
Constraints and preferences
The interplay of preferences and algorithms

T. Schiex
INRA

Toulouse, France)

M. Cooper
IRIT

Toulouse, France

Abstract

As logic, constraint satisfaction faces the problem of incon-
sistency which itself naturally leads to the need of expressing
preferences. Starting from (Rosenfeld, Hummel, & Zucker
1976), which defined fuzzy constraint networks, a variety of
extended constraint frameworks have been proposed. Since
1995, several general axiomatic frameworks that try to cover
all these proposals have been introduced.
In this paper, we show how algorithms and axioms interacts
on a specific class of algorithms: arc consistency enforcing
algorithms. The generalization of arc consistency to the Val-
ued CSP framework was recently made possible thanks to the
addition of an additional axiom that captures the existence of
difference between preferences. We show that many usual
(and less usual) instances satisfy this axiom. This new ax-
iom naturally suggests a modification of the set of axioms
that could simplify both the axiom sets, the algorithms and
the proofs on Valued CSP. It consists in shifting from a semi-
group to a full group, where the existence of an opposite is
guaranteed. We consider this alternate definition and show
that it leads to a strong reduction of the framework generality.

The constraint satisfaction framework faces, as logic, the
problem of inconsistency. It is therefore not surprising that
the notion of preferences has been introduced very early in
the history of constraint satisfaction, going back to (Rosen-
feld, Hummel, & Zucker 1976). Most, if not all, exist-
ing frameworks are based on the idea that a mathematical
object (a preference) can be generated by each constraint
when variables are assigned. When several constraints are
assigned, preferences must be combined. In order to max-
imize preferences, one must also be able to compare com-
bined preferences.

There are many types of preferences that captures dif-
ferent practical problems and that corresponds to distinct
properties. To try to capture a large variety of such pref-
erence schemes, general abstract preferences frameworks
have been developed in the constraint satisfaction com-
munity (Freuder 1989; Schiex, Fargier, & Verfaillie 1995;
Bistarelli, Montanari, & Rossi 1995).

The aims in designing such frameworks are quite different
and result from different compromises between :

• generality: expressive power of the abstract framework,
what variety of preferences schemes can be captured. . .

• specificity: what generic properties, theorems and algo-
rithms can be built for handling these preferences.

Indeed, a very interesting situation arises from the interac-
tion of the properties of the preference scheme used and the
algorithms that may be used to tackle problems (satisfaction,
inference. . .) using this scheme. Historically, the first such
abstract framework, known as “Partial CSP” (Freuder 1989)
put the emphasis on generality and essentially ignores this
intricate interplay.

When algorithms come in the arena, one obvious aim is
to maximize the generality of the preference abstract frame-
work under the constraint that a given class of algorithms
works. One class of algorithms that covers a wide spec-
trum of problems originating from graph theory, operation
research and matrix factorization is the class of so-called dy-
namic programming algorithms (Bertelé & Brioshi 1972),
among which shortest path algorithms are probably the most
famous. In this case, one seeks to minimize a sum. For
such algorithms, it is now well known (Aho, Hopcroft, &
Ullman 1974; Minoux 1976; Shenoy 1991) that a semi-ring
structure can be used. The semiring CSP framework uses a
large subclass of semirings where one operator is used for
“maximization” of preferences and another is used for com-
bination. They allow to express a wide class of preferences
among which ones that define partially ordered structures.
Naturally, semiring CSP can be perfectly solved by dynamic
programming (also known as bucket elimination (Dechter
1999)). However, the most famous class of constraint net-
works algorithms, the so-called “local consistency enforc-
ing” algorithms, which are extremely useful to solve con-
straint networks without preferences were shown to termi-
nate only on a very small subclass of semiring CSP: those
with an idempotent preference aggregation operator.

At the very same time,in order to avoid redundant de-
velopments, to make it possible to use a variety of prefer-
ence schemes and to better understand this intricate inter-
action between preferences and algorithms, we developed
an algebraic framework for preferences in constraint net-
works called the Valued CSP framework, which is based on
a monotonic semi-group structure.

In this paper, we rapidly present the framework, most of
its know properties and some classical and less usual prefer-
ence schemes it may capture. As an example of the intricate
interplay between preference structures and algorithms, we

recently shown that the addition of a small axiom to the ba-
sic VCSP axioms makes it possible to extend the notion of
arc consistency to valued CSP. This axiom simply enforces
the existence of a (maximal) difference between preferences.
The notion of difference is a specialization of existence of
the opposite that often leads to intricate proofs and complex
conditions. A natural idea is to consider a simple stronger
axiom which is the existence of an opposite valuation. We
therefore consider the shift from a semi-group to a group
structure and show that it leads to a strong loss of generality.

Constraint Networks
For those unfamiliar with it, we rapidly describe what a con-
straint network is and some usual notions on it.

A constraint satisfaction problem (CSP) is a triple
〈X, D, C〉.

• X is a set of n variables X = {1, . . . , n}.

• Each variable i ∈ X has a domain of values di ∈ D and
can be assigned any value a ∈ di, also noted (i, a). d will
denote the cardinality of the largest domain of a CSP.

• C is a set of constraints. Each constraint cP ∈ C is de-
fined over a set of variables P ⊆ X (called the scope
of the constraint) by a subset of the Cartesian product
∏

i∈P di which defines all consistent tuples of values. The
cardinality |P | is the arity of the constraint cP . r will de-
note the largest arity of a CSP.

We assume, without loss of generality, that at most one
constraint is defined over a given set of variables. The set
C is partitioned into three sets C = C1 ∪ C+ where C1

contains all unary constraints. For simplification, the unary
constraint on variable i will be denoted ci, binary constraints
being denoted cij . e = |C+| will denote the number of non
unary constraints in a CSP. If J ⊆ X is a set of variables,
then `(J) denotes the set of all possible labellings for J i.e.,
the Cartesian product

∏

i∈J di of the domains of the vari-
ables in J . The projection of a tuple of values t onto a set
of variables V ⊆ X is denoted by t↓V . A tuple of values t
satisfies a constraint cP if t↓P ∈ cP . Finally, a tuple of values
over X is a solution iff it satisfies all the constraints in C.

The usual problem on a constraint network is the famous
“satisfaction” problem where the aim is to choose a value
in the domain of each variable in such a way that, for any
constraint c, the combination of values of the variable in the
scope of c appear in the set of tuples in the constraint. This
is called a solution of the problem.

One the most important notion on classical CSP is the no-
tion of local consistency among which the most important is
probably arc consistency:

DEFINITION 1 Given a binary CSP (X, D, C), a value a ∈
di is said to be viable if ∀cij ∈ C, ∃b ∈ dj such that (a, b) ∈
cij . A CSP is arc consistent if all its values are viable.

It is well know that from any given CSP, one may build an
equivalent CSP (with the same set of solutions) which is arc
consistent. This so-called arc consistent closure is unique
and can be built in time O(ed2), space O(ed) (Bessière

1991). The process of building such a closure consists in en-
forcing the deletion of all non viable values until quiescence.
This corresponds to the saturation of the constraint network
by a local incomplete inference process. Since only logical
consequences are produced, the final network is equivalent
to the initial one. Arc consistency is at the core of most con-
straint satisfaction algorithms and systems and its extension
to soft constraints frameworks is a natural quest with likely
practical and theoretical side-effects.

Valued constraint Networks
Valued CSP (or VCSP) were initially introduced in (Schiex,
Fargier, & Verfaillie 1995). A valued CSP is obtained by as-
sociating a valuation with each constraint. The set E of all
possible valuations is assumed to be totally ordered and its
maximum element is used to represent total inconsistency.
When a tuple violates a set of constraints, its valuation is
computed by combining the valuations of all violated con-
straints using an aggregation operator, denoted by ⊕. This
operator must satisfy a set of properties that are captured
by a set of axioms defining a so-called valuation structure.
Valuations actually represent local dislikes (rather than pref-
erences).

DEFINITION 2 A valuation structure is defined as a tuple
〈E,⊕, <〉 such that:
• E is a set, whose elements are called valuations, which is

totally ordered by <, with a maximum element denoted by
> and a minimum element denoted by ⊥;

• E is closed under a commutative, associative binary op-
eration ⊕ that satisfies:
– Minimum: ∀α ∈ E, α ⊕⊥ = α;
– Monotonicity: ∀α, β, γ ∈ E, (α < β) ⇒

(

(α ⊕ γ) <

(β ⊕ γ)
)

;
– Maximum: ∀α ∈ E, (α ⊕>) = >.

When E is restricted to [0, 1], this structure of a totally
ordered commutative monoid with a monotonic operator
is also known in uncertain reasoning, as a triangular co-
norm (Dubois & Prade 1982).

DEFINITION 3 A valued CSP is a tuple 〈X, D, C, S〉 where
X is a set of n variables X = {1, . . . , n}, each variable i ∈
X has a domain of possible values di ∈ D. C = C1 ∪ C+

is a set of constraints and S = 〈E,⊕, <〉 is a valuation
structure. Each constraint cP ∈ C is defined over a set of
variables P ⊆ X as a function cP :

∏

i∈P di → E.

An assignment t of values to some variables J ⊆ X
can be simply evaluated by combining, for all assigned con-
straints cP (i.e., such that P ⊆ J), the valuations of the
projection of the tuple t on P :

DEFINITION 4 In a VCSP V = 〈X, D, C, S〉, the valuation
of an assignment t to a set of variables J ⊆ X is defined by:

VV (t) =
⊕

cP ∈C,P⊆J

[c(t↓P)]

Note that, thanks to monotonicity, this is a lower bound
on the valuation of any assignment that assigns all variables
of the problem. This property is very useful in order to solve
the central problem of VCSP: finding a complete assignment
with a minimum valuation.

Globally, the semantics of a VCSP is defined by the valu-
ations V(t) of assignments t to X . The choice of axioms is
quite natural and is usual in the field of uncertain reason-
ing. The ordered set E simply allows us to express dif-
ferent degrees of constraint violation. The commutativity
and associativity guarantee that the valuation of an assign-
ment is independent of the order in which valuations are
combined. The monotonicity of ⊕ guarantees that assign-
ment valuations cannot decrease when constraint violations
increase. For a more detailed analysis and justification of
the VCSP axioms, we invite the reader to consult (Schiex,
Fargier, & Verfaillie 1995) which also emphasize the differ-
ence between idempotent and strictly monotonic aggregation
operators ⊕.

DEFINITION 5 An operator ⊕ is idempotent if ∀α ∈
E, (α ⊕ α) = α. It is strictly monotonic if ∀α, β, γ ∈
E, (α � β) ∧ (γ 6= >) ⇒ (α ⊕ γ) � (β ⊕ γ)

As shown in (Schiex, Fargier, & Verfaillie 1995), these
two properties are incompatible as soon as |E| > 2. The
only valuation structures with an idempotent operator corre-
spond to classical and possibilistic CSP (Schiex 1992) (min-
max dual to the conjunctive fuzzy CSP framework) which
use ⊕ = max as the aggregation operator. Other soft CSP
frameworks such as MAX-CSP, lexicographic CSP or prob-
abilistic CSP use a strictly monotonic operator.

Extending Arc consistency
In classical CSP, enforcing arc consistency is a process that
allows to transform an initial CSP to an equivalent CSP that
satisfies a local consistency property (the very arc consis-
tency property). Arc consistency enforcing satisfy some cru-
cial properties: it preserves the semantics of the problem, it
always terminates, in polynomial time and it defines a unique
equivalent problem called the arc-consistent closure (the fil-
tering process is confluent).

When abstract frameworks such as VCSP and semi-ring
CSP were introduced, it was immediately proved in each
case that the arc consistency property and associated enforc-
ing algorithms could be extended to abstract frameworks as
far as the operator that combines valuation is idempotent.
In this case, all the usual good properties of arc consistency
(termination, polynomial time, semantics preservation, con-
fluence) are kept.

However, when the operator is not idempotent, various ex-
tensions of arc consistency were defined that either were en-
forced by non terminating algorithms that did not yield an
equivalent problem (Bistarelli, Montanari, & Rossi 1995) or
that defined an NP-hard problem (Schiex, Fargier, & Verfail-
lie 1995). The absence of termination and non equivalence
of a direct enforcing algorithm is a natural consequence from
the fact that the addition of any non trivial (i.e. non tautolog-
ical) constraint in a constraint network with a strictly mono-

tonic combination operator will modify the semantics of the
problem (the distribution of preferences over all complete
assignments).

A possible approach, used in (Schiex 2000), is to try com-
pensate for the addition of any constraint to the network in
order to preserve equivalence. As an example, we consider
the binary weighted MAX-CSPs in figure 1(a). This cor-
responds to valued CSPs using the strictly monotonic val-
uation structure 〈N ∪ {∞}, +,≥〉. To describe such prob-
lems, we use an undirected graph representation where ver-
tices represent values. For all pairs of variables i, j ∈ X
such that cij ∈ C, for all values a ∈ di, b ∈ dj such that
cij(a, b) 6= ⊥ = 0, an edge connect the values (i, a) and
(j, b). The weight of this edge is set to cij(a, b). Unary con-
straints are represented by weights associated with vertices,
weights equal to 0 being omitted.

Our constraint network has two variables numbered 1 and
2, each with two values a and b together with a single con-
straint. The constraint forbids pair ((1, b), (2, b)) with cost
1 and forbids pairs ((1, a), (2, a)) and ((1, b), (2, a)) com-
pletely (with cost ∞). The pair ((1, a), (2, b)) is completely
authorized and the corresponding edge is therefore omitted.

1 2 1 2

1 2 1 2

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

(c) (d)

(a) (b)

∞

∞

∞

∞

∞

∞∞

∞

1

1 1

1

Figure 1: Four equivalent instances of MAX-CSP

If we assign the value b to variable 1, it is known for sure
that a cost of 1 must be paid since all extensions of (1, b)
to variable 2 incur a cost of at least 1. Projecting this min-
imum cost down from c12 would make this explicit and in-
duce a unary constraint on 1 that forbids (1, b) with cost 1.
However if we simply add this constraint to the MAX-CSP,
as was proposed in (Bistarelli, Montanari, & Rossi 1995)
for problems with an idempotent operator, the resulting CSP
is not equivalent. The complete assignment ((1, b), (2, b))
which initially had a cost of 1 would now have a cost of 2.
In order to preserve equivalence, we must “compensate” for
the induced unary constraint. This can be done by simply
subtracting 1 from all the tuples that contain the value (1, b).
The corresponding equivalent CSP is shown in figure 1(b):
the edge ((1, b), (2, b)) of cost 1 has disappeared (the as-

sociated weight is now 0) while the edge ((1, b), (2, a)) is
unaffected since it has infinite weight. We can repeat this
process for variable 2: all extensions of value (2, a) have
infinite cost. Thus we can add a unary constraint that com-
pletely forbids value (2, a). In this specific case, and because
the valuation ∞ satisfies ∞⊕∞ = ∞, we can either com-
pensate for this (Figure 1(c)) or not (Figure 1(d)). In both
cases, an equivalent MAX-CSP is obtained. Between the
problems in Figure 1(c)) and 1(d), we prefer the problem in
Figure 1(d) because it makes information explicit both at the
domain and constraint level.

This example leads to the following new axiom. This ax-
iom effectively makes it possible to extend the arc consis-
tency notion and algorithms as it is proved in (Schiex 2000;
Cooper & Schiex 2002).

DEFINITION 6 In a valuation structure S = 〈E,⊕, <〉, if
α, β ∈ E, α 4 β and there exists a valuation γ ∈ E such
that α ⊕ γ = β, then γ is known as a difference of β and α.

The valuation structure S is fair if for any pair of valua-
tions α, β ∈ E, with α 4 β, there exists a maximal differ-
ence of β and α. This unique maximal difference of β and α
is denoted by β 	 α.

Actually, it has been proven that most usual valuation
structure are fair. This includes possibilistic/min–max fuzzy
CSP, weighted Max-CSP for example. These are either
idempotent or strictly monotonic structures. Other in-
between cases may occur which shows the relative generality
of the VCSP framework.

DEFINITION 7 In a valuation structure 〈E,⊕, <〉, an ele-
ment α ∈ E is said to be an absorbing element iff α⊕α = α.

The importance of these so-called “absorbing valuations”
lies in the fact that they can be propagated as in classical
CSP: the addition of such a valuation to a VCSP that al-
ready “express” it will not change it semantics. In a valua-
tion structure 〈E,⊕, <〉, if ⊕ is idempotent then all elements
of E are absorbing. This explains why arc consistency was
straightforward to extend to idempotent structures. If ⊕ is a
strictly monotonic operator then the only absorbing elements
are ⊥ and >. Intermediate cases occur in the following ex-
amples:

EXAMPLE 1 Imagine the possible sentences for driving of-
fenses. Suppose that penalty points (up to a maximum of 12)
are awarded for minor offenses, whereas serious offenses are
penalized by suspension of the offender’s driving license for
a period of y years, for some positive integer y. A driver
who accumulates 12 penalty points receives an automatic
one-year suspension of his/her license. The set of sentences
can be modeled by a valuation structure S = 〈E,⊕, <〉 of
the form:

E = {(p, 0) : p ∈ {0, . . . , 12}}∪{(0, y) : y ∈ N
∗∪{∞}}

(p, y) ≺ (p′, y′) ⇔ (y < y′) ∨ ((y = y′ = 0) ∧ (p < p′))

(p, 0) ⊕ (p′, 0) = (min(p + p′, 12), 0)

(p, y) ⊕ (p′, y′) = (0, y + y′) if (y + y′ 6= 0)

Note that (12, 0) ≺ (0, 1) even though they both give rise to
a one-year license suspension. The penalty (0, 1) is deemed
to be worse because it can be cumulated. For example
(0, 1)⊕ (0, 1) = (0, 2), whereas (12, 0)⊕ (12, 0) = (12, 0).
Apart from ⊥ = (0, 0) and> = (0,∞), this valuation struc-
ture contains another absorbing valuation, namely (12, 0).

EXAMPLE 2 Another interesting case occurs if, for exam-
ple, a company wants to minimise both financial loss F and
loss of human life H if a fire should break out in its factory.
Supposing that the company considers that no price can be
put on human life, we must have

(F, H) < (F ′, H ′) ⇔ (H < H ′) ∨ (H = H ′ ∧ F < F ′)

If a financial loss of Fmax represents bankruptcy, then

(F, H) ⊕ (F ′, H ′) = (min{F + F ′, Fmax}, H + H ′)

and (Fmax, 0) is an absorbing element which is strictly less
than >. Note that this valuation structure is not fair, since
it is impossible to define α = (0, 1) 	 (Fmax, 0) such that
α ⊕ (Fmax, 0) = (0, 1).

EXAMPLE 3 Consider a valuation structure S = 〈N ∪
{∞,>},⊕,≥〉 composed of prison sentences. Sentences
may be of n years, life imprisonment (represented by ∞)
or the death penalty (represented by >). There is a rule that
states that two life sentences lead automatically to a death
sentence: in other words (∞ ⊕ ∞) = >. Otherwise, sen-
tences are cumulated in the obvious way: ∀m, n ∈ N, (m ⊕
n = m+n); ∀n ∈ N, (∞+n = ∞); ∀α ∈ E, (>⊕α = >).
Although every pair β, α ∈ E, α ≤ β possesses a difference,
this valuation structure is not fair since the set of differences
of ∞ and ∞ is N and hence no maximal difference of ∞
and ∞ exists. However, S can easily be rendered fair by
replacing N by {0, 1, 2, . . . , 150}, for example.

These examples shows that fair valuation structures can
capture preferences structures more complex than the usual
additive (Shapiro & Haralick 1981), max (Rosenfeld, Hum-
mel, & Zucker 1976), probabilistic (Fargier et al. 1995) or
lexicographic (Fargier, Lang, & Schiex 1993) structures. A
fine analysis of the general structure of fair valuation struc-
tures appears in (Cooper & Schiex 2002) where the follow-
ing theorem is proved. It shows that in the most general
case, a fair valuation structure is composed of “independent
slices” separated by absorbing elements.

THEOREM 8 (SLICE INDEPENDENCE THEOREM) Let S =
〈E,⊕, <〉 be a fair valuation structure. Let β, γ ∈ E, β 4

γ, and let α0, α1 ∈ E be absorbing valuations such that
α0 4 γ 4 α1. Then α0 4 (γ⊕β) 4 α1 and α0 4 (γ	β) 4

α1.

Arc consistency in fair valued CSP
In classical CSPs, arc consistency enforcing always in-
creases the information available on variables (by pruning
values) and constraints (by implicitly removing tuples that
use pruned values). In the case of soft arc consistency, in
order to guarantee termination, this must be limited to op-
erations that either increase the information available at the
variable level or that increase information available at the
constraint level as long as they do not lower the informa-
tion available at the variable level. The latter will only be
possible when the valuation propagated is absorbing.

The following result, proved in (Cooper & Schiex 2002)
shows how absorbing elements that separate slices can be
easily located.

THEOREM 9 Let S = 〈E,⊕, <〉 be a fair valuation struc-
ture. For all α ∈ E, α 	 α is the maximal absorbing valua-
tion less than or equal to α.

It os now possible to define arc consistency on all fair val-
uation structures. Note that this definition refines the defini-
tion of (Schiex 2000).

DEFINITION 10 A fair binary VCSP is arc consistent if for
all i, j ∈ X such that cij ∈ C+, for all a ∈ di we have:

1. ∀b ∈ dj , cij(a, b) =
(

ci(a)⊕cij(a, b)⊕cj(b)
)

	
(

ci(a)⊕

cj(b)
)

.
2. ci(a) = minb∈dj

(ci(a) ⊕ cij(a, b))

Condition 1 states that cij(a, b) has been increased to the
maximal element in E which does not increase the valuation
(

ci(a)⊕ cij(a, b)⊕ cj(b)
)

of (a, b) on {i, j}. If ⊕ is strictly
monotonic or idempotent, then this is equivalent to saying
that absorbing valuations have been propagated from ci(a)
to cij(a, b). Condition 2 says that we have propagated as
much weight as possible from the constraint cij onto ci.

To gain a better understanding of condition 1 of Defini-
tion 10 in the most general case, consider a simple valuation
structure in which penalties lies in the range {0, 1, 2, 3, 4, 5}
and ∀α, β ∈ E, (α ⊕ β = min(5, α + β)). 5 is absorbing
and verifies 5 	 α = 5 for all α 4 5. Figure 2(a) shows a
2-variable VCSP over this valuation structure. Figure 2(b)
shows the result of enforcing condition 1 of Definition 10:
c12(a, a) and c12(b, a) can both be increased to 5 without
changing the valuations of the solutions (a, a) and (b, a).
Figure 2(c) shows the result of then enforcing condition 2:
penalties are projected down from constraints to domains, as
we have seen in the example of Figure 1.

It is shown in (Cooper & Schiex 2002) that arc consis-
tency can always be enforced in polynomial time on all fair
valuation structures. All the usual properties of arc consis-
tency (termination, in polynomial time, semantics preserva-
tion) but one are preserved: confluence of arc consistency
enforcing is lost and therefore the arc consistent closure of a
problem is not necessarily unique as it is in classical CSPs.
Figure 3(a) shows a 2-variable VCSP on the valuation struc-
ture 〈N ∪ {∞}, +,≥〉. Each edge has a weight of 1. Fig-
ures 3(b) and 3(c) show two different arc consistency clo-
sures of this VCSP.

a

b

1 2 1 2

1 2

a

b

a

b

aa

b b

a

b

(b) (c)

2

1

(a)

2

5

1

5

2

4

4

2 3

55

5

Figure 2: (a) An example of a VCSP and how conditions 1
and 2 are enforced

.

When the operator ⊕ is strictly monotonic, a specialized
O(ed2) time, O(ed) space enforcing algorithm can be de-
fined.

(b) (c)

b

a cbcbacba

ca a b c a b c

2

(a)

1

1

1

1111

Figure 3: A MAX-CSP and two different equivalent arc con-
sistent closures

From semi-groups to groups
Since the essential side-effect of the “fairness” axiom is the
existence of a difference between valuations, it seems rea-
sonable to consider using a group-based structure instead of
a semi-group based structure.

Intuitively, this seems extremely attractive since it will al-
low to express both dislikes and preferences that can com-
pensate with each other. Naturally, since a difference will
always be defined in such a structure, one could hope for the
existence of arc consistency enforcing algorithms. Further-
more, opposite are much easier to handle than differences
in practice and would probably lead to simpler proofs and
algorithms.

Such a structure can be defined as follows:

DEFINITION 11 A symmetric valuation structure is defined
as a tuple 〈E,⊕,	, <〉 such that:
• E is a set, whose elements are called valuations, which is

totally ordered by <, with a maximum element denoted by
>.

• E is closed under a commutative, associative binary op-
eration ⊕ that satisfies:
– Identity: ∃0 ∈ E, ∀α ∈ E, α ⊕ 0 = α;
– Monotonicity: ∀α, β, γ ∈ E, (α < β) ⇒

(

(α ⊕ γ) <

(β ⊕ γ)
)

;
– Maximum: ∀α ∈ E, (α ⊕>) = >.
– Opposite: ∀α ∈ E −{{>}, ∃!β ∈ E, α⊕ β = 0. Such

a β is noted 	α.

Note that this set of axioms does not entail the set of axioms
of valuation structures. Indeed, the element 0 is no more
minimum. It is important to show that this set of axioms is
not inconsistent (or we could prove many properties on such
structures), but quite obviously, the classical boolean struc-
ture of classical CSP can easily be cast as such a symmetric
valuation structure. We get E = {>, 0} with > > 0 and
⊕ = max.

Keeping all other definitions essentially identical (defini-
tion of a symmetric valued CSP and of the valuation of a
tuple in a symmetric valued CSP), a first important remark
is that we loose an essential property: the valuation of an as-
signment is not necessarily a bound of the valuation of the
complete assignment. However, such a trivial lower bound
is not used anymore in practice because of its poor quality.

So, this loss does not remove interest in symmetric valua-
tion structure. We can either develop dedicated lower bounds
or we can restrict ourself to express problems with only
“positive” valuations. In this case, we obviously recover the
fact that the valuation of a local assignment is a lower bound
on the valuation of a complete assignment. Such a restriction
could be interesting if it allows to extend arc consistency to
a significant set of structures.

The following result shows that all strictly monotonic val-
uations structure can essentially be “remapped” to a sym-
metric valuation structure. This result (and its proof) are
very reminiscent of the closely related result that all strictly
monotonic valuation can be embedded in a fair valuation
structure (Cooper 2002).

PROPERTY 12 From any strictly monotonic valuation struc-
ture V = 〈E,⊕, <〉, we can build a symmetric valuation
V ′ = 〈E′,⊕′,	, <′〉 structure and a morphism f : E → E ′

such that f(a ⊕ b) = f(a) ⊕′ f(b) and a � b ⇔ f(a) �′

f(b).

Proof: Consider F = {(a, b) | a ∈ E, b ∈ E − {{>}}
and the relation ≡ on F × F defined by (a, b) ≡ (c, d) ⇔
(a ⊕ d) = (b ⊕ c). The fact that ≡ is an equiva-
lence relation follows from the strict monotonicity of ⊕:
∀(a, b), (c, d), (e, f) ∈ E × E − {>}: we have (a ⊕ d =
b⊕ c)∧ (c⊕f = d⊕ e) ⇒ a⊕d⊕ c⊕f = b⊕ c⊕d⊕ e ⇒
a⊕f = b⊕e if (c⊕d) 6= >. Otherwise, if (c⊕d) = >, this
implies that either c = > or d = > and therefore a = e = >
so that a ⊕ f = b ⊕ e.

Let F ′ be the set of equivalence classes of ≡ in F . If we
identify a ∈ E with the equivalence class of (a,⊥) in F ′,
we see that F ′ is an extension of E. We write 0 and >′ for
(the equivalence classes of) (⊥,⊥) and (>,⊥). We define

<′ by (a, b) <′ (c, d) ⇔ a ⊕ d < b ⊕ c. It is easy to see
that <′ is well-defined. The aggregation ⊕′ is defined as
(a, b) ⊕′ (c, d) = (a ⊕ c, b ⊕ d). The opposite is defined as
	(a, b) = (b, a) for (a, b) ∈ F ′ − {>′}.

That <′ is a total order follows from the fact that (a, b) <′

(c, d) ∧ (c, d) <′ (a, b) ⇒ a ⊕ d = b ⊕ c ⇒ (a, b) ≡ (c, d)
and (a, b) <′ (c, d) ∧ (c, d) <′ (e, f) ⇒ (a ⊕ d < b ⊕
c) ∧ (c ⊕ f < d ⊕ e). This implies that (a ⊕ d ⊕ c ⊕ f <

b⊕c⊕d⊕e∧c 6= >)∨(a = c = >). Therefore a⊕f < b⊕e
(by strict monotonicity) and (a, b) <′ (e, f).

The fact that F ′ is closed under ⊕ follows from the defi-
nition of ⊕. That >′ is the maximum element of F ′ follows
from the fact that ∀(a, b) ∈ F ′, b⊕> < a⊕⊥ and therefore
(>,⊥) <′ (a, b). That 0 is the identity of F ′ follows from
the fact that ∀(a, b) ∈ F ′, (a, b)⊕′(⊥,⊥) = (a⊕⊥, b⊕⊥) =
(a, b).

The fact that the 	(a, b) is the opposite of (a, b) follows
from the fact that ∀(a, b) ∈ F ′, (⊥⊕ (a⊕ b) = ⊥⊕ (a⊕ b)
which means that (⊥,⊥) ≡ (a⊕b, a⊕b) ≡ (a, b)⊕′(b, a) =
(a, b) ⊕′ 	(a, b).

The commutativity and associativity of ⊕′ in F ′ fol-
low directly form the associativity and commutativity of
⊕ in E. Strict monotonicity follows from the fact that
(a, b), (c, d), (e, f) ∈ F ′ ∧ (a, b) �′ (c, d) ∧ (e, f) 6≡ >′ ⇒
a⊕d � b⊕c∧> 6= e < f ⇒ a⊕e⊕d⊕f � b⊕f⊕c⊕e ⇒
(a ⊕ e, b ⊕ f) �′ (c ⊕ e, d ⊕ f) ⇒ (a, b) ⊕′ (e, f) �′

(c, d) ⊕′ (e, f). The absorbing element axiom follows from
the fact that ∀(a, b) ∈ F ′, (a, b) ⊕′ >′ = (a ⊕>, b ⊕⊥) =
(>, b) ≡ >′.

The morphism f from E to F ′ is simply defined by ∀a ∈
E, f(a) is the equivalence class of (a,⊥) in F ′. Very simply,
∀a, b ∈ E, f(a ⊕ b) ≡ (a ⊕ b,⊥) = (a,⊥) ⊕′ (b,⊥) ≡
f(a) ⊕′ f(b). Furthermore a � b ⇔ (a ⊕ ⊥ � b ⊕ ⊥) ⇔
(a,⊥) �′ (b,⊥) ⇔ f(a) �′ f(b).

This shows that from any strictly monotonic VCSP, we
can map it to a symmetric VCSP by mapping all valuations
in it using the f morphism. The corresponding problem can
be processed and solved and the optimum solution will be an
optimal solution of the original problem.

The main point that remains to be addressed is to see if we
can find morphisms between other (non strictly monotonic)
valuation structures and symmetric valuation structures.

PROPERTY 13 No such morphism exists between a non
strictly monotonic valuation structure and any symmetric
valuation structure.

Proof: If we consider a non strictly monotonicity valuation
structure V = 〈E,⊕,�〉, this means that ∃a, b, c ∈ E, c 6=
> such that a � b and a ⊕ c = b ⊕ c.

Imagine that a morphism exists between V and a symmet-
ric valuation structure V ′ = 〈E′,⊕′,	, <′〉. We then have
f(a ⊕ c) = f(b ⊕ c) ⇔ f(a) ⊕′ f(c) = f(b) ⊕′ f(c). By
existence of an opposite number this implies that f(a) ⊕′

f(c) ⊕′ 	f(c) = f(b) ⊕′ f(c) ⊕′ 	f(c) ⇔ f(a) = f(b)
which contradicts the fact that a � b.

As a reviewer pointed out, an alternative way of reach-
ing this result is to show that the combination of the ax-
ioms of triangular co-norms which appear in the valuation

structure axioms (associativity, commutativity, absorbing el-
ement, identity and monotonicity) with the additional prop-
erty of being extensible to a domain E ′ such that each ele-
ment of E has an opposite in the extended domain E ′ im-
plies strict monotonicity. This shows that the possible mor-
phims are restricted because the possible symmetric valua-
tion structures are actually restricted to strictly monotonic
structures.

So, it appears that the introduction of an opposite in val-
uation structures that could ease the definition of arc con-
sistency enforcing algorithms essentially restricts the frame-
work to strictly monotonic structures which an important
loss of expressivity. Although one could argue that strictly
monotonic structures covers important cases (eg/ Max-CSP),
we consider that such an refinement leads to a too specific
scheme. Specifically, it will not cover instances as described
in Figure 2 that corresponds to the situation of branch and
bound: since an upper bound on the cost of the optimal so-
lution is known, all solutions whose valuations are equal to
or larger than this upper bound are considered as completely
uninteresting and should therefore be immediately pruned.

Conclusion
Following our work on arc consistency, we thought that a
possible evolutions of the valuation structure axioms could
be to introduce the existence of an opposite as an improve-
ment of the artificial and relatively complex fairness axiom.
As we shown, This replacement actually consists in shifting
from a semi-group based structure to a group based struc-
ture. We have shown that this actually essentially limits the
structures captured to strictly monotonic structures which is
a relatively heavy cost to pay.

Further work is now needed to see how fair valuation
structures could be weakened to capture partial orders with-
out loosing the existence of polynomial time arc consistency
enforcing algorithms.

References
Aho, A.; Hopcroft, J.; and Ullman, J. 1974. The Design &
Analysis of Computer Algorithms. Addison-Wesley.
Bertelé, U., and Brioshi, F. 1972. Nonserial Dynamic Pro-
gramming. Academic Press.
Bessière, C. 1991. Algorithmes d’arc-consistance pour les
problèmes de satisfaction de contraintes dynamiques. Tech-
nical Report 91-086, LIRMM Montpellier II, Montpellier,
France.
Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex,
T.; and Verfaillie, G. 1999. Semiring-based CSPs and val-
ued CSPs: Frameworks, properties and comparison. Con-
straints 4:199–240.
Bistarelli, S.; Montanari, U.; and Rossi, F. 1995. Constraint
solving over semirings. In Proc. of the 14th IJCAI.
Cooper, M., and Schiex, T. 2002. Arc consis-
tency for soft constraints. submitted to JACM. see
arXiv.org/abs/cs.AI/0111038.

Cooper, M. C. 2002. Reduction operations in fuzzy or
valued constraint satisfaction. Fuzzy Sets and Systems. To
appear.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence 113(1–2):41–85.
Dubois, D., and Prade, H. 1982. A class of fuzzy mea-
sures based on triangular norms. a general framework for
the combination of uncertain information. Int. Journal of
Intelligent Systems 8(1):43–61.
Fargier, H.; Lang, J.; Martin-Clouaire, R.; and Schiex, T.
1995. A constraint satisfaction framework for decision un-
der uncertainty. In Proc. of the 11th Int. Conf. on Uncer-
tainty in Artificial Intelligence.
Fargier, H.; Lang, J.; and Schiex, T. 1993. Selecting pre-
ferred solutions in Fuzzy Constraint Satisfaction Problems.
In Proc. of the 1st European Congress on Fuzzy and Intel-
ligent Technologies.
Freuder, E. C. 1989. Partial constraint satisfaction. In Proc.
of the 11th IJCAI, 278–283.
Larrosa, J.; Meseguer, P.; and Schiex, T. 1999. Maintain-
ing reversible DAC for Max-CSP. Artificial Intelligence
107(1):149–163.
Minoux, M. 1976. Structures algébriques généralisées des
problèmes de cheminement dans les graphes. Recherche
opérationnelle 10(6):33–62.
Rosenfeld, A.; Hummel, R.; and Zucker, S. 1976. Scene
labeling by relaxation operations. IEEE Trans. on Systems,
Man, and Cybernetics 6(6):173–184.
Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued
constraint satisfaction problems: hard and easy problems.
In Proc. of the 14th IJCAI, 631–637.
Schiex, T. 1992. Possibilistic constraint satisfaction prob-
lems or “How to handle soft constraints ?”. In Proc. of the
8th Int. Conf. on Uncertainty in Artificial Intelligence.
Schiex, T. 2000. Arc consistency for soft constraints. In
Principles and Practice of Constraint Programming - CP
2000, volume 1894 of LNCS, 411–424.
Shapiro, L., and Haralick, R. 1981. Structural descriptions
and inexact matching. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 3:504–519.
Shenoy, P. 1991. Valuation-based systems for discrete op-
timization. In Bonissone; Henrion; Kanal; and Lemmer.,
eds., Uncertainty in AI. North-Holland Publishers.

