose a root in the cluster tree decompo-
sition [6] of each computation node to obtain a so-called multi-operator cluster
tree as in Figure 4 (corresponding to an Extended-SSAT [3] problem).

Definition 8. A Multi-operator Cluster Tree (MCTree) on a MCS (E, {⊕i, i ∈
I},⊗) is a tree where every vertex c (called a cluster) is labeled with four ele-
ments: a set of variables V (c), a set of scoped functions Φ(c) taking values in E, a
set of son clusters Sons(c), and an elimination operator ⊕(c) ∈ {⊕i, i ∈ I}. The

value of a cluster c is val(c) = ⊕(c)
V (c)−V (pa(c))

((

⊗
ϕ∈Φ(c)

ϕ

)

⊗

(

⊗
s∈Sons(c)

val(s)

))

.

It follows from the construction process that if r is the root node of the
MCTree associated with a query Q, val(r) = Ans(Q).

4.2 A generic variable elimination algorithm on MCTrees

To define a generic VE algorithm on a MCTree, it suffices to say that as soon
as a cluster c has received val(s) from all its children s ∈ Sons(c), it computes
its own value val(c) = ⊕(c)V (pa(c))−V (c)

((

⊗ϕ∈Φ(c) ϕ
)

⊗
(

⊗s∈Sons(c) val(s)
))

and

sends it to pa(c), its parent in the MCTree. The value of the root cluster then
equals the answer to the query.

CNT (Q)

each computation node
tree decomposition of

MCTree :

ϕx6,x7

ϕx4,x7

ϕx2,x5

P

x7,x8 ϕx7,x8

ϕx3,x4

ϕx2,x10

ϕx5,x8

ϕx1,x4

X

x6,x7,x8

max
x9

ϕx4,x9

ϕx3,x4

minx5

P

x6

ϕx2,x4

ϕx2,x5

ϕx1,x4
ϕx2,x12
ϕx10,x11

P

x10,x12

ϕx10,x12

ϕx2,x4

max
x1,x2,x3

ϕx1,x3

min
x4,x5 ϕx10,x12

ϕx10,x13

ϕx10,x11

X

x10,x11

x12, x13

ϕx2,x12

ϕx2,x10

ϕx7,x8

ϕx6,x7

ϕx5,x8

ϕx4,x7

ϕx4,x9
maxx9

ϕx10,x13

P

x13

P

x11

ϕx1,x3
maxx3

maxx2

minx4

maxx1

Fig. 4: Example of a MCTree obtained from CNT (Q). Note that a cluster c is
represented by 1) the set V (c)−V (pa(c)) of variables it eliminates, its elimination
operator op(c), and the set of function Φ(c) associated with it, all these elements
being put in a pointwise box; 2) the set of its sons, pointing to it in the structure.

5 Conclusion

Solving multi-operator queries using only the sequence of elimination to define
constraints on the elimination order is easy but does not take advantage of the
actual structure of such queries. Performing a preprocessing finer analysis taking
into account both the function scopes and operator properties can reveal extra
freedoms in the elimination order as well as decompositions using more than just
the distributivity of the combination operator over the elimination operators.
This analysis transforms an initial unstructured multi-operator query into a tree
of mono-operator computation nodes. The obtained macrostructure is always as
least as good as the unstructured query in terms of induced-width, which can
induce exponential gains in complexity. It is then possible to define a generic
VE algorithm on Multi-operator Cluster Trees (MCTrees) by building a cluster-
tree decomposition of each mono-operator computation node. Performing such a
work using generic algebraic operators makes it applicable to various frameworks
(QBF, QCSP, SCSP, SSAT, BN, MDPs).

Other algorithms than VE could be designed on MCTrees, such as a tree
search enhanced by branch and bound techniques, e.g. in an AND/OR search [18]
or a backtrack bounded by tree decomposition (BTD-like [19]) scheme. Ideas
from the game theory field like the alpha-beta algorithm [20] can also be consid-
ered. This work was partially conducted within the EU IP COGNIRON (“The
Cognitive Companion”) funded by the European Commission Division FP6-IST
Future and Emerging Technologies under Contract FP6-002020.

References

1. Mackworth, A.: Consistency in Networks of Relations. Artificial Intelligence 8

(1977) 99–118
2. Bordeaux, L., Monfroy, E.: Beyond NP: Arc-consistency for Quantified Constraints.

In: Proc. of the 8th International Conference on Principles and Practice of Con-
straint Programming (CP-02), Ithaca, New York, USA (2002)

3. Littman, M., Majercik, S., Pitassi, T.: Stochastic Boolean Satisfiability. Journal
of Automated Reasoning 27 (2001) 251–296

4. Walsh, T.: Stochastic Constraint Programming. In: Proc. of the 15th European
Conference on Artificial Intelligence (ECAI-02), Lyon, France (2002)

5. Benedetti, M.: Quantifier Trees for QBF. In: Proc. of the 8th International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT-05), St. Andrews,
Scotland (2005)

6. Kjaerulff, U.: Triangulation of Graphs - Algorithms Giving Small Total State
Space. Technical Report R 90-09, Aalborg University, Denmark (1990)

7. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1988)

8. Giang, P., Shenoy, P.: A Qualitative Linear Utility Theory for Spohn’s Theory of
Epistemic Beliefs. In: Proc. of the 16th International Conference on Uncertainty
in Artificial Intelligence (UAI-00), Stanford, California, USA (2000) 220–229

9. Sabbadin, R.: A Possibilistic Model for Qualitative Sequential Decision Problems
under Uncertainty in Partially Observable Environments. In: Proc. of the 15th
International Conference on Uncertainty in Artificial Intelligence (UAI-99), Stock-
holm, Sweden (1999)

10. Puterman, M.: Markov Decision Processes, Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons (1994)

11. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:
Semiring-Based CSPs and Valued CSPs: Frameworks, Properties and Compari-
son. Constraints 4 (1999) 199–240

12. Howard, R., Matheson, J.: Influence Diagrams. In: Readings on the Principles and
Applications of Decision Analysis. Menlo Park, CA, USA (1984) 721–762

13. Ndilikilikesha, P.: Potential Influence Diagrams. International Journal of Approx-
imated Reasoning 10 (1994) 251–285

14. Pralet, C., Verfaillie, G., Schiex, T.: From Influence Diagrams to Multioperator
Cluster DAGs. In: Proc. of the 22nd International Conference on Uncertainty in
Artificial Intelligence (UAI-06), Cambridge, MA, USA (2006)

15. Dechter, R., Fattah, Y.E.: Topological Parameters for Time-Space Tradeoff. Arti-
ficial Intelligence 125 (2001) 93–118

16. Jensen, F., Jensen, F., Dittmer, S.: From Influence Diagrams to Junction Trees. In:
Proc. of the 10th International Conference on Uncertainty in Artificial Intelligence
(UAI-94), Seattle, WA, USA (1994) 367–373

17. Park, J., Darwiche, A.: Complexity Results and Approximation Strategies for
MAP Explanations. Journal of Artificial Intelligence Research 21 (2004) 101–133

18. Marinescu, R., Dechter, R.: AND/OR Branch-and-Bound for Graphical Models. In:
Proc. of the 19th International Joint Conference on Artificial Intelligence (IJCAI-
05), Edinburgh, Scotland (2005)

19. Jégou, P., Terrioux, C.: Hybrid Backtracking bounded by Tree-decomposition of
Constraint Networks. Artificial Intelligence 146 (2003) 43–75

20. Knuth, D., Moore, R.: An Analysis of Alpha-Beta Pruning. Artificial Intelligence
8 (1975) 293–326

