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Polynomial classes

structural classes: when the constraint
(hyper)-graph has good properties.

microstructural classes: when the constraints have
good properties.

Structural polynmial class: inherited by VE/BBE,
problem with a tree-structured graph or more generally
a partial k-tree structured graph with k bounded.
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Idempotent VCSP: fuzzy CSP

The α-cut result. . .

Any fuzzy CSP with can be solved in O(log(ed)) calls to
a classical CSP solver.

All classical CSP polynomial classes that are not
affected by α-slicing are polynomial time classes for
fuzzy CSP.
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Temporal CSP

each variable xi represents a time point.

each constraint is a set of intervals [a, b].
Ti unary: restricts the domain to the union of the
intervals
Tij binary:restricts the distance xj − xi to the
union of the intervals

Can be represented as a directed graph with labelled
vertices and edges. NP-complete. STCSP: one interval
in each constraint. Polynomial time solvable.
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The directed graph of a problem

[10,30]

[30,40]

[40,50]

[60,70]

[10,20]

1

0

2

3 4

Padova 2004 - Soft constraints – p. 5



The distance graph

l ≤ xj − xi ≤ u ⇔ (xj − xi ≤ u) ∧ (xi − xj ≤ −l)
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Properties

each path from i to j: xj − xi ≤ path length.

xj − xi ≤ dij where dij is the shortest path from i to
j.

A STCSP is consistent iff there is no negative
(absorbing cycle).

Computing all pairs shortest path solves the problem
completely (Floyd-Warshall, detects neg. cycles,
O(n3)).
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Fuzzy TCSP

For temporal problems with preferences.

each variable xi has a continuous time domain
(time point)

each constraint is a fuzzy subset of R.
Ti unary: restricts the domain to the fuzzy set.
intervals
Tij binary:restricts the distance xj − xi to the
fuzzy set.

Optimal assignment: NP-hard. Pol. class ?
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Simple Fuzzy TCSP

A fuzzy TCSP is simple iff every α cut it is a simple
TCSP.

⇔
Every α-cut of the sets is an interval

⇔
Every fuzzy set in the network is a semi-convex
function.

log(nbits) STCSP problems to solve is enough.
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Tractable languages

Imagine we have a set L of allowed soft constraints for
a given c-semiring.

We will say that L is a tractable language if any soft
CSP built from constraints in L is tractable (the optimal
assignment cost can be computed in pol. time).

Previous result: the language of semi-convex temporal
constraints is tractable in fuzzy CSP. In non idempotent
structures?
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Existing results on Max-CSP

d = 2: Max-Sat. Precisely three tractable
languages. The language of cxor is NP-hard.

Max-CSP: d may be larger than 2. . .

The langage of binary soft equality

ceq(x, y) =

{

0 x = y
1 otherwise

is NP-hard.

Padova 2004 - Soft constraints – p. 11



Reduction from min. 3-terminal cut

Min. 3-terminal cut: an undirected (weighted) graph
G = (V,E). Three distingued vertices {v1, v2, v3}. Is
there a set of edges of minimum weight whose removal
disconnects each pair of terminals.

One variable per vertex, 3 values. One constraint ceq

per edge. One unary constraint per terminal:

cvi
(x) =

{

0 : x = i

|E| + 1 : otherwise
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Generalized interval functions

Domain D ordered.

cρ

[a,b]
(x, y) =

{

0 : (x < a) ∨ (y > b)

ρ : otherwise

The langage of GI functions is tractable.
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Tractability

P = 〈X,D,C〉 a maxCSP with Di = {1, . . . ,M}.
G = (V,E) with:

V = {S, T} ∪ {xid | xi ∈ X, d ∈ D{1, . . . ,M}}.

for each xi ∈ X, an edge from S to xiM weight ∞

for each xi ∈ X, an edge from xi0 to T , weight ∞

for each xid ∈ V, d ∈ [1,M − 2], an edge from xid to
xid+1 with weight ∞.

for each constraint cρ

[a,b]
(xi, xj) an edge from xjb to

xia−1 with weight ρ (c-edges).
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Example

X = {x, y, z}, dom{1, 2, 3, 4}, C =

{c3
[3,4](y, x), c7

[1,3](z, y), c2
[4,3](y, z), c∞[2,4](z, z)}

x4 x3 x2 x1 x0

y4 y3 y2 y1 y0

z4 z3 z2 z1 z0

3

72

S T

8
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Main results

A minimal S − T cut that contains only c-edges is a
proper cut ({〈y3, z0〉}, {〈x4, y2〉, 〈z3, y3〉).

For each minimal proper cut of weight Φ, there is an
assignment of cost Φ and vice-versa.

Here: {〈y3, z0〉} has weight 7, {〈x4, y2〉, 〈z3, y3〉} has
weight 5. Both minimal.
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Proof (consider Cut {〈y3, z0〉})
⇒: CS the component connected to S.

Consider t that assigns each var. xi to its minimum
value di s.t. xidi

∈ CS. t = 〈x = 4, y = 2, z = 1〉.

Note that f < t(xi) ⇔ xif /∈ CS.

cρ

[a,b]
(xi, xj) is violated by

t ⇔ (t(xi) ≥ a) ∧ (t(xj) ≤ b) ⇔ (xia−1 /∈ CS) ∧ (xjb ∈ CS).

The edge connects CS and CT and must be in the cut.
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⇐

Consider assignment t and the edges defined by the
constraints violated by t. t = 〈x = 4, y = 2, z = 1〉.

Consider a S − T path and imagine all constraints on
the path are satisfied. 〈S, x4, y2, y3, z0, T 〉

(xi0 > M) ∨ (xi1 < a1)
(xi1 > b2) ∨ (xi2 < a2) b2 ≥ a1

. . .
(xik > bk+1) ∨ (xik+1

< 1) bk+1 ≥ ak

One must be violated. Violated constraints define a cut
and must all appear in it. Its weight is the assignment
cost.
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Extends to submodular functions

A function such ∀x, y, u, v, u ≤ x, v ≤ y, we have:

c(u, v) + c(x, y) ≤ c(u, y) + c(x, v)

A submodular fonction cost matrix decomposes in a
sum of GI functions.

ax + by + c,
√

x2 + y2, ||x − y|r(r ≥ 1),max(x, y, 0)r(r ≥ 1)

This class is maximal.

Q: link with semi-convex fuzzy temporal functions
submodular.
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RNA secondary structure prediction

RNA is a single strand molecule composed of A,U,G,C.

Functional RNA are structured (3d structure). Structure
is related to function.

The structure is induced by base pairing: Watson-Crick
(A-U,G-C) and Wobble (G-U).

Secondary structure: set of all Watson-Crick and
Wobble base pairs.

Problem: determine the secondary structure of an RNA
molecule from a single sequence.
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A transfert RNA
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RNA secondary structure prediction

Other sources of information:

thermodynamics.
Zuker’s algorithm: DP algorithm that finds an
optimal secondary structure. Pb: thermodynamics
is not precise enough.

McCaskill matrix: given an RNA sequence,
computes the probability that a given base is paired
to another given base (based on thermodynamics).

biological knowledge: one may know/test that a
given base is paired or not, is paired to a given
other base.
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A CSP model (C. Gaspin, 1995)

For a sequence of length n = (b1, . . . bn):

one variable xi per base

domains: di = {1, . . . , n}. bi = i means bi unpaired.

constraints: Watson-Crick/Wobble only.
xi = j ⇔ xj = i

No pseudo-knot: for i < j, k < l, (j, l) is forbidden for
xi, xk if i < k < j < l or k < i < l < j.
Many other constraints. . .

Experimental knowledge: a base is unpaired, is
paired, with a specific base...

Usually too many solutions. Need more information.
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Exploiting thermodynamics

McCaskill matrix P (i, j) probability that bi is paired with
bj.

For algorithmic reasons (satisfaction problem):

fix a threshold p.

forbid all pairs bi = j such that P (i, j) < p.

Poor handling of probabilities, Choice of p. . .

Enforce arc consistency, then solve as a Max-CSP with
unary soft constraints (maximize the number of paired
bases).
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Satellite scheduling

var/dom: a set S of pictures. Each picture can be
taken at different time points.

binary constraints: only three instruments are
available and each picture requires some
instruments with possible transition times for
reconfiguration.

ternary constraints: the data bus bandwidth is
limited.

global constraint: the local memory is limited.

Overconstrained: instanciate a subset of S which
maximizes the sum of the weights of the pictures (and
satisfies all constraints).
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RDS (no global constraint)

val = # of pictures, ∗ = optimality proof (within 30’)

pb n e FC (cpu “) RDS (cpu “)

404 100 610 48 1800 49* 0.5

408 199 2032 3076 1800 3082* 14

412 300 4048 15078 1800 16102* 29

414 364 9744 21096 1800 22120* 86

503 105 403 8095 1800 9096* 2.5

505 240 2002 12088 1800 13100* 15

507 311 5421 12110 1800 15137* 55

509 348 8276 19104 1800 19125* 106
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Satellite scheduling

Beyond RDS, these instances have been tackled by
several approaches:

local search: taboo search

LP + column generation: to provide global lower
bounds

0/1 LP: as a multidimensional Knapsack (MKP01),
to provide global lower bounds

The MPK01 model is solved to apparent optimality by
CPLEX 7.0 (but with float tolerance problems) on most
instances. Cpu-time may reach 5.104 sec. on a modern
Pentium machine and may violate known lower bounds.
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Frequency assignment (CELAR)

siteA
siteB

Link i
fi

f ′

i

|fi − f ′

i | = εij
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Frequency assignment (CELAR)

siteA
siteB

Link i
fi

f ′

i

fi, f
′

i ∈ di

|fi − f ′

i | = εij|fi − fj | ≥ δij

fj
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FAP - criteria

minimize the maximum frequency used
(possibilistic CSP)

minimize the number of frequencies used
(optimisation/global soft constraint)

minimize the weighted constraint violation
(Max-CSP)

Several instances available: from 200 to 916 vars, from
1200 to more than 5000 binary constraints. Domains
usually have more than 30 values.
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FAP: results

Tackled in the CALMA project (1994) and then by
individuals. Most problems solved to optimality. . .

Max-CSP problems are very hard (even for local
search). No proof of optimality after CALMA.

1997: graph decomposition + RDS proved
optimality of Celar06 (5.106 sec., Sparc 5).
PFC-MRDAC (2.6105 sec, Sparc 2).
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A nice approach: DP

1999: preprocessing + non serial dynamic
programming + a lot more: solves most instances
to optimality (Arie Koster, PhD thesis).
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Conclusion

Soft constraint technology is still in its enfancy.
There is much to do:

use existing frameworks to build more realistic
models for existing problems, that may exploit
recent algorithms (eg. bucket elimination,
PFC-MRDAC. . . )

improve algorithms for solving existing models in
existing frameworks:

stronger preprocessing
global soft constraints
combination of bucket elimination, branching
and local consistency or other preprocessing.
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Existing implementations (I know. . . )

Con’Flex: Conjunctive fuzzy CSP system with
integer, symbolic and numerical constraints
(www.inra.fr/bia/T/conflex).

clp(FD,S): semi-ring CLP.
(pauillac.inria.fr/˜georget/clp_fds/clp_fds.html).

LVCSP: Common-Lisp library for Valued CSP with
an emphasis on strictly monotonic operators
(ftp.cert.fr/pub/lemaitre/LVCSP).

Choco: a claire library for CSP. Existing layers
above Choco implements Weighted Max-CSP
algorithms (part of LVCSP, (www.choco-constraints.net).

toolbar: C library for MaxCSP and related problems
(carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro).
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