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Overview

1. Frameworks

n Generic and specific

2. Algorithms

n Search: complete and incomplete

n Inference: complete and incomplete

3. Integration with CP

n Soft as hard

n Soft as global constraint
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Parallel mini-tutorial

o CSP ⇔ SAT strong relation

o Along the presentation, we will highlight 
the connections with SAT

o Multimedia trick:
n SAT slides in yellow background
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o CSP framework: natural for decision
problems

o SAT framework: natural for decision
problems with boolean variables

o Many problems are constrained 
optimization problems and the difficulty is 
in the optimization part

Why soft constraints?
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Why soft constraints?

n Given a  set of requested pictures (of 
different importance)…

n … select the  best subset of compatible 
pictures …

n … subject to available resources:

o 3 on-board cameras

o Data-bus bandwith, setup-times, 
orbiting

n Best = maximize sum of importance

q Earth Observation Satellite Scheduling
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Why soft constraints?

o Frequency assignment

n Given a telecommunication
network

n …find the best frequency for 
each communication link
avoiding interferences

n Best can be:

o Minimize the maximum frequency (max)

o Minimize the global interference (sum)
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Why soft constraints?

o Combinatorial auctions
n Given a set G of goods and a set B of bids…

o Bid (bi,vi), bi requested goods, vi value

n … find the best subset of compatible bids

n Best = maximize revenue (sum)

G1

G3

G2
G5

G6

G4

G8

G7

b1

v1

b4

v4

b2   v2

b3   v3
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Why soft constraints?

o Probabilistic inference
(bayesian nets)

n Given a probability distribution 
defined by a DAG of conditional
probability tables

n and some evidence …

n …find the most probable
explanation for the evidence
(product)
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Why soft constraints?

o Even in decision problems:
n users may have preferences among solutions

Experiment: give users a few solutions and 
they will find reasons to prefer some of 
them.
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Observation

o Optimization problems are harder than
satisfaction problems
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Why is it so hard ?

Problem 
P(alpha): is 
there an 

assignment 
of cost 

lower than 
alpha ?
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Notation

o X={x1,..., xn} variables (n variables)

o D={D1,..., Dn} finite domains (max size d)

o Z⊆Y⊆X, 

n tY is a tuple on Y

n tY[Z]     is its projection on Z

n tY[-x] = tY[Y-{x}] is projecting out variable x 

n fY: ∏xi∊Y Di →E is a cost function on Y



Generic and specific frameworks

Valued CN weighted CN

Semiring CN fuzzy CN

…
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Costs (preferences)

o E costs (preferences) set
n ordered by ≼

n if a ≼ b then a is better than b

o Costs are associated to tuples

o Combined with a dedicated operator
n max: priorities

n +: additive costs

n *: factorized probabilities…

Fuzzy/possibilistic CN

Weighted CN

Probabilistic CN, BN

⊕⊕⊕⊕
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Soft constraint network (CN)

o (X,D,C)

n X={x1,..., xn} variables

n D={D1,..., Dn} finite domains

n C={f,...} cost functions

o fS, fij, fi f∅ scope S,{xi,xj},{xi}, ∅

o fS(t):  → E (ordered by ≼, ⊥≼T)

o Obj. Function: F(X)= ⊕f
S

(X[S])

o Solution: F(t) ≠ T

o Task: find optimal solution

identity

• commutative
• associative
• monotonic

anihilator
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Specific frameworks

0≼1max[0,1]Possibilistic

⊥≼T⊕EInstance

1≼0×[0,1]Bayes net

0≼k+[0,k]Weighted CN

1≼0max≼[0,1]Fuzzy CN

t ≼fand{t,f}Classic CN



September 2006 CP06 17

Weighted Clauses

o (C,w) weighted clause
n C disjunction of literals

n w cost of violation

n w ∈ E (ordered by ≼, ⊥≼T)

n ⊕ combinator of costs

o Cost functions = weighted clauses

311

201

010

600

f(xf(xf(xf(xiiii,x,x,x,xjjjj))))xxxxjjjjxxxxiiii

(xi ν xj, 6),

(¬xi ν xj, 2),

(¬xi ν ¬xj, 3)
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Soft CNF formula

o F={(C,w),…} Set of weighted clauses

o (C, T) mandatory clause

o (C, w<T) non-mandatory clause

o Valuation: F(X)= ⊕ w (aggr. of unsatisfied)

o Model: F(t) ≠ T

o Task: find optimal model
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Specific weighted prop. logics

⊥≼T⊕EInstance

1≼0×[0,1]Markov Prop. Logic

0≼k+[0,k]Max-SAT

1≼0max≼[0,1]Fuzzy SAT

t ≼fand{t,f}SAT
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CSP example (3-coloring)

x3

x2

x5

x1 x4

For each edge:
(hard constr.)

Trr

⊥gr

⊥br

⊥rg

Tgg

⊥bg

⊥rb

⊥gb

Tbb

f(xi,xj)xjxi
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Weighted CSP example (⊕⊕⊕⊕ = +)

x3

x2

x5

x1 x4

F(X): number of non blue vertices

For each vertex

1r

1g

0b

f(xi)xi
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Possibilistic CSP example (⊕⊕⊕⊕=max)

x3

x2

x5

x1 x4

F(X): highest color used (b<g<r)

For each vertex

0.2r

0.1g

0.0b

f(xi)xi
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Some important details

o T = maximum acceptable violation. 

o Empty scope soft constraint f∅ (a constant)

n Gives an obvious lower bound on the optimum

n If you do not like it: f∅ = ⊥

Additional expression power
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Weighted CSP example (⊕⊕⊕⊕ = +)

x3

x2

x5

x1 x4

F(X): number of non blue vertices

For each vertex

For each edge:

1r

1g

0b

f(xi)xi

Trr

0gr

0br

0rg

Tgg

0bg

0rb

0gb

Tbb

f(xi,xj)xjxi

T=6
f∅ = 0
T=3

Optimal coloration with less than 3 non-blue
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General frameworks and cost structures

hard
{⊥,T}

totally
ordered

Semiring CSP

Valued CSPidempotent

fair

multi
criteria

lattice
ordered

m
u
lt
ip
le
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Idempotency

a ⊕ a = a (for any a)

For any fS implied by (X,D,C)

(X,D,C) ≡ (X,D,C∪{fS})

n Classic CN: ⊕ = and

n Possibilistic CN: ⊕ = max

n Fuzzy CN: ⊕ = max≼

n …
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Fairness

o Ability to compensate for cost increases by 
subtraction using a pseudo-difference:

For b ≼ a, (a ⊖ b) ⊕ b = a

n Classic CN: a⊖b = or (max)

n Fuzzy CN: a⊖b = max≼

n Weighted CN: a⊖b = a-b (a≠T) else T 

n Bayes nets: a⊖b = /

n …



Processing Soft constraints

Search

complete (systematic)

incomplete (local)

Inference

complete (variable elimination)

incomplete (local consistency)



Systematic search

Branch and bound(s)
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I - Assignment (conditioning)

TTTTrr

0gr

0br

0rg

TTTTgg

0bg

3rb

0gb

TTTTbb

f(xf(xf(xf(xiiii,x,x,x,xjjjj))))xxxxjjjjxxxxiiii

f[xi=b]
3r

0g

TTTTb

xxxxjjjj

g(xg(xg(xg(xjjjj))))
g[xxxxjjjj=r]

3

0
hhhh∅∅∅∅
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I - Assignment (conditioning)

{(x∨y∨z,3),

(¬x∨y,2)}

x=true

(y,2) (� ,2)
y=false

� empty clause. 
It cannot be satisfied,
2 is necessary cost
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Systematic search

(LB) Lower Bound

(UB) Upper Bound

If ≥≥≥≥ then prune

va
ri
a
b
le

s

under estimation of the best 
solution in the sub-tree

= best solution so far

Each node is a soft constraint subproblem

LBf∅∅∅∅

= f∅

= T

UBT
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Depth First Search (DFS)

BT(X,D,C)

if (X=∅) then Top :=f∅
else

xj := selectVar(X)

forall a∈Dj do

∀fS∈C s.t. xj ∈S f := f[xj =a]

f∅:= ΣgS∈C s.t. S=∅ gS

if (f∅ <Top) then BT(X-{xj},D-{Dj},C)

variable heuristics

improve LB

good UB ASAP

value heuristics
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Improving the lower bound (WCSP)

o Sum up costs that will necessarily occur
(no matter what values are assigned to the 
variables)

o PFC-DAC (Wallace et al. 1994)

o PFC-MRDAC (Larrosa et al. 1999…)

o Russian Doll Search (Verfaillie et al. 1996)

o Mini-buckets (Dechter et al. 1998)



September 2006 CP06 35

Improving the lower bound (Max-SAT)

o Detect independent subsets of mutually
inconsistent clauses

o LB4a (Shen and Zhang, 2004)

o UP (Li et al, 2005)

o Max Solver (Xing and Zhang, 2005)

o MaxSatz (Li et al, 2006)

o …



Local search

Nothing really specific
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Local search

Based on perturbation of solutions in a local 
neighborhood

o Simulated annealing

o Tabu search

o Variable neighborhood search

o Greedy rand. adapt. search (GRASP)

o Evolutionary computation (GA)

o Ant colony optimization…

o See: Blum & Roli, ACM comp. surveys, 35(3), 
2003

For boolean
variables:
• GSAT
• …
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Boosting Systematic Search with
Local Search

Local search

(X,D,C)

time 
limit

Sub-optimal
solution

o Do local search prior systematic search 

o Use best cost found as initial T
n If  optimal, we just prove optimality

n In all cases, we may improve pruning
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Boosting Systematic Search with
Local Search

o Ex: Frequency assignment problem
n Instance: CELAR6-sub4

o #var: 22 , #val: 44 , Optimum: 3230

n Solver: toolbar 2.2 with default options

n T initialized to 100000 Ł 3 hours

n T initialized to 3230 Ł 1 hour

o Optimized local search can find the optimum in a 
less than 30” (incop)



Complete inference

Variable (bucket) elimination

Graph structural parameters
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II - Combination (join with ⊕⊕⊕⊕, + here)

6gg

0bg

0gb

6bb

f(xf(xf(xf(xiiii,x,x,x,xjjjj))))xxxxjjjjxxxxiiii

6gg

0bg

0gb

6bb

g(xg(xg(xg(xjjjj,x,x,x,xkkkk))))xxxxkkkkxxxxjjjj

12ggg

6bgg

0gbg

6bbg

6ggb

0bgb

6gbb

12bbb

h(xh(xh(xh(xiiii,x,x,x,xjjjj,x,x,x,xkkkk))))xxxxkkkkxxxxjjjjxxxxiiii

⊕⊕⊕⊕

= 0 ⊕ 6
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III - Projection (elimination)

6rr

0gr

1br

3rg

6gg

2bg

0rb

6gb

4bb

f(xf(xf(xf(xiiii,x,x,x,xjjjj))))xxxxjjjjxxxxiiii

f[xxxxiiii]

r

g

b

g(xg(xg(xg(xiiii))))xxxxiiii

0

0

2

g[∅∅∅∅]
hhhh∅∅∅∅

0

Min
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Properties

o Replacing two functions by their
combination preserves the problem

o If f is the only function involving variable x, 
replacing f by f[-x] preserves the optimum
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Variable elimination

1. Select a variable

2. Sum all functions that mention it

3. Project the variable out

•Complexity
Time: Θ(exp(deg+1))
Space: Θ(exp(deg))
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Variable elimination (aka bucket elimination)

o Eliminate Variables one by one.

o When all variables have been eliminated, 
the problem is solved

o Optimal solutions of the original problem
can be recomputed

•Complexity: exponential in the induced width
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Elimination order influence

o {f(x,r), f(x,z), …, f(x,y)}

o Order: r, z, …, y, x

x

r z y…
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Elimination order influence

o {f(x,r), f(x,z), …, f(x,y)}

o Order: r, z, …, y, x

x

r z y…
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Elimination order influence

o {f(x), f(x,z), …, f(x,y)}

o Order:    z, …, y, x

x

z y…
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Elimination order influence

o {f(x), f(x,z), …, f(x,y)}

o Order:    z, …, y, x

x

z y…
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Elimination order influence

o {f(x), f(x), f(x,y)}

o Order:    y, x

x

y…
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Elimination order influence

o {f(x), f(x), f(x,y)}

o Order:    y, x

x

y…
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Elimination order influence

o {f(x), f(x), f(x)}

o Order:    x

x
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Elimination order influence

o {f(x), f(x), f(x)}

o Order:    x

x
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Elimination order influence

o {f()}

o Order:
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Elimination order influence

o {f(x,r), f(x,z), …, f(x,y)}

o Order: x, y, z, …, r

x

r z y…
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Elimination order influence

o {f(x,r), f(x,z), …, f(x,y)}

o Order: x, y, z, …, r

x

r z y…
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Elimination order influence

o {f(r,z,…,y)}

o Order: y, z, r

r z y…
CLIQUE
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Induced width

o For G=(V,E) and a given elimination
(vertex) ordering, the largest degree
encountered is the induced width of the 
ordered graph

o Minimizing induced width is NP-hard.
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History / terminology

o SAT: Directed Resolution (Davis and 
Putnam, 60)

o Operations Research: Non serial dynamic
programming (Bertelé Brioschi, 72) 

o Databases: Acyclic DB (Beeri et al 1983) 

o Bayesian nets: Join-tree (Pearl 88, 
Lauritzen et Spiegelhalter 88)

o Constraint nets: Adaptive Consistency
(Dechter and Pearl 88)
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Boosting search with variable 
elimination: BB-VE(k)

o At each node
n Select an unassigned variable xi
n If degi ≤ k then eliminate xi
n Else branch on the values of xi

o Properties
n BE-VE(-1) is BB

n BE-VE(w*) is VE

n BE-VE(1) is similar to cycle-cutset
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Boosting search with variable 
elimination

o Ex: still-life (academic problem)
n Instance: n=14

o #var:196 , #val:2

n Ilog Solver Ł 5 days

n Variable Elimination Ł 1 day

n BB-VE(18) Ł 2 seconds
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Memoization fights thrashing

=

Different nodes,  
Same subproblem

store retrieve

Detecting subproblems
equivalence is hard

V V

t

P

t’

P’ P

t t’
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Context-based memoization

o P=P’, if
n |t|=|t’| and

n same assign. to
partially assigned cost
functions

t t’

P P’
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Memoization

o Depth-first B&B with,
n context-based memoization

n independent sub-problem detection

o … is essentialy equivalent to VE
n Therefore space expensive

o Fresh approach: Easier to incorporate typical
tricks such as propagation, symmetry breaking,…

o Algorithms:
n Recursive Cond. (Darwiche 2001)

n BTD (Jégou and Terrioux 2003)

n AND/OR (Dechter et al, 2004)

Adaptive memoization:
time/space tradeoff
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SAT inference

o In SAT, inference = resolution

x∨A
¬x∨B
------------

A∨B

o Effect: transforms explicit knowledge into
implicit

o Complete inference: 
n Resolve until quiescence

n Smart policy: variable by variable (Davis & 
Putnam, 60). Exponential on the induced width.
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Fair SAT Inference

(x ∨ A,u), (¬x ∨ B,w)   Ł

(A ∨ B,m),

(x ∨ A,u⊖m),

(¬x ∨ B, w⊖m),

(x ∨ A ∨ ¬B,m),

(¬x ∨ ¬A ∨ B,m)
where: 

m=min{u,w}

• Effect: moves knowledge



September 2006 CP06 67

Example: Max-SAT (⊕⊕⊕⊕=+, ⊖⊖⊖⊖=-)

(x∨y,3), 

(¬x∨z,3)
=

¬x

y

¬y

z

x

¬x

y

¬z

¬y

z

x

3

3 ¬z

33
3

(y∨z,3),
(x∨y,3-3),
(¬x∨z,3-3),
(x∨y∨¬z,3),
(¬x∨¬y∨z,3)
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Properties (Max-SAT)

o In SAT, collapses to classical resolution

o Sound and complete

o Variable elimination:
n Select a variable x

n Resolve on x until quiescence

n Remove all clauses mentioning x 

o Time and space complexity: exponential on
the induced width
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Change



Incomplete inference

Local consistency

Restricted resolution
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Incomplete inference

o Tries to trade completeness for space/time

n Produces only specific classes of cost functions

n Usually in polynomial time/space

o Local consistency: node, arc…
n Equivalent problem

n Compositional: transparent use

n Provides a lb on consistencyoptimal cost
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Classical arc consistency

o A CSP is AC iff for any xi and cij

n ci= ci ⋈(cij ⋈ cj)[xi]  

n namely, (cij ⋈ cj)[xi] brings no new information 
on xi

w

v v

w

0

0

0

0

i j

T

T

0vv

0wv

Tww

Tvw

cijxjxi

0v

Tw

c(xi)xi

cij ⋈ cj

(cij ⋈ cj)[xi]
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Enforcing AC 

o for any xi and cij

n ci:= ci ⋈(cij ⋈ cj)[xi] until fixpoint (unique)

w

v v

w

0

0

0

0

i j

T

T

0vv

0wv

Tww

Tvw

cijxjxi

0v

Tw

c(xi)xi

cij ⋈ cj

T

(cij ⋈ cj)[xi]
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Arc consistency and soft constraints

w

v v

w

0

0

0

0

i j

2

1

0vv

0wv

1ww

2vw

fijxjxi

0v

1w

f(xi)Xi

fij ⊕ fj

1

Always equivalent iff ⊕ idempotent

o for any xi and fij
n f=(fij ⊕ fj)[xi]  brings no new information on xi

(fij ⊕ fj)[xi]
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Idempotent soft CN

o The previous operational extension works
on any idempotent semiring CN
n Chaotic iteration of local enforcing rules until

fixpoint

n Terminates and yields an equivalent problem

n Extends to generalized k-consistency

n Total order: idempotent ó (⊕ = max)
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Non idempotent: weighted CN

o for any xi and fij
n f=(fij ⊕ fj)[xi]  brings no new information on xi

w

v v

w

0

0

0

0

i j

2

1

0vv

0wv

1ww

2vw

fijxjxi

0v

1w

f(xi)xi

fij ⊕ fj

1

EQUIVALENCE LOST

fij ⊕ fj [xi] 
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o Combination+Subtraction: equivalence
preserving transformation

IV - Subtraction of cost functions (fair)

2

w

v v

w

0

0

0

i j
1

01

1
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(K,Y) equivalence preserving inference

o For a set K of cost functions and a scope Y
n Replace K by (⊕K)

n Add (⊕K)[Y]  to the CN (implied by ⊕K)

n Subtract (⊕K)[Y] from (⊕K)

o Yields an equivalent network

o All implicit information on Y in K is explicit

o Repeat for a class of (K,Y) until fixpoint
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Node Consistency (NC*): ({f∅,fi}, ∅) EPI

n For any variable Xi

o ∀a, f∅ + fi (a)<T

o ∃ a, fi (a)= 0

n Complexity:

O(nd)

w

v

v

v

w

w

f∅ =
T =

3
2

2

1
1

1

1

1

0

0

1

x

y

z

0

0

01
4

Or T may decrease: 
back-propagation
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0

1

Full AC (FAC*): ({fij,fj},{xi}) EPI

n NC*

n For all fij
o ∀a ∃b

fij(a,b) + fj(b) = 0

(full support)

w

v

v

w

f∅ =0 
T=4

0
1

0

1

0

x

z
1

1

That’s our starting point!
No termination !!!
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0

Arc Consistency (AC*): ({fij},{xi}) EPI

n NC*

n For all fij
o ∀a ∃ b

fij(a,b)= 0

n b is a support

n complexity:

O(n 2d 3)

w
v

v

w

w

f∅ =
T=4

2

1
1

1

0

0

0

0

1

x

y

z

1

12

0



September 2006 CP06 82

Neighborhood Resolution

(x ∨ A,u), (¬x ∨ A,w)   Ł

(A,m),

(x ∨ A,u⊖m),

(¬x ∨ A, w⊖m),

(x ∨ A ∨ ¬A,m),

(¬x ∨ ¬A ∨ A,m)

n if |A|=0, enforces node consistency

n if |A|=1, enforces arc consistency
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Confluence is lost

w

0

1

yx

v

w

0

0

v1

f∅ = 0  1
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Confluence is lost

Finding an AC closure that maximizes the lb is an 
NP-hard problem (Cooper & Schiex 2004).

Well… one can do better in pol. time (OSAC, IJCAI 2007)

w

0

1

yx

v

w

0

0

v

f∅ = 0  
1
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Hierarchy

NC* O(nd)

AC* O(n 2d 3) DAC* O(ed 2)

FDAC* O(end 3) AC

NC

DAC

Special case: CSP (Top=1)

EDAC* O(ed2 max{nd,T})
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Boosting search with LC

BT(X,D,C)

if (X=∅) then Top :=f∅
else

xj := selectVar(X)

forall a∈Dj do

∀fS∈C s.t. xj ∈S fS := fS [xj =a]

if (LC) then BT(X-{xj},D-{Dj},C)
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BT

MNC

MAC/MDAC

MFDAC

MEDAC
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Boosting Systematic Search with
Local consistency

Frequency assignment problem

o CELAR6-sub4 (22 var, 44 val, 477 cost func):

n MNC*Ł 1 year

n MFDAC* Ł 1 hour

o CELAR6 (100 var, 44 val, 1322 cost func):

n MEDAC+memoization Ł 3 hours (toolbar-BTD)
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Beyond Arc Consistency

o Path inverse consistency PIC (Debryune & Bessière)

x y

z

(x,a) can be pruned because there
are two other variables y,z such that
(x,a) cannot be extended to any of
their values.

({fy, fz, fxy, fxz, fyz},{x}) EPI

a

b

c

a
b
c

a

b

c
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Beyond Arc Consistency

o Soft Path inverse
consistency PIC*

2

2

3

0bbb

2abb

0bab

0aab

3bba

2aba

5baa

2aaa

zyx

({fy, fz, fxy, fxz, fyz},x) EPI

x

0b

2a

fy⊕ fz⊕ fxy⊕ fxz⊕ fyz

(fy⊕fz⊕fxy⊕fxz⊕fyz)[x]
x y

z

a

b

a
b

a

b

0bbb

2abb

0bab

0aab

1bba

0aba

3baa

0aaa

zyx

1

22
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Hyper-resolution (2 steps)

(l∨h∨A,u),

(¬l∨q∨A,v),

(¬h∨q∨A,u)

(h∨q∨A,m),

(l∨h∨A,u-m),

(¬l∨q∨A,v-m),

(l∨h∨¬q∨A,m),

(¬l∨q∨¬h∨A,m),

(¬h∨q∨A,u)

(q∨A,m’),

(h∨q∨A,m-m’),

(¬h∨q∨A,u-m’),

(l∨h∨A,u-m),

(¬l∨q∨A,v-m),

(l∨h∨¬q∨A,m),

(¬l∨q∨¬h∨A,m)

if |A|=0, equal to soft PIC
Impressive empirical speed-ups

= =



Complexity & Polynomial classes

Tree = induced width 1

Idempotent ⊕ or not…
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Polynomial classes
Idempotent VCSP: min-max CN

o Can use α-cuts for lifting CSP classes

n Sufficient condition: the polynomial class is
«conserved» by α-cuts

n Simple TCSP are TCSP where all constraints
use 1 interval: xi-xj∊[aij,bij]

n Fuzzy STCN: any slice of a cost function is an 
interval (semi-convex function) (Rossi et al.)
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Hardness in the additive case
(weighted/boolean)

o MaxSat is MAXSNP complete (no PTAS)
n Weighted MaxSAT is FPNP-complete

n MaxSAT is FPNP[O(log(n))] complete: weights !

n MaxSAT tractable langages fully characterized
(Creignou 2001) 

o MaxCSP langage:    feq(x,y) : (x = y) ? 0 : 1
is NP-hard.
n Submodular cost function lang. is polynomial.

(u ≤ x, v ≤ y f(u,v)+f(x,y) ≤ f(u,y)+f(x,v))  (Cohen et al.)



Integration of soft constraints into
classical constraint programming

Soft as hard

Soft local consistency as a global constraint
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Soft constraints as hard constraints

o one extra variable xs per cost function fS
o all with domain E

o fS ➙ cS∪{xS} allowing (t,fS(t)) for all t∊ℓ(S)

o one variable xC = ⊕ xs (global constraint)
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Soft as Hard (SaH)

o Criterion represented as a variable

o Multiple criteria = multiple variables

o Constraints on/between criteria

o Weaknesses:
n Extra variables (domains), increased arities

n SaH constraints give weak GAC propagation

n Problem structure changed/hidden
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≥
Soft AC « stronger than » SasH GAC

o Take a WCSP

o Enforce Soft AC on it

Ø Each cost function contains at least one 
tuple with a 0 cost (definition)

o Soft as Hard: the cost variable xC will have 
a lb of 0

o The lower bound cannot improve by GAC
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1

1

1

1
1

1

f∅=1
a

b

x1 x3x2

x1 x3x2

10 10

1

0

x12 x23

xc

x c
=
x 1
2
+
x 2
3

2

> 
Soft AC « stronger than » SasH GAC



September 2006 CP06 100

Soft local Consistency as a Global 
constraint (⊕⊕⊕⊕=+)

o Global constraint: Soft(X,F,C)
n X variables

n F cost functions

n C interval cost variable (ub = T)

o Semantics: X U{C} satisfy Soft(X,F,C) iff

∑f(X)=C

o Enforcing GAC on Soft is NP-hard

o Soft consistency: filtering algorithm (lb≥f∅)
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Ex: Spot 5 (Earth satellite sched.)

o For each requested photography:
n € lost if not taken , Mb of memory if taken

o variables: requested photographies

o domains: {0,1,2,3}

o constraints:
n {rij, rijk} binary and ternary hard costraints

n Sum(X)<Cap.       global memory bound

n Soft(X,F1,€) bound € loss
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Example: soft quasi-group
(motivated by sports scheduling)

o Alldiff(xi1,…,xin)  i=1..m

o Alldiff(x1j,…,xmj) j=1..n

o Soft(X,{fij},[0..k],+)

4

3 Minimize #neighbors of
different parity

Cost 1



Global soft constraints
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Global soft constraints

o Idea: define a library of useful but non-
standard objective functions along with
efficient filtering algorithms

n AllDiff (2 semantics: Petit et al 2001, van Hoeve 2004)

n Soft global cardinality (van Hoeve et al. 2004)

n Soft regular (van Hoeve et al. 2004) 

n … all enforce reified GAC
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Conclusion

o A large subset of classic CN body of knowledge has 
been extended to soft CN, efficient solving tools exist.

o Much remains to be done:
n Extension: to other problems than optimization (counting, 

quantification…)

n Techniques: symmetries, learning, knowledge compilation…

n Algorithmic: still better lb, other local consistencies or 
dominance. Global (SoftAsSoft). Exploiting problem structure.

n Implementation: better integration with classic CN solver
(Choco, Solver, Minion…)

n Applications: problem modelling, solving, heuristic guidance, 
partial solving.



30’’ of publicity JJJJ
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Open source libraries
Toolbar and Toulbar2

o Accessible from the Soft wiki site:

carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP

o Alg: BE-VE,MNC,MAC,MDAC,MFDAC,MEDAC,MPIC,BTD

o ILOG connection, large domains/problems…

o Read MaxCSP/SAT (weighted or not) and ERGO format

o Thousands of benchmarks in standardized format

o Pointers to other solvers (MaxSAT/CSP)

o Forge mulcyber.toulouse.inra.fr/projects/toolbar (toulbar2)

Pwd: bia31
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Thank you for your attention
This is it !
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SoftasHard GAC vs. EDAC
25 variables, 2 values binary MaxCSP

o Toolbar MEDAC
n opt=34

n 220 nodes

n cpu-time = 0’’

o GAC on SoftasHard, ILOG Solver 6.0, solve
n opt = 34

n 339136 choice points

n cpu-time: 29.1’’

n Uses table constraints
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Other hints on SoftasHard GAC

o MaxSAT as Pseudo Boolean ⇔ SoftAsHard

n For each clause:

c = (x∨…∨z,pc)    cSAH = (x∨…∨z∨rc) 

n Extra cardinality constraint:

Σ pc.rc ≤ k

n Used by SAT4JMaxSat (MaxSAT competition).
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MaxSAT competition (SAT 2006)
Unweighted MaxSAT
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MaxSAT competition (SAT 2006)
Weighted


