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Inference

In classical CSP, inference produces new constraints
which are implied by the problem. Makes implicit c
explicit.

〈X,D,C〉 → c s.t. c satisfied by all solutions.

K ⊂ C,L = ∪cS∈K(S), V ⊂ L, K → c = (onc∈K c)[V ]

Then 〈X,D,C ∪ {c}〉 is equivalent to 〈X,D,C〉 (same
solutions). More explicit. Simpler to solve.

Incomplete inference: transform 〈X,D,C〉 into an
equivalent problem where all possible local inferences
have been performed.
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Node/Arc consistency and binary CSP

Node consistency: the empty assignment can be
extended to one variable in a consistent way (unary
constraints).

Arc consistency: each value of each variable can
be extended to 2 variables in a consistent way.

Enforcing by inference on every binary constraint:
ci = ci on (cij on cj)[i]. Infers all unary constraints
implied by cij.

Local consistency:Polynomial time, yields a unique
equivalent, more explicit problem that satisfies the
property.
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Soft constraints

P = 〈X,D,C, S〉 describes a distribution P (t) of
valuations on the search space (combination of all
constraints).

We say that cs is implied by P iff ∀t,cS(t[S]) <s P (t).

K ⊂ C,L = ∪cS ∈ K(S), V ⊂ L, K → (onc∈K c)[V ]

Adding cS to P may change the distribution of
valuations unless. . .⊕ idempotent.
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Local consistency for idempotent SCSP

Consider a binary SCSP 〈X,D,C, S〉.
C = {c∅} ∪ C1 ∪ C+.

A CSP is node-consistent iff c∅ implies any ci[] (nothing
more to infer).

A variable i is arc consistent wrt cij ∈ C iff ci implies
cij [i].

The soft CN is arc-consistent iff all its variables are AC
wrt. all constraints it involves.
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Enforcing AC on idempotent SCSP

For all xi ∈ X, cij ∈ C, do

ci = ci on (cj on cij)[i]

until fixpoint. Can be more expensive that in classical
case (still polynomial). Limited variable elimination w/o
elimination.
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Example on a fuzzy CN
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k-consistency
Consider W ⊂ X, |W | = k − 1. Let C(V ) be the
constraints whose scope is included in V .

W is k-consistent iff

∀x ∈ X \ W, on C(W ) → (on C(W ∪ {x}))[W ]

A CN is k-consistent iff all subsets of size k − 1 are
k-consistent.
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Enforcing k-consistency

For all W ⊂ X, |W | = k − 1 and for all x ∈ X \ W do:

cW = cW on C(W ∪ {x})[W ]

until fixpoint.

Generates arity k − 1 constraints.

Time exponential in k, space exp. in k − 1.

|X|-consistency infers more constraints than VE or
BBE and makes all implied constraints explicit.
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Non idempotent VCSP: additive CSP

It does not work...

S = 〈N ∪ {∞}, <,+,⊥ = 0,> = ∞〉
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What can be done ?

We don’t want to eliminate. We cannot add implied
constraints. . .

when we project some penalty out of a constraint to
a variable and add it to the problem

we must compensate for this by “substracting” it
from the constraint
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Non idempotent VCSP: additive CSP

S = 〈N ∪ {∞}, <,+,⊥ = 0,> = ∞〉
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Fair VCSPs

In a valuation structure S = 〈E,⊕,<〉, if α, β ∈ E, α 4 β
and there exists a valuation γ ∈ E such that α ⊕ γ = β,
then γ is known as a difference of β and α.

The valuation structure S is fair if for any pair of
valuations α, β ∈ E, with α 4 β, there exists a maximum
difference of β and α. This unique maximum difference
of β and α is denoted by β 	 α.
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What valuation structures are fair ?

Classical CSP: 	 = max

Possibilistic (min-max) CSP: 	 = max

Weighted CSP (min-+) CSP: 	 = −

Probabilistic CSP: 	 = ÷

Lexicographic CSP can be turned in to weighted CSP
or the structure modified so that 	 exists.
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Not fair ?

S = 〈N ∪ {∞,>},≥,⊕,⊥,>〉

n year of prison (finite)

life imprisonment (∞)

death penalty (>).

Two life sentences → death sentence ((∞⊕∞) = >).

∀m,n ∈ N, (m ⊕ n = m + n); ∀n ∈ N, (∞ + n = ∞);
∀α ∈ E, (>⊕ α = >).

Not fair: differences exist. Set of differences of ∞ and
∞ is N. No maximum difference.
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Binary weighted CSP

Binary additive CSP with. . . an upper bound k.

S(k) = 〈[0, k],≤,⊕, 0, k〉. < usual order on integers.

a ⊕ b = min(k, a + b)

a 	 b =

{

a − b : a 6= k

k : a = k
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Projecting and preserving equivalence

Let α = minb∈Dj
(cij(a, b)).

Procedure Project(i, a, j, α)
ci(a) := ci(a) ⊕ α;
foreach b ∈ Dj do cij(a, b) := cij(a, b) 	 α;

Information flows from cij to ci. Preserves solutions.
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Another “equivalence preserving” op.

Let β = ci(a).

Procedure Extend(i, a, j, β)
foreach b ∈ Dj do cij(a, b) := cij(a, b) ⊕ β;
ci(a) := ci(a) 	 β;

Information flows from ci(a) to cij(a, b). Preserves
solutions.
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Let’s play
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Node Consistency

Node consistency: all possible information in the ci has
been extracted by Project to c∅.

∀i ∈ X

∃a ∈ Di, ci(a) = 0 (support for c∅).

∀a ∈ Di, c∅ ⊕ ci(a) ≺ >

Can delete a ∈ Di whenever c∅ + ci(a) = k.
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NC in action
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NC in action
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Arc consistency

Arc consistency: all information that can be projected
out of all cij has been projected out.

NC and ∀i, j s.t. cij ∈ C

∀ ∈ Di∃b ∈ Dj s.t. cij(a, b) = ⊥

b is a support for a on cij.
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In action
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Loss of uniqueness of the fixpoint
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Complexity of AC 2001 based implementation
a queue Q of variable to process (pruned domains)

S(i, a, j): current support for (i, a)

S(i): current support for i on C∅
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AC 2001 based

Procedure ProjectUnary(i)
S(i) := argmina∈Di

{ci(a)};
α := ci(S(i));
c∅ := c∅ ⊕ α;
foreach a ∈ Di do ci(a) := ci(a) 	 α;

Function FindSupportAC*(i, j)
foreach a ∈ Di s.t. S(i, a, j) /∈ Dj do

S(i, a, j) := argminb∈Dj
{cij(a, b)};

α := cij(a, S(i, a, j));
Project(i, a, j, α);

ProjectUnary(i);
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Soft AC

Function PruneVar(i) : boolean
change := false;
foreach a ∈ Di s.t. (ci(a) ⊕ c∅ = >) do

Di := Di − {a};
change := true;

return change;
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Soft AC

Procedure AC*()
Q = {1, . . . , n};
while (Q 6= ∅) do

j := pop(Q);
for cij ∈ C do FindSupportAC*(i, j);
foreach i ∈ X do

1 if PruneVar(i) then Q := Q ∪ {i};
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Complexity

PruneVar is O(d) and FindSupportAC* is O(d2)

a var. j is added to Q at most d + 1 times (at start,
each deletion)

each cij considered at most d + 1 times (in each
direction): e(d + 1) calls to FindSupportAC*.

AC* while loop: atmost nd times, O(n2d) calls to
PruneVar.

Time O(n2d2 + ed3). Space can be reduced to O(ed).
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Can we do more ?

AC: information flows from binary to unary. And the
converse ?
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And back again ? No fix point !
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Directional AC

Another way to enforce a fix point: an order on
variables i < j.

DAC: NC and ∀i, j s.t. cij ∈ C, i < j

∀ ∈ Di∃b ∈ Dj s.t. cij(a, b) ⊕ cj(b) = ⊥

b is a full support for a on cij.

Full DAC = AC + DAC.
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NC, DAC, AC, FDAC (xyz)
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Complexities/strengths

Using an AC2001 based propagation.

NC: O(nd)

AC: O(n2d3) AC > NC

DAC: O(ed2) DAC > NC

FDAC: O(end3) FDAC >AC, FDAC > DAC
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Integrating local consistencies in B & B

at each node we have a VCSP with branching
constraints.

the ub gives the >

c∅ gives the lb

We can enforce NçAC, DAC, FDAC at every node and
backtrack when wipe out (> and c∅ meet).
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Example on AC
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Example on AC
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Practical comparison

Using random overconstrained CSP

Max-CSP: maximize the number of satisfied
constraints

Obvious WCSP translation (forbidden tuple have
cost 1)

Compare with previous algorithms (PFC-RDAC)
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CPU-time on Sparse tight problems
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Not always that good (simple problems).
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Conclusion

Local consistency extends simply to idempotent
cases

for non idempotent, we must compensate. Higher
order (k-consistency) undefined yet.

provides practically interesting lb.
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