Soft constraints: Algorithms (3)

T. Schiex INRA - Toulouse, France

Padova 2004 - Soft constraints (algorithms 2) - p. 1

Inference

In classical CSP, inference produces new constraints which are implied by the problem. Makes implicit *c* explicit.

 $\langle X, D, C \rangle \rightarrow c$ s.t. *c* satisfied by all solutions.

 $K \subset C, L = \bigcup_{c_S \in K} (S), V \subset L, \quad K \to c = (\bowtie_{c \in K} c) [V]$

Then $\langle X, D, C \cup \{c\} \rangle$ is equivalent to $\langle X, D, C \rangle$ (same solutions). More explicit. Simpler to solve.

Incomplete inference: transform $\langle X, D, C \rangle$ into an equivalent problem where all possible local inferences have been performed.

Node/Arc consistency and binary CSP

 Node consistency: the empty assignment can be extended to one variable in a consistent way (unary constraints).

Arc consistency: each value of each variable can be extended to 2 variables in a consistent way.
 Enforcing by inference on every binary constraint: c_i = c_i ⋈ (c_{ij} ⋈ c_j)[i]. Infers all unary constraints implied by c_{ij}.

Local consistency: Polynomial time, yields a unique equivalent, more explicit problem that satisfies the property.

Soft constraints

 $P = \langle X, D, C, S \rangle$ describes a distribution P(t) of valuations on the search space (combination of all constraints).

We say that c_s is implied by P iff $\forall t, c_S(t[S]) \succcurlyeq_s P(t)$.

 $\overline{K \subset C, L = \cup c_S \in K(S), V \subset L, \quad K \to (\bowtie_{c \in K} c)[V]}$

Adding c_S to P may change the distribution of valuations unless... \oplus idempotent.

Local consistency for idempotent SCSP

Consider a binary SCSP $\langle X, D, C, S \rangle$. $C = \{c_{\varnothing}\} \cup C^1 \cup C^+$.

A CSP is node-consistent iff c_{\emptyset} implies any $c_i[]$ (nothing more to infer).

A variable *i* is arc consistent wrt $c_{ij} \in C$ iff c_i implies $c_{ij}[i]$.

The soft CN is arc-consistent iff all its variables are AC wrt. all constraints it involves.

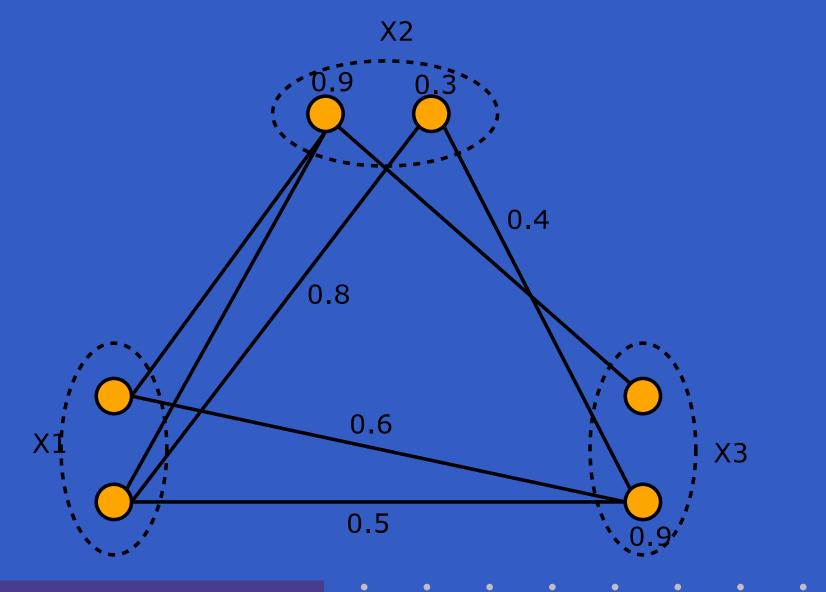
Enforcing AC on idempotent SCSP

For all $x_i \in X$, $c_{ij} \in C$, do

 $c_i = c_i \bowtie (c_j \bowtie c_{ij})[i]$

until fixpoint. Can be more expensive that in classical case (still polynomial). Limited variable elimination w/o elimination.

Example on a fuzzy CN



k-consistency

Consider $W \subset X$, |W| = k - 1. Let C(V) be the constraints whose scope is included in V.

W is k-consistent iff

$\forall x \in X \setminus W, \bowtie C(W) \to (\bowtie C(W \cup \{x\}))[W]$

A CN is *k*-consistent iff all subsets of size k - 1 are *k*-consistent.

Enforcing *k*-consistency

For all $W \subset X$, |W| = k - 1 and for all $x \in X \setminus W$ do:

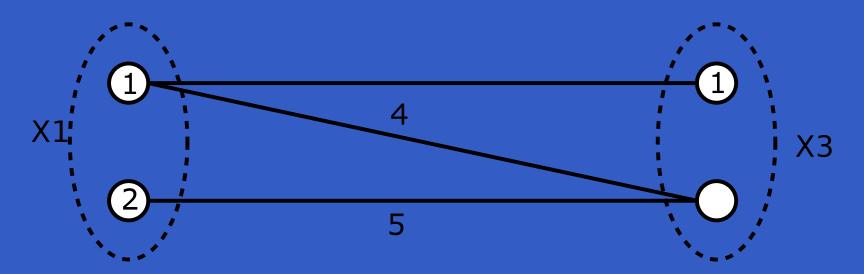
 $c_W = c_W \bowtie C(W \cup \{x\})[W]$

until fixpoint.

- Generates arity k 1 constraints.
- Time exponential in k, space exp. in k-1.
- |X|-consistency infers more constraints than VE or BBE and makes all implied constraints explicit.

Non idempotent VCSP: additive CSP

It does not work...

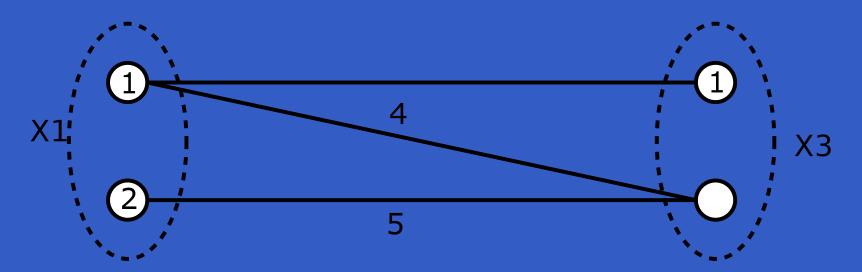


What can be done ?

We don't want to eliminate. We cannot add implied constraints...

- when we project some penalty out of a constraint to a variable and add it to the problem
- we must compensate for this by "substracting" it from the constraint

Non idempotent VCSP: additive CSP



Fair VCSPs

In a valuation structure $S = \langle E, \oplus, \succ \rangle$, if $\alpha, \beta \in E$, $\alpha \preccurlyeq \beta$ and there exists a valuation $\gamma \in E$ such that $\alpha \oplus \gamma = \beta$, then γ is known as a difference of β and α .

The valuation structure *S* is fair if for any pair of valuations $\alpha, \beta \in E$, with $\alpha \preccurlyeq \beta$, there exists a maximum difference of β and α . This unique maximum difference of β and α is denoted by $\beta \ominus \alpha$.

What valuation structures are fair ?

- Classical CSP: $\ominus = \max$
- Possibilistic (min-max) CSP: $\ominus = \max$
- Weighted CSP (min-+) CSP: $\ominus = -$
- Probabilistic CSP: $\ominus = \div$

Lexicographic CSP can be turned in to weighted CSP or the structure modified so that \ominus exists.

Not fair ?

$S = \langle \mathbb{N} \cup \{\infty, \top\}, \geq, \oplus, \bot, \top \rangle$

- \bullet *n* year of prison (finite)
- life imprisonment (∞)
- death penalty (\top) .

Two life sentences \rightarrow death sentence (($\infty \oplus \infty$) = \top). $\forall m, n \in \mathbb{N}, (m \oplus n = m + n); \forall n \in \mathbb{N}, (\infty + n = \infty);$ $\forall \alpha \in E, (\top \oplus \alpha = \top).$

Not fair: differences exist. Set of differences of ∞ and ∞ is $\mathbb N.$ No maximum difference.

Binary weighted CSP

Binary additive CSP with... an upper bound k. $S(k) = \langle [0, k], \leq, \oplus, 0, k \rangle$. < usual order on integers.

 $a \oplus b = \min(k, a + b)$

$$a \ominus b = \begin{cases} a-b & : & a \neq k \\ k & : & a = k \end{cases}$$

Projecting and preserving equivalence

Let $\alpha = \min_{b \in D_j} (c_{ij}(a, b)).$

Procedure $Project (i, a, j, \alpha)$ $\begin{vmatrix} c_i(a) := c_i(a) \oplus \alpha; \\ \text{foreach } b \in D_j \text{ do } c_{ij}(a, b) := c_{ij}(a, b) \ominus \alpha; \end{vmatrix}$

Information flows from c_{ij} to c_i . Preserves solutions.

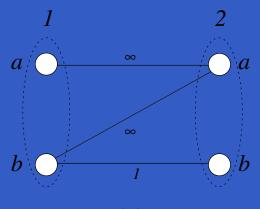
Another "equivalence preserving" op.

Let $\beta = c_i(a)$.

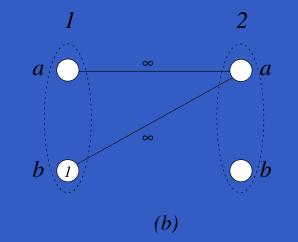
Procedure Extend (i, a, j, β) foreach $b \in D_j$ do $c_{ij}(a, b) := c_{ij}(a, b) \oplus \beta$; $c_i(a) := c_i(a) \ominus \beta$;

Information flows from $c_i(a)$ to $c_{ij}(a, b)$. Preserves solutions.

Let's play

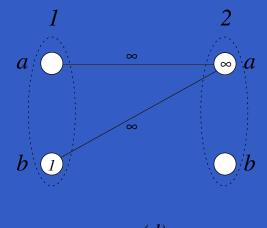


(a)





(*c*)



(d)

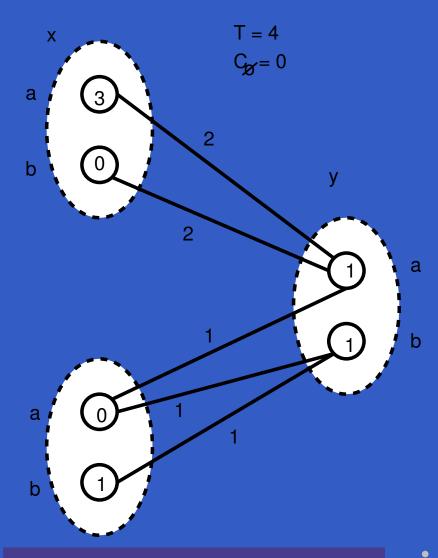
Node Consistency

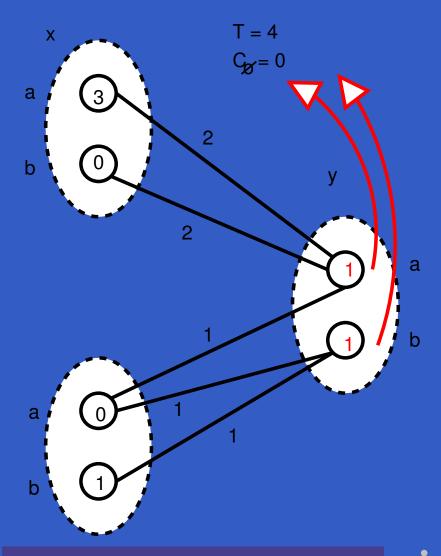
Node consistency: all possible information in the c_i has been extracted by Project to c_{\emptyset} .

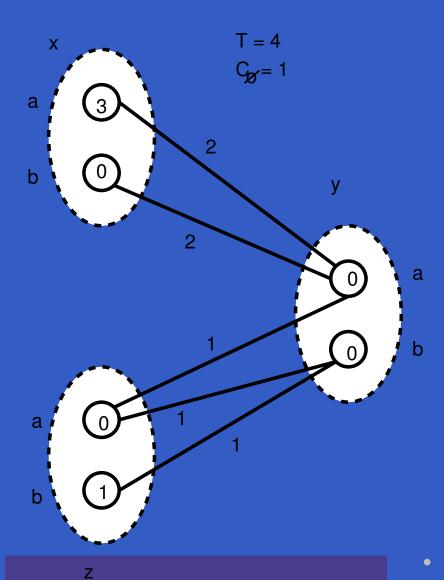
 $\forall i \in X$

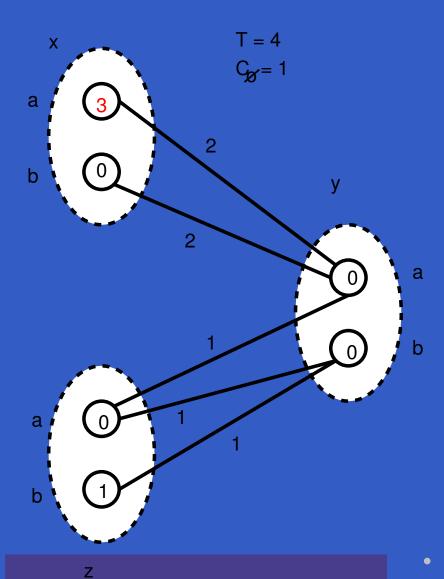
■ $\exists a \in D_i, c_i(a) = 0$ (support for c_{\emptyset}).

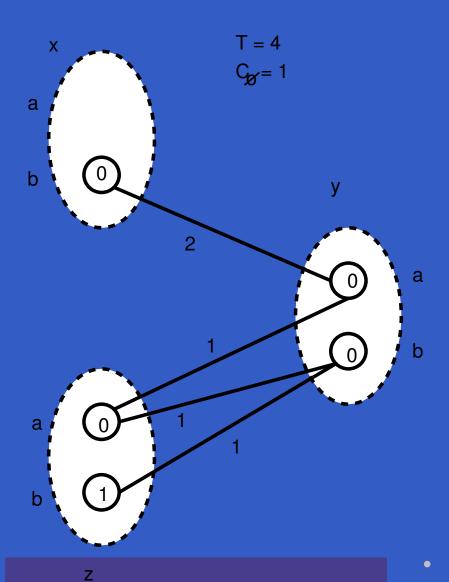
Can delete $a \in D_i$ whenever $c_{\emptyset} + c_i(a) = k$.











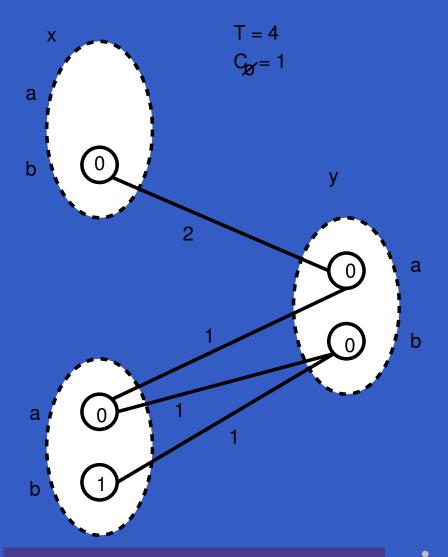
Arc consistency

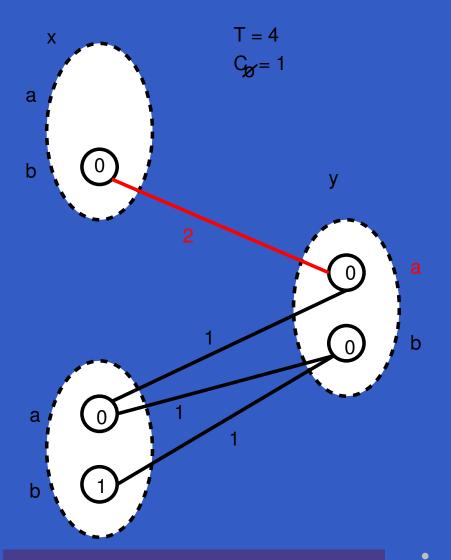
Arc consistency: all information that can be projected out of all c_{ij} has been projected out.

NC and $\forall i, j \text{ s.t. } c_{ij} \in C$

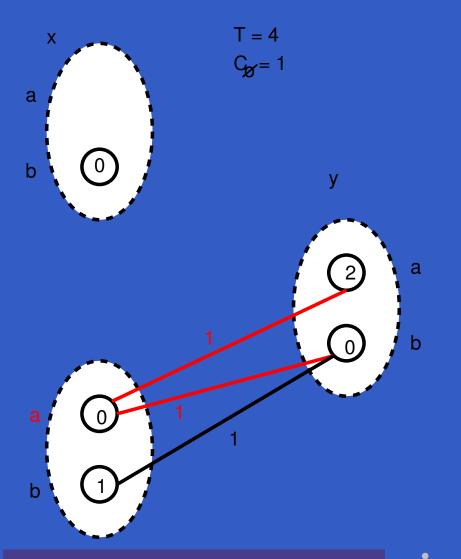
• $\forall \in D_i \exists b \in D_j \text{ s.t. } c_{ij}(a, b) = \bot$

• b is a support for a on c_{ij} .

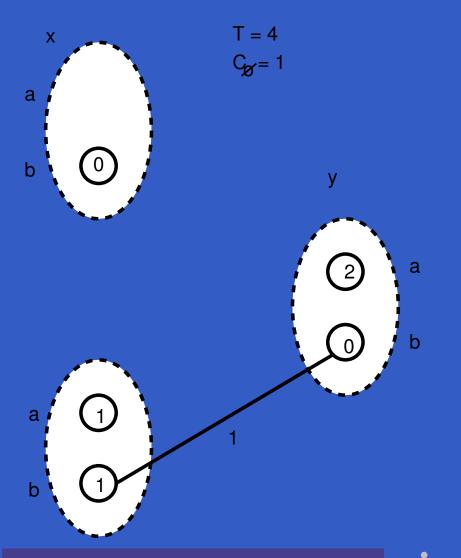


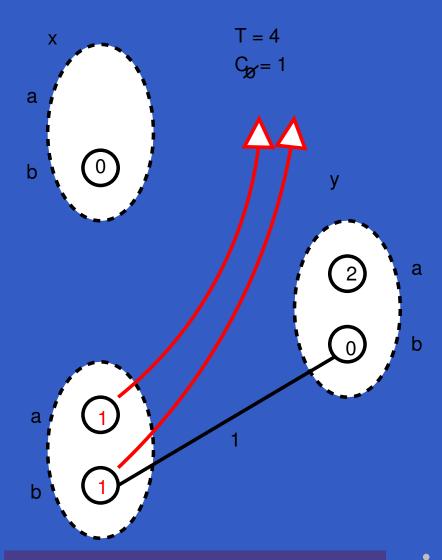


۲

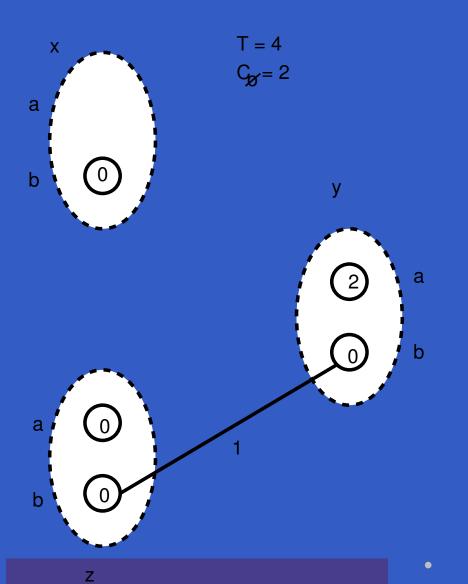


۲



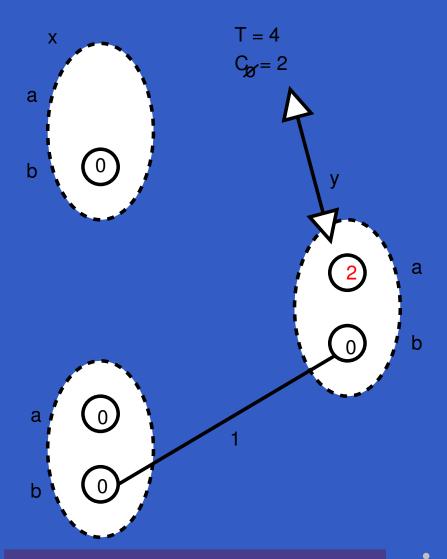


۲



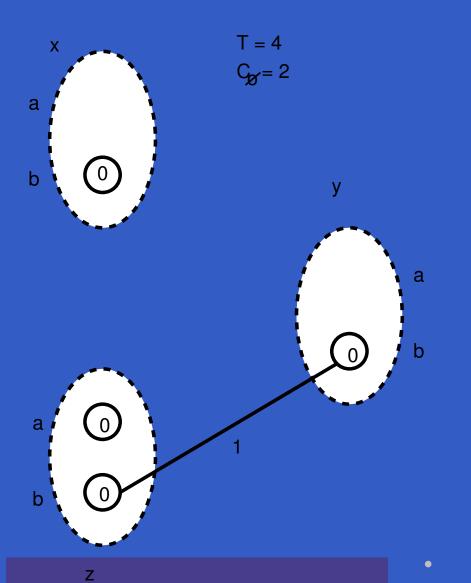
۲

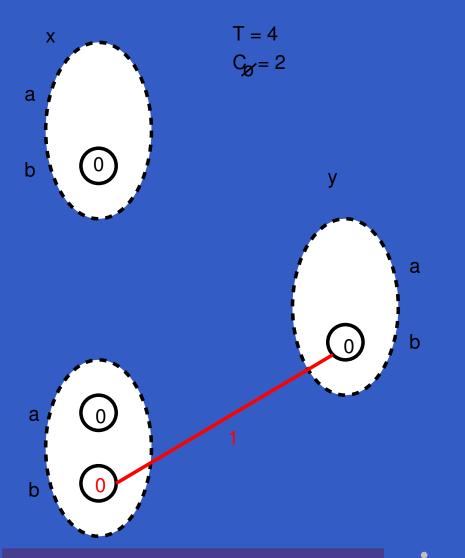
۲

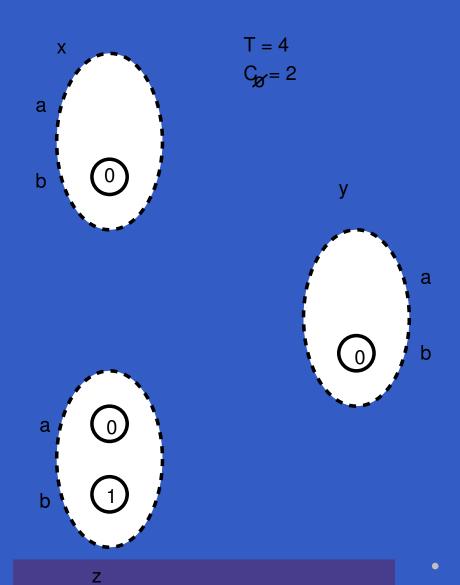


۲

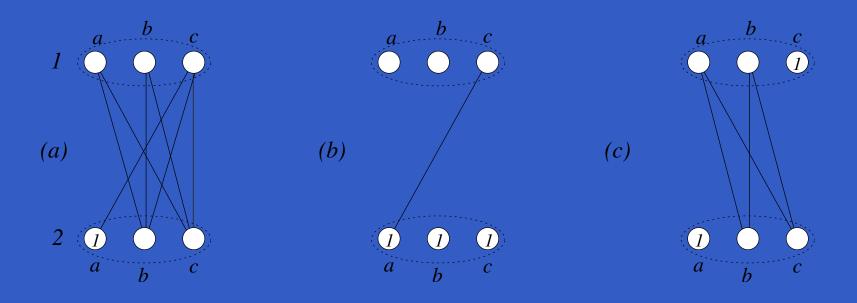
۲







Loss of uniqueness of the fixpoint



Complexity of AC 2001 based implement

- a queue Q of variable to process (pruned domains)
- S(i, a, j) : current support for (i, a)
- S(i): current support for i on C_{\emptyset}

AC 2001 based

Procedure ProjectUnary (i) $\begin{array}{l}
S(i) := argmin_{a \in D_{i}} \{c_{i}(a)\}; \\
\alpha := c_{i}(S(i)); \\
c_{\varnothing} := c_{\varnothing} \oplus \alpha; \\
\text{foreach } a \in D_{i} \text{ do } c_{i}(a) := c_{i}(a) \oplus \alpha;
\end{array}$

Function FindSupportAC* (i, j)foreach $a \in D_i$ s.t. $S(i, a, j) \notin D_j$ do $S(i, a, j) := argmin_{b \in D_j} \{c_{ij}(a, b)\};$ $\alpha := c_{ij}(a, S(i, a, j));$ Project $(i, a, j, \alpha);$ ProjectUnary (i);

Soft AC

Function PruneVar (i) : boolean change := false;foreach $a \in D_i$ s.t. $(c_i(a) \oplus c_{\varnothing} = \top)$ do $D_i := D_i - \{a\};$ change := true;

return change;

Soft AC

1

Procedure $AC^*()$ $Q = \{1, ..., n\};$ while $(Q \neq \emptyset)$ do j := pop(Q);for $c_{ij} \in C$ do FindSupportAC* (i, j);foreach $i \in X$ do | if PruneVar (i) then $Q := Q \cup \{i\};$

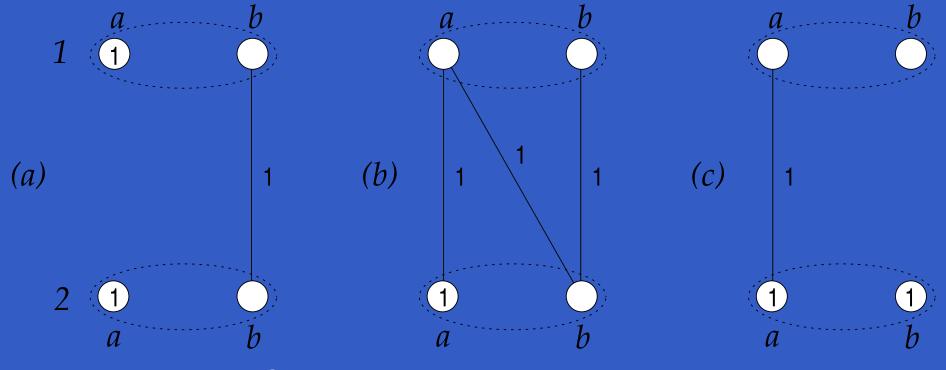
Complexity

- PruneVar is O(d) and FindSupportAC* is $O(d^2)$
- a var. j is added to Q at most d + 1 times (at start, each deletion)
- each c_{ij} considered at most d + 1 times (in each direction): e(d + 1) calls to FindSupportAC*.
- AC* while loop: atmost nd times, $O(n^2d)$ calls to PruneVar.

Time $O(n^2d^2 + ed^3)$. Space can be reduced to O(ed).

Can we do more ?

AC: information flows from binary to unary. And the converse ?



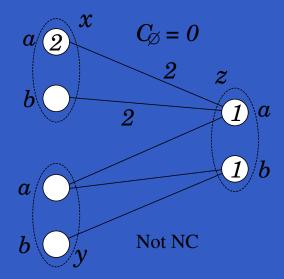
And back again ? No fix point !

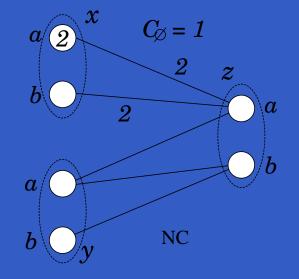
Directional AC

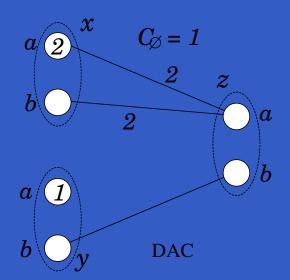
Another way to enforce a fix point: an order on variables i < j.

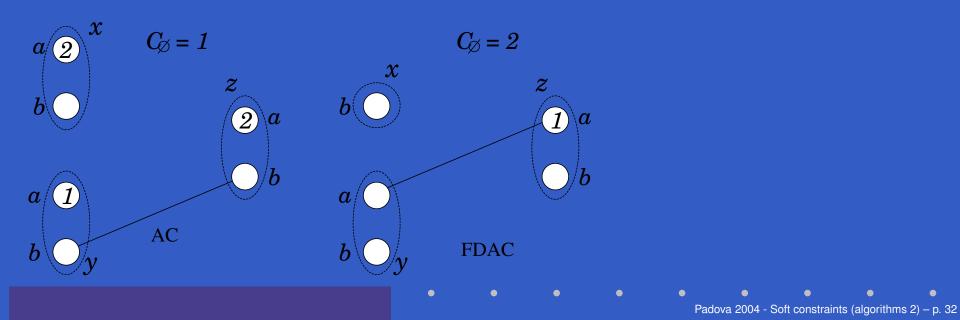
DAC: NC and $\forall i, j$ s.t. $c_{ij} \in C, i < j$ • $\forall \in D_i \exists b \in D_j$ s.t. $c_{ij}(a, b) \oplus c_j(b) = \bot$ • *b* is a full support for *a* on c_{ij} . Full DAC = AC + DAC.

NC, DAC, AC, FDAC (xyz)









Complexities/strengths

Using an AC2001 based propagation.

- NC: *O*(*nd*)
- **AC:** $O(n^2d^3)$
- DAC: $O(ed^2)$
- FDAC: $O(end^3)$

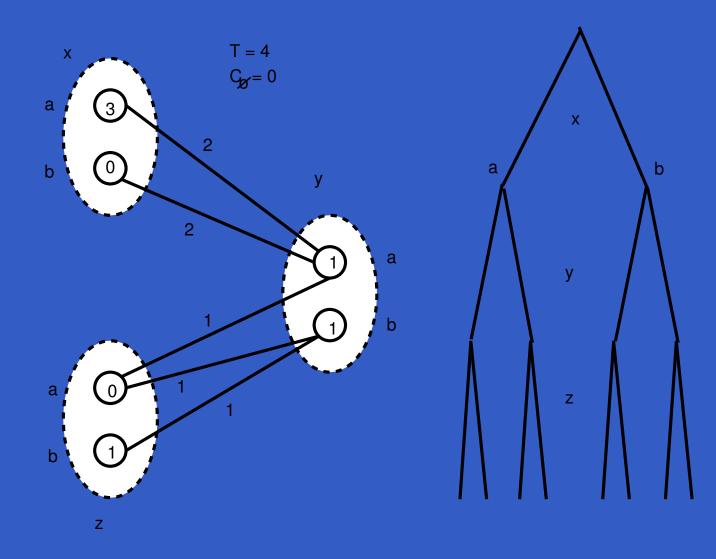
AC > NC DAC > NC FDAC >AC, FDAC > DAC

Integrating local consistencies in B & B

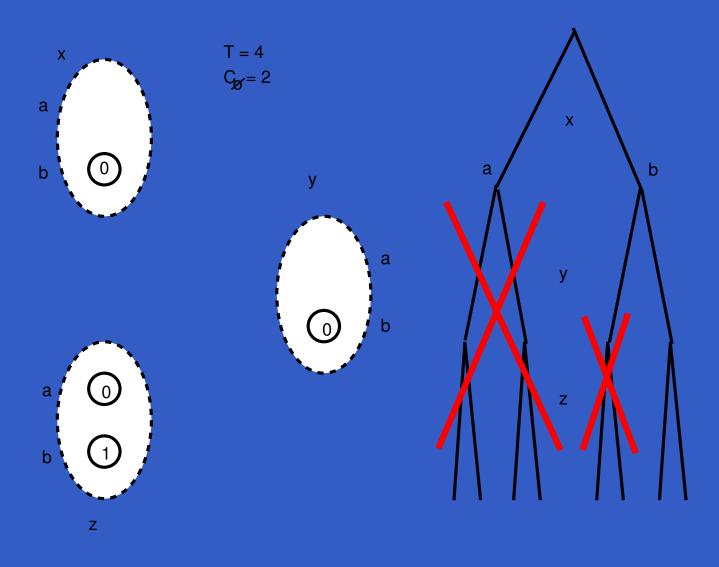
- at each node we have a VCSP with branching constraints.
- the ub gives the \top
- c_{\varnothing} gives the lb

We can enforce NçAC, DAC, FDAC at every node and backtrack when wipe out (\top and c_{\emptyset} meet).

Example on AC



Example on AC

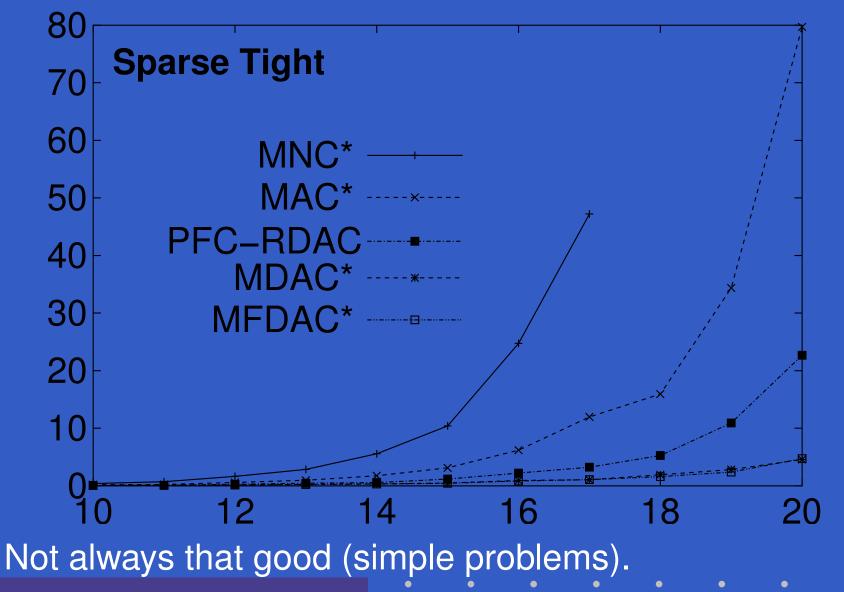


Padova 2004 - Soft constraints (algorithms 2) - p. 35

Practical comparison

- Using random overconstrained CSP
- Max-CSP: maximize the number of satisfied constraints
- Obvious WCSP translation (forbidden tuple have cost 1)
- Compare with previous algorithms (PFC-RDAC)

CPU-time on Sparse tight problems



Conclusion

- Local consistency extends simply to idempotent cases
- for non idempotent, we must compensate. Higher order (k-consistency) undefined yet.
- provides practically interesting *lb*.