
Soft constraints: Algorithms (3)
T. Schiex

INRA - Toulouse, France

Padova 2004 - Soft constraints (algorithms 2) – p. 1

Inference

In classical CSP, inference produces new constraints
which are implied by the problem. Makes implicit c
explicit.

〈X,D,C〉 → c s.t. c satisfied by all solutions.

K ⊂ C,L = ∪cS∈K(S), V ⊂ L, K → c = (onc∈K c)[V]

Then 〈X,D,C ∪ {c}〉 is equivalent to 〈X,D,C〉 (same
solutions). More explicit. Simpler to solve.

Incomplete inference: transform 〈X,D,C〉 into an
equivalent problem where all possible local inferences
have been performed.

Padova 2004 - Soft constraints (algorithms 2) – p. 2

Node/Arc consistency and binary CSP

Node consistency: the empty assignment can be
extended to one variable in a consistent way (unary
constraints).

Arc consistency: each value of each variable can
be extended to 2 variables in a consistent way.

Enforcing by inference on every binary constraint:
ci = ci on (cij on cj)[i]. Infers all unary constraints
implied by cij.

Local consistency:Polynomial time, yields a unique
equivalent, more explicit problem that satisfies the
property.

Padova 2004 - Soft constraints (algorithms 2) – p. 3

Soft constraints

P = 〈X,D,C, S〉 describes a distribution P (t) of
valuations on the search space (combination of all
constraints).

We say that cs is implied by P iff ∀t,cS(t[S]) <s P (t).

K ⊂ C,L = ∪cS ∈ K(S), V ⊂ L, K → (onc∈K c)[V]

Adding cS to P may change the distribution of
valuations unless. . .⊕ idempotent.

Padova 2004 - Soft constraints (algorithms 2) – p. 4

Local consistency for idempotent SCSP

Consider a binary SCSP 〈X,D,C, S〉.
C = {c∅} ∪ C1 ∪ C+.

A CSP is node-consistent iff c∅ implies any ci[] (nothing
more to infer).

A variable i is arc consistent wrt cij ∈ C iff ci implies
cij [i].

The soft CN is arc-consistent iff all its variables are AC
wrt. all constraints it involves.

Padova 2004 - Soft constraints (algorithms 2) – p. 5

Enforcing AC on idempotent SCSP

For all xi ∈ X, cij ∈ C, do

ci = ci on (cj on cij)[i]

until fixpoint. Can be more expensive that in classical
case (still polynomial). Limited variable elimination w/o
elimination.

Padova 2004 - Soft constraints (algorithms 2) – p. 6

Example on a fuzzy CN

Padova 2004 - Soft constraints (algorithms 2) – p. 7

k-consistency
Consider W ⊂ X, |W | = k − 1. Let C(V) be the
constraints whose scope is included in V .

W is k-consistent iff

∀x ∈ X \ W, on C(W) → (on C(W ∪ {x}))[W]

A CN is k-consistent iff all subsets of size k − 1 are
k-consistent.

Padova 2004 - Soft constraints (algorithms 2) – p. 8

Enforcing k-consistency

For all W ⊂ X, |W | = k − 1 and for all x ∈ X \ W do:

cW = cW on C(W ∪ {x})[W]

until fixpoint.

Generates arity k − 1 constraints.

Time exponential in k, space exp. in k − 1.

|X|-consistency infers more constraints than VE or
BBE and makes all implied constraints explicit.

Padova 2004 - Soft constraints (algorithms 2) – p. 9

Non idempotent VCSP: additive CSP

It does not work...

S = 〈N ∪ {∞}, <,+,⊥ = 0,> = ∞〉

Padova 2004 - Soft constraints (algorithms 2) – p. 10

What can be done ?

We don’t want to eliminate. We cannot add implied
constraints. . .

when we project some penalty out of a constraint to
a variable and add it to the problem

we must compensate for this by “substracting” it
from the constraint

Padova 2004 - Soft constraints (algorithms 2) – p. 11

Non idempotent VCSP: additive CSP

S = 〈N ∪ {∞}, <,+,⊥ = 0,> = ∞〉

Padova 2004 - Soft constraints (algorithms 2) – p. 12

Fair VCSPs

In a valuation structure S = 〈E,⊕,<〉, if α, β ∈ E, α 4 β
and there exists a valuation γ ∈ E such that α ⊕ γ = β,
then γ is known as a difference of β and α.

The valuation structure S is fair if for any pair of
valuations α, β ∈ E, with α 4 β, there exists a maximum
difference of β and α. This unique maximum difference
of β and α is denoted by β 	 α.

Padova 2004 - Soft constraints (algorithms 2) – p. 13

What valuation structures are fair ?

Classical CSP: 	 = max

Possibilistic (min-max) CSP: 	 = max

Weighted CSP (min-+) CSP: 	 = −

Probabilistic CSP: 	 = ÷

Lexicographic CSP can be turned in to weighted CSP
or the structure modified so that 	 exists.

Padova 2004 - Soft constraints (algorithms 2) – p. 14

Not fair ?

S = 〈N ∪ {∞,>},≥,⊕,⊥,>〉

n year of prison (finite)

life imprisonment (∞)

death penalty (>).

Two life sentences → death sentence ((∞⊕∞) = >).

∀m,n ∈ N, (m ⊕ n = m + n); ∀n ∈ N, (∞ + n = ∞);
∀α ∈ E, (>⊕ α = >).

Not fair: differences exist. Set of differences of ∞ and
∞ is N. No maximum difference.

Padova 2004 - Soft constraints (algorithms 2) – p. 15

Binary weighted CSP

Binary additive CSP with. . . an upper bound k.

S(k) = 〈[0, k],≤,⊕, 0, k〉. < usual order on integers.

a ⊕ b = min(k, a + b)

a 	 b =

{

a − b : a 6= k

k : a = k

Padova 2004 - Soft constraints (algorithms 2) – p. 16

Projecting and preserving equivalence

Let α = minb∈Dj
(cij(a, b)).

Procedure Project(i, a, j, α)
ci(a) := ci(a) ⊕ α;
foreach b ∈ Dj do cij(a, b) := cij(a, b) 	 α;

Information flows from cij to ci. Preserves solutions.

Padova 2004 - Soft constraints (algorithms 2) – p. 17

Another “equivalence preserving” op.

Let β = ci(a).

Procedure Extend(i, a, j, β)
foreach b ∈ Dj do cij(a, b) := cij(a, b) ⊕ β;
ci(a) := ci(a) 	 β;

Information flows from ci(a) to cij(a, b). Preserves
solutions.

Padova 2004 - Soft constraints (algorithms 2) – p. 18

Let’s play

1 2 1 2

1 2 1 2

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

(c) (d)

(a) (b)

∞

∞

∞

∞∞

∞

1

∞ ∞

1

11

Padova 2004 - Soft constraints (algorithms 2) – p. 19

Node Consistency

Node consistency: all possible information in the ci has
been extracted by Project to c∅.

∀i ∈ X

∃a ∈ Di, ci(a) = 0 (support for c∅).

∀a ∈ Di, c∅ ⊕ ci(a) ≺ >

Can delete a ∈ Di whenever c∅ + ci(a) = k.

Padova 2004 - Soft constraints (algorithms 2) – p. 20

NC in action

x

y

z

a

b

a

b

a

b

0

1

2

T = 4
C = 0o

3

0
1

1

1

1

1

2

Padova 2004 - Soft constraints (algorithms 2) – p. 21

NC in action

x

y

z

a

b

a

b

a

b

0

1

2

T = 4
C = 0o

3

0
1

1

1

1

1

2

Padova 2004 - Soft constraints (algorithms 2) – p. 21

NC in action

x

y

z

a

b

a

b

a

b

0

1

2

T = 4
C = 1o

3

0
1

1

1

0

0

2

Padova 2004 - Soft constraints (algorithms 2) – p. 21

NC in action

x

y

z

a

b

a

b

a

b

0

1

2

T = 4
C = 1o

3

0
1

1

1

0

0

2

Padova 2004 - Soft constraints (algorithms 2) – p. 21

NC in action

x

y

z

a

b

a

b

a

b

0

1

T = 4
C = 1o

0
1

1

1

0

0

2

Padova 2004 - Soft constraints (algorithms 2) – p. 21

Arc consistency

Arc consistency: all information that can be projected
out of all cij has been projected out.

NC and ∀i, j s.t. cij ∈ C

∀ ∈ Di∃b ∈ Dj s.t. cij(a, b) = ⊥

b is a support for a on cij.

Padova 2004 - Soft constraints (algorithms 2) – p. 22

In action

x

y

z

a

b

a

b

a

b

0

1

T = 4
C = 1o

0
1

1

1

0

0

2

Padova 2004 - Soft constraints (algorithms 2) – p. 23

In action

x

y

z

a

b

a

b

a

b

0

1

T = 4
C = 1o

0
1

1

1

0

0

2

Padova 2004 - Soft constraints (algorithms 2) – p. 23

In action

x

y

z

a

b

a

b

a

b

0

1

T = 4
C = 1o

0
1

1

1

2

0

Padova 2004 - Soft constraints (algorithms 2) – p. 23

In action

x

y

z

a

b

a

b

a

b

0

1

T = 4
C = 1o

1
1

2

0

Padova 2004 - Soft constraints (algorithms 2) – p. 23

In action

x

y

z

a

b

a

b

a

b

0

1

T = 4
C = 1o

1
1

2

0

Padova 2004 - Soft constraints (algorithms 2) – p. 23

In action

x

y

z

a

b

a

b

a

b

0

0

T = 4
C = 2o

0
1

2

0

Padova 2004 - Soft constraints (algorithms 2) – p. 23

In action

x

y

z

a

b

a

b

a

b

0

0

T = 4
C = 2o

0
1

2

0

Padova 2004 - Soft constraints (algorithms 2) – p. 23

In action

x

y

z

a

b

a

b

a

b

0

0

T = 4
C = 2o

0
1

0

Padova 2004 - Soft constraints (algorithms 2) – p. 23

In action

x

y

z

a

b

a

b

a

b

0

0

T = 4
C = 2o

0
1

0

Padova 2004 - Soft constraints (algorithms 2) – p. 23

In action

x

y

z

a

b

a

b

a

b

0

1

T = 4
C = 2o

0

0

Padova 2004 - Soft constraints (algorithms 2) – p. 23

Loss of uniqueness of the fixpoint

(b) (c)

b

a cbcbacba

ca a b c a b c

2

(a)

1

1

1

1111

Padova 2004 - Soft constraints (algorithms 2) – p. 24

Complexity of AC 2001 based implementation
a queue Q of variable to process (pruned domains)

S(i, a, j): current support for (i, a)

S(i): current support for i on C∅

Padova 2004 - Soft constraints (algorithms 2) – p. 25

AC 2001 based

Procedure ProjectUnary(i)
S(i) := argmina∈Di

{ci(a)};
α := ci(S(i));
c∅ := c∅ ⊕ α;
foreach a ∈ Di do ci(a) := ci(a) 	 α;

Function FindSupportAC*(i, j)
foreach a ∈ Di s.t. S(i, a, j) /∈ Dj do

S(i, a, j) := argminb∈Dj
{cij(a, b)};

α := cij(a, S(i, a, j));
Project(i, a, j, α);

ProjectUnary(i);

Padova 2004 - Soft constraints (algorithms 2) – p. 26

Soft AC

Function PruneVar(i) : boolean
change := false;
foreach a ∈ Di s.t. (ci(a) ⊕ c∅ = >) do

Di := Di − {a};
change := true;

return change;

Padova 2004 - Soft constraints (algorithms 2) – p. 27

Soft AC

Procedure AC*()
Q = {1, . . . , n};
while (Q 6= ∅) do

j := pop(Q);
for cij ∈ C do FindSupportAC*(i, j);
foreach i ∈ X do

1 if PruneVar(i) then Q := Q ∪ {i};

Padova 2004 - Soft constraints (algorithms 2) – p. 28

Complexity

PruneVar is O(d) and FindSupportAC* is O(d2)

a var. j is added to Q at most d + 1 times (at start,
each deletion)

each cij considered at most d + 1 times (in each
direction): e(d + 1) calls to FindSupportAC*.

AC* while loop: atmost nd times, O(n2d) calls to
PruneVar.

Time O(n2d2 + ed3). Space can be reduced to O(ed).

Padova 2004 - Soft constraints (algorithms 2) – p. 29

Can we do more ?

AC: information flows from binary to unary. And the
converse ?

(a) (b) (c)

2

1
a b

ba

a b

ba

a b

ba
1 1

1

1

1

1

1

1
1

1

And back again ? No fix point !

Padova 2004 - Soft constraints (algorithms 2) – p. 30

Directional AC

Another way to enforce a fix point: an order on
variables i < j.

DAC: NC and ∀i, j s.t. cij ∈ C, i < j

∀ ∈ Di∃b ∈ Dj s.t. cij(a, b) ⊕ cj(b) = ⊥

b is a full support for a on cij.

Full DAC = AC + DAC.

Padova 2004 - Soft constraints (algorithms 2) – p. 31

NC, DAC, AC, FDAC (xyz)

C = 1C = 0 C = 1

C = 1 C = 2

a

a

b

a

b

x

b y

z

a

a

b

a

b

x

b y

z

a

a

b

a

b

x

b y

z

a

a

b

a

b

x

b y

z

a

a

b

b y

z
b

x

Not NC NC DAC

AC
FDAC

22

1

1

2

1

2

2 2

2

2

2

2

2

1

1

Padova 2004 - Soft constraints (algorithms 2) – p. 32

Complexities/strengths

Using an AC2001 based propagation.

NC: O(nd)

AC: O(n2d3) AC > NC

DAC: O(ed2) DAC > NC

FDAC: O(end3) FDAC >AC, FDAC > DAC

Padova 2004 - Soft constraints (algorithms 2) – p. 33

Integrating local consistencies in B & B

at each node we have a VCSP with branching
constraints.

the ub gives the >

c∅ gives the lb

We can enforce NçAC, DAC, FDAC at every node and
backtrack when wipe out (> and c∅ meet).

Padova 2004 - Soft constraints (algorithms 2) – p. 34

Example on AC

x

y

z

a

b

a

b

a

b

0

1

2

T = 4
C = 0o

3

0
1

1

1

1

1

2

x

y

z

a b

Padova 2004 - Soft constraints (algorithms 2) – p. 35

Example on AC

x

y

z

a

b

a

b

a

b

0

1

T = 4
C = 2o

0

0

x

y

z

a b

Padova 2004 - Soft constraints (algorithms 2) – p. 35

Practical comparison

Using random overconstrained CSP

Max-CSP: maximize the number of satisfied
constraints

Obvious WCSP translation (forbidden tuple have
cost 1)

Compare with previous algorithms (PFC-RDAC)

Padova 2004 - Soft constraints (algorithms 2) – p. 36

CPU-time on Sparse tight problems

0

10

20

30

40

50

60

70

80

10 12 14

MNC*

16 18 20

MAC*

MDAC*
MFDAC*

PFC−RDAC

Sparse Tight

Not always that good (simple problems).
Padova 2004 - Soft constraints (algorithms 2) – p. 37

Conclusion

Local consistency extends simply to idempotent
cases

for non idempotent, we must compensate. Higher
order (k-consistency) undefined yet.

provides practically interesting lb.

Padova 2004 - Soft constraints (algorithms 2) – p. 38

	�f Inference
	�f Node/Arc consistency and binary CSP
	�f Soft constraints
	�f Local consistency for idempotent SCSP
	�f Enforcing AC on idempotent SCSP
	�f Example on a fuzzy CN
	�f k-consistency
	�f Enforcing k-consistency
	�f Non idempotent VCSP: additive CSP
	�f What can be done ?
	�f Non idempotent VCSP: additive CSP
	�f Fair VCSPs
	�f What valuation structures are fair ?
	�f Not fair ?
	�f Binary weighted CSP
	�f Projecting and preserving equivalence
	�f Another ``equivalence preserving'' op.
	�f Let's play
	�f Node Consistency
	�f NC in action
	�f NC in action
	�f NC in action
	�f NC in action
	�f NC in action

	�f Arc consistency
	�f In action
	�f In action
	�f In action
	�f In action
	�f In action
	�f In action
	�f In action
	�f In action
	�f In action
	�f In action

	�f Loss of uniqueness of the fixpoint
	Complexity of AC 2001 based implementation
	�f AC 2001 based
	�f Soft AC
	�f Soft AC
	�f Complexity
	�f Can we do more ?
	�f Directional AC
	�f NC, DAC, AC, FDAC (xyz)
	�f Complexities/strengths
	�f Integrating local consistencies in B & B
	�f Example on AC
	�f Example on AC

	�f Practical comparison
	�f CPU-time on Sparse tight problems
	�f Conclusion

