Soft constraints: Algorithms (3)

T. Schiex
INRA - Toulouse, France

Inference

In classical CSP, inference produces

which are by the problem. Makes implicit ¢
explicit.

(X,D,C) — cs.t. c satisfied by all solutions.

KCO,L=Uer(S),VCL K-—c=(XegclV]

Then (X, D,C U{c}) is equivalent to (X, D,C) (same
solutions). More explicit. Simpler to solve.

. transform (X, D, C) into an
equivalent problem where Inferences
have been performed.

Padova 2004 - Soft constraints (algorithms 2) —p. 2

Node/Arc consistency and binary CSP

. the empty assignment can be
extended to one variable in a consistent way (unary
constraints).

: each value of each variable can
be extended to In a consistent way.

Enforcing by inference on every binary constraint:
c; = ¢; M (ci; ™ ¢;)[i]. Infers all unary constraints
implied by ¢;;.

Local consistency: , yields a
, more explicit problem that

Padova 2004 - Soft constraints (algorithms 2) —p. 3

Soft constraints

P=(X,D,C,S) describes a P(t) of
valuations on the search space (combination of all
constraints).

We say that ¢, is by P iff Vt cs(t[S]) =5 P(t).

KCcC L=UcgeK(S),VCL K= (Mg c)[V]

Adding cg to P may change the distribution of
valuations unless. .. &

Padova 2004 - Soft constraints (algorithms 2) —p. 4

Local consistency for idempotent SCSP

Consider a binary SCSP (X, D, C, S).
C={cztucCtucCt.

A CSP is Iff ¢ Implies any ¢;[] (nothing
more to infer).

A variable i is wrt ¢;; € C iff ¢; implies

Cij [Z]

The soft CN is arc-consistent iff all its variables are AC
wrt. all constraints it involves.

Padova 2004 - Soft constraints (algorithms 2) —p. 5

Enforcing AC on idempotent SCSP

Forall z; € X, ¢;; € C, do
C; = C; W (Cj X CZ])[Z]

until fixpoint. Can be more expensive that in classical
case (still polynomial). Limited variable elimination w/o
elimination.

Padova 2004 - Soft constraints (algorithms 2) —p. 6

k-consistency

Consider W Cc X, |W| =k — 1. Let C(V) be the
constraints whose scope is included in V.

W is ff
Ve € X\ W, 0 C(W) = (x C(W U {z}))[W]

A CN is k-consistent iff all subsets of size &k — 1 are
k-consistent.

Padova 2004 - Soft constraints (algorithms 2) —p. 8

Enforcing £-consistency

Forall W c X,|W|=k—1andforall z € X\ W do:
cw = cw X O(W U {ZC})[W]
until fixpoint.

Generates arity k£ — 1 constraints.
Time exponential in &, space exp. in k& — 1.

| X'|-consistency infers more constraints than VE or
BBE and makes 2!l implied constraints explicit.

Padova 2004 - Soft constraints (algorithms 2) —p. 9

Non idempotent VCSP: additive CSP

It does not work...

S = (NU{oo}, <, +, L =0,T = o0

Padova 2004 - Soft constraints (algorithms 2) —p. 10

What can be done ?

We don’t want to eliminate. We cannot add implied
constraints. . .

when we project some penalty out of a constraint to
a variable and add it to the problem

we must for this by “substracting” it
from the constraint

Padova 2004 - Soft constraints (algorithms 2) —p. 11

Non idempotent VCSP: additive CSP

S=(NU{oco},<,+,L =0,T =00)

Padova 2004 - Soft constraints (algorithms 2) — p. 12

Fair VCSPs

In a valuation structure S = (£, ®, =), ifa,0 € E, a < 0
and there exists a valuation v € E such that a @ v = 5,
then ~ is known as a of 5 and «.

The valuation structure S is If for any pair of
valuations o, 8 € E, with a < 3, there exists a
of 6 and «. This unigue maximum difference

of 5 and « is denoted by 3 & «.

Padova 2004 - Soft constraints (algorithms 2) —p. 13

What valuation structures are fair ?

Classical CSP: & = max

Possibilistic (min-max) CSP: & = max
Weighted CSP (min-+) CSP: & = —
Probabilistic CSP: & = +

Lexicographic CSP can be turned in to weighted CSP
or the structure modified so that & exists.

Padova 2004 - Soft constraints (algorithms 2 14

Not fair ?
S=(NU{co,T},>, @, L, T)

n year of prison (finite)
life imprisonment (oo)
death penalty (T).

Two life sentences — death sentence ((co ® c0) = T).

VYm,n € N,(m@&n=m+n); Vn € N, (co +n = 00);
Vaoe E,(T®a=T).

Not fair: differences exist. Set of differences of oo and
oo IS N. No difference.

Padova 2004 - Soft constraints (algorithms 2) — p. 15

Binary weighted CSP

Binary additive CSP with. .. an upper bound k.
S(k) = ([0, k], <,,0, k). < usual order on integers.

a @ b=min(k,a + b)

a—b : a#k
k : a=k

Padova 2004 - Soft constraints (algorithms 2) — p. 16

Projecting and preserving equivalence

Let o = minyep, (cij(a, b)).

Procedure Project (i,a, j, o)
Lci(a) = ¢i(a) P a;

foreach b ¢ Dj do cij(a, b) = Cjj (CL, b) Sz

Information flows from ¢;; to ¢;. Preserves solutions.

Padova 2004 - Soft constraints (algorithms 2) —p. 17

Another “equivalence preserving” op.

Let 5 = ci(a).

Procedure Extend (i, a, j, 3)
LfOreaCh be D; do cz-]-(a, b) = cij(a, b) ® 3,
ci(a) = c¢i(a) © 0,

Information flows from c¢;(a) to ¢;;(a,b). Preserves
solutions.

Padova 2004 - Soft constraints (algorithms 2) —p. 18

Let’s play

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 2) — p. 19

Node Consistency

. all possible information in the ¢; has
been extracted by Project 10 ¢y.
Vie X
Jda € D;, c;(a) = 0 (Support for cy).
Va € Dj,ceg @ ci(a) < T
Can delete a € D; whenever ¢y + ¢;(a) = k.

Padova 2004 - Soft constraints (algorithms 2) — p. 20

NC in action

Padova 2004 - Soft constraints (algorithms 2) — p. 21

NC in action

Padova 2004 - Soft constraints (algorithms 2) — p. 21

NC in action

Padova 2004 - Soft constraints (algorithms 2) — p. 21

NC in action

Padova 2004 - Soft constraints (algorithms 2) — p. 21

NC in action

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 2) — p. 21

Arc consistency

. all information that can be projected
out of all ¢;; has been projected out.

NC and Vi, 7 S.1. Cij € C
Ve D;dbe Dj S.1. cz-j(a, b) = 1
b Is a support for a on ¢;;.

Padova 2004 - Soft constraints (algorithms 2) — p. 22

In action

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 2) — p. 23

In action

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 2) — p. 23

In action

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 2) — p. 23

In action

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 2) — p. 23

In action

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 2) — p. 23

In action

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 2) — p. 23

In action

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 2) — p. 23

In action

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 2) — p. 23

In action

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 2) — p. 23

In action

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 2) — p. 23

Loss of uniqueness of the fixpoint

Padova 2004 - Soft constraints (algorithms 2) — p. 24

Complexity of AC 2001 based implemer

a queue @ of variable to process (pruned domains)
S(i,a,j): current support for (i, a)
S(i): current support for : on Cy

AC 2001 based

Procedure ProjectUnary (i)
S(i) := argmingep.{ci(a)};
o= c;(5(7));
Cy ‘= Cy D Q,
' foreach a € D; do ¢;(a) := ¢i(a) © a;

Function FindSupportAC* (i,j)
foreach « € D; s.t. S(i,a,j) ¢ D; do
S(i,a,j) == argminpep,{cij(a,b)};
a = cii(a,5(,a,7));
 Project (1,a,7,),

| ProjectUnary (7),

Padova 2004 - Soft constraints (algorithms 2) — p. 26

Soft AC

Function PrunevVvar (i) : boolean
change = false;
foreach a € D; s.t. (¢;(a)®cy =T) do

LDi = D; —{a};

change := true;

return change;

Padova 2004 - Soft constraints (algorithms 2) — p. 27

Soft AC

Procedure AC* ()

Q=A11,...,n};

while (Q # 2) do

j = pop(Q);

for ¢;; € Cdo FindSupportAC* (i,7);
foreach : € X do

1 | If Prunevar (i) then Q := Q U {i};

Padova 2004 - Soft constraints (algorithms 2) — p. 28

Complexity

PruneVar iS O(d) and FindSupportAC* is O(d?)

a var. j is added to Q at most d + 1 times (at start,
each deletion)

each ¢;; considered at most d + 1 times (in each
direction): e(d 4+ 1) calls to FindSupportAC*.

ac* while loop: atmost nd times, O(n?d) calls to
PruneVar.

Time O(n?d* + ed®). Space can be reduced to O(ed).

Padova 2004 - Soft constraints (algorithms 2) — p. 29

Can we do more ?

AC: information flows from binary to unary. And the
converse ?

And back again ? No fix point !

Padova 2004 - Soft constraints (algorithms 2) — p. 30

Directional AC

Another way to enforce a fix point: an order on
variables i < j.
DAC: NC and Vi, j S.t. ¢;; € C,i < j
Ve D;dbe Dj s.t. ¢ij(a,b) ®cj(b) =L
b is a full support for a on ¢;;.
Full DAC = AC + DAC.

Padova 2004 - Soft constraints (algorithms 2) — p. 31

NC, DAC, AC, FDAC (ryz)

o o o
® () ® ® ®)
° o ° ® © ®
® ® ®

o

® © ® ()

© ® ° ®

® S

Padova 2004 - Soft constraints (algorithms 2) — p. 32

Complexities/strengths

Using an AC2001 based propagation.

NC: O(nd)
AC: O(n?d?) AC > NC
DAC: O(ed?) DAC > NC

FDAC: O(end®) FDAC >AC, FDAC > DAC

Padova 2004 - Soft constraints (algorithms 2) — p. 33

Integrating local consistencies in B & B

at each node we have a VCSP with branching
constraints.

the ub gives the T
cx gives the ib

We can enforce NcAC, DAC, FDAC at every node and
backtrack when wipe out (T and ¢z meet).

Padova 2004 - Soft constraints (algorithms 2) — p. 34

Example on AC

Padova 2004 - Soft constraints (algorithms 2) — p. 35

Example on AC

Padova 2004 - Soft constraints (algorithms 2) — p. 35

Practical comparison

Using random overconstrained CSP

Max-CSP: maximize the number of satisfied
constraints

Obvious WCSP translation (forbidden tuple have
cost 1)

Compare with previous algorithms (PFC-RDAC)

Padova 2004 - Soft constraints (algorithms 2) — p. 36

CPU-time on Sparse tight problems

Not always that good (simple problems).

Padova 2004 - Soft constraints (algorithms 2) — p. 37

Conclusion

Local consistency extends simply to idempotent
cases

for non idempotent, we must compensate. Higher
order (k-consistency) undefined yet.

provides practically interesting [b.

Padova 2004 - Soft constraints (algorithms 2) — p. 38

	�f Inference
	�f Node/Arc consistency and binary CSP
	�f Soft constraints
	�f Local consistency for idempotent SCSP
	�f Enforcing AC on idempotent SCSP
	�f Example on a fuzzy CN
	�f k-consistency
	�f Enforcing k-consistency
	�f Non idempotent VCSP: additive CSP
	�f What can be done ?
	�f Non idempotent VCSP: additive CSP
	�f Fair VCSPs
	�f What valuation structures are fair ?
	�f Not fair ?
	�f Binary weighted CSP
	�f Projecting and preserving equivalence
	�f Another ``equivalence preserving'' op.
	�f Let's play
	�f Node Consistency
	�f NC in action
	�f NC in action
	�f NC in action
	�f NC in action
	�f NC in action

	�f Arc consistency
	�f In action
	�f In action
	�f In action
	�f In action
	�f In action
	�f In action
	�f In action
	�f In action
	�f In action
	�f In action

	�f Loss of uniqueness of the fixpoint
	Complexity of AC 2001 based implementation
	�f AC 2001 based
	�f Soft AC
	�f Soft AC
	�f Complexity
	�f Can we do more ?
	�f Directional AC
	�f NC, DAC, AC, FDAC (xyz)
	�f Complexities/strengths
	�f Integrating local consistencies in B & B
	�f Example on AC
	�f Example on AC

	�f Practical comparison
	�f CPU-time on Sparse tight problems
	�f Conclusion

