Soft constraints: Algorithms (3)

T. Schiex
INRA - Toulouse, France

Inference

In classical CSP, inference produces new constraints which are implied by the problem. Makes implicit c explicit.
$\langle X, D, C\rangle \rightarrow c$ s.t. c satisfied by all solutions.

$$
K \subset C, L=\cup_{c s \in K}(S), V \subset L, \quad K \rightarrow c=\left(\bowtie_{c \in K} c\right)[V]
$$

Then $\langle X, D, C \cup\{c\}\rangle$ is equivalent to $\langle X, D, C\rangle$ (same solutions). More explicit. Simpler to solve.
Incomplete inference: transform $\langle X, D, C\rangle$ into an equivalent problem where all possible local inferences have been performed.

Node/Arc consistency and binary CSP

- Node consistency: the empty assignment can be extended to one variable in a consistent way (unary constraints).
- Arc consistency: each value of each variable can be extended to 2 variables in a consistent way. Enforcing by inference on every binary constraint: $c_{i}=c_{i} \bowtie\left(c_{i j} \bowtie c_{j}\right)[i]$. Infers all unary constraints implied by $c_{i j}$.

Local consistency:Polynomial time, yields a unique equivalent, more explicit problem that satisfies the property.

Soft constraints

$P=\langle X, D, C, S\rangle$ describes a distribution $P(t)$ of valuations on the search space (combination of all constraints).
We say that c_{s} is implied by P iff $\forall t, c_{S}(t[S]) \succcurlyeq_{s} P(t)$.

$$
K \subset C, L=\cup c_{S} \in K(S), V \subset L, \quad K \rightarrow\left(\bowtie_{c \in K} c\right)[V]
$$

Adding c_{S} to P may change the distribution of valuations unless... \oplus idempotent.

Local consistency for idempotent SCSP

Consider a binary SCSP $\langle X, D, C, S\rangle$. $C=\left\{c_{\varnothing}\right\} \cup C^{1} \cup C^{+}$.

A CSP is node-consistent iff c_{\varnothing} implies any $c_{i}[]$ (nothing more to infer).

A variable i is arc consistent wrt $c_{i j} \in C$ iff c_{i} implies $c_{i j}[i]$.
The soft CN is arc-consistent iff all its variables are AC wrt. all constraints it involves.

Enforcing AC on idempotent SCSP

For all $x_{i} \in X, c_{i j} \in C$, do

$$
c_{i}=c_{i} \bowtie\left(c_{j} \bowtie c_{i j}\right)[i]
$$

until fixpoint. Can be more expensive that in classical case (still polynomial). Limited variable elimination w/o elimination.

Example on a fuzzy CN

k-consistency

Consider $W \subset X,|W|=k-1$. Let $C(V)$ be the constraints whose scope is included in V.
W is k-consistent iff

$$
\forall x \in X \backslash W, \bowtie C(W) \rightarrow(\bowtie C(W \cup\{x\}))[W]
$$

A CN is k-consistent iff all subsets of size $k-1$ are k-consistent.

Enforcing k-consistency

For all $W \subset X,|W|=k-1$ and for all $x \in X \backslash W$ do:

$$
c_{W}=c_{W} \bowtie C(W \cup\{x\})[W]
$$

until fixpoint.

- Generates arity $k-1$ constraints.
- Time exponential in k, space exp. in $k-1$.
- $|X|$-consistency infers more constraints than VE or BBE and makes all implied constraints explicit.

Non idempotent VCSP: additive CSP

It does not work...

$$
S=\langle\mathbb{N} \cup\{\infty\},<,+, \perp=0, \top=\infty\rangle
$$

What can be done ?

We don't want to eliminate. We cannot add implied constraints...
. when we project some penalty out of a constraint to a variable and add it to the problem

- we must compensate for this by "substracting" it from the constraint

Non idempotent VCSP: additive CSP

$$
S=\langle\mathbb{N} \cup\{\infty\},<,+, \perp=0, \top=\infty\rangle
$$

Fair VCSPs

In a valuation structure $S=\langle E, \oplus, \succcurlyeq\rangle$, if $\alpha, \beta \in E, \alpha \preccurlyeq \beta$ and there exists a valuation $\gamma \in E$ such that $\alpha \oplus \gamma=\beta$, then γ is known as a difference of β and α.

The valuation structure S is fair if for any pair of valuations $\alpha, \beta \in E$, with $\alpha \preccurlyeq \beta$, there exists a maximum difference of β and α. This unique maximum difference of β and α is denoted by $\beta \ominus \alpha$.

What valuation structures are fair ?

- Classical CSP: $\ominus=\max$
- Possibilistic (min-max) CSP: $\ominus=\max$
- Weighted CSP (min-+) CSP: $\ominus=-$
- Probabilistic CSP: $\ominus=\div$

Lexicographic CSP can be turned in to weighted CSP or the structure modified so that \ominus exists.

Not fair ?

$S=\langle\mathbb{N} \cup\{\infty, \top\}, \geq, \oplus, \perp, T\rangle$

- n year of prison (finite)
- life imprisonment (∞)
- death penalty (T).

Two life sentences \rightarrow death sentence $((\infty \oplus \infty)=T)$.
$\forall m, n \in \mathbb{N},(m \oplus n=m+n) ; \forall n \in \mathbb{N},(\infty+n=\infty)$;
$\forall \alpha \in E,(\mathrm{~T} \oplus \alpha=\mathrm{T})$.
Not fair: differences exist. Set of differences of ∞ and ∞ is \mathbb{N}. No maximum difference.

Binary weighted CSP

Binary additive CSP with. . . an upper bound k. $S(k)=\langle[0, k], \leq, \oplus, 0, k\rangle .<$ usual order on integers.

$$
\begin{gathered}
a \oplus b=\min (k, a+b) \\
a \ominus b=\left\{\begin{array}{rll}
a-b & : & a \neq k \\
k & : & a=k
\end{array}\right.
\end{gathered}
$$

Projecting and preserving equivalence

Let $\alpha=\min _{b \in D_{j}}\left(c_{i j}(a, b)\right)$.
Procedure Project (i,a,j, α)

$$
\begin{aligned}
& c_{i}(a):=c_{i}(a) \oplus \alpha ; \\
& \text { foreach } b \in D_{j} \text { do } c_{i j}(a, b):=c_{i j}(a, b) \ominus \alpha \text {; }
\end{aligned}
$$

Information flows from $c_{i j}$ to c_{i}. Preserves solutions.

Another "equivalence preserving" op.

Let $\beta=c_{i}(a)$.
Procedure Extend (i, a, j, β)
foreach $b \in D_{j}$ do $c_{i j}(a, b):=c_{i j}(a, b) \oplus \beta$;
$c_{i}(a):=c_{i}(a) \ominus \beta$;
Information flows from $c_{i}(a)$ to $c_{i j}(a, b)$. Preserves solutions.

Let's play

(a)

(c)

(b)

(d)

Node Consistency

Node consistency: all possible information in the c_{i} has been extracted by Project to c_{\varnothing}.
$\forall i \in X$

- $\exists a \in D_{i}, c_{i}(a)=0$ (support for c_{\varnothing}).
- $\forall a \in D_{i}, c_{\varnothing} \oplus c_{i}(a) \prec T$

Can delete $a \in D_{i}$ whenever $c_{\varnothing}+c_{i}(a)=k$.

NC in action

(3) Padova 2004 - Soft constraints (algorithms 2) - p. 21

NC in action

NC in action

NC in action

NC in action

Arc consistency

Arc consistency: all information that can be projected out of all $c_{i j}$ has been projected out.

NC and $\forall i, j$ s.t. $c_{i j} \in C$

- $\forall \in D_{i} \exists b \in D_{j}$ s.t. $c_{i j}(a, b)=\perp$
- b is a support for a on $c_{i j}$.

In action

In action

$$
\begin{aligned}
& \mathrm{T}=4 \\
& \mathrm{C}_{\varnothing}=2
\end{aligned}
$$

In action

$$
\begin{aligned}
& \mathrm{T}=4 \\
& \mathrm{C}_{\varnothing}=2
\end{aligned}
$$

Loss of uniqueness of the fixpoint

Complexity of AC 2001 based implemer

- a queue Q of variable to process (pruned domains)
- $S(i, a, j)$: current support for (i, a)
- $S(i)$: current support for i on C_{\varnothing}

AC 2001 based

Procedure ProjectUnary (i)

$$
\begin{aligned}
& S(i):=\operatorname{argmin}_{a \in D_{i}}\left\{c_{i}(a)\right\} ; \\
& \alpha:=c_{i}(S(i)) ; \\
& c_{\varnothing}:=c_{\varnothing} \oplus \alpha ;
\end{aligned}
$$

foreach $a \in D_{i}$ do $c_{i}(a):=c_{i}(a) \ominus \alpha$;
Function FindSupportAC * (i, j) foreach $a \in D_{i}$ s.t. $S(i, a, j) \notin D_{j}$ do

$$
S(i, a, j):=\operatorname{argmin}_{b \in D_{j}}\left\{c_{i j}(a, b)\right\} ;
$$

$$
\alpha:=c_{i j}(a, S(i, a, j))
$$

Project (i, a, j, α);
ProjectUnary(i);

Soft AC

Function PruneVar (i) : boolean change := false; foreach $a \in D_{i}$ s.t. $\left(c_{i}(a) \oplus c_{\varnothing}=\mathrm{T}\right)$ do
$D_{i}:=D_{i}-\{a\} ;$
change := true;
return change;

Soft AC

Procedure $A C$ * ()
$Q=\{1, \ldots, n\} ;$
while $(Q \neq \varnothing)$ do
$j:=\operatorname{pop}(Q)$;
for $c_{i j} \in \mathcal{C}$ do FindSupportAC* (i, j);
foreach $i \in \mathcal{X}$ do
Lif PruneVar (i) then $Q:=Q \cup\{i\}$;

Complexity

- PruneVar is $O(d)$ and FindSupportAC* is $O\left(d^{2}\right)$
- a var. j is added to Q at most $d+1$ times (at start, each deletion)
- each $c_{i j}$ considered at most $d+1$ times (in each direction): $e(d+1)$ calls to FindSupportAC*.
- AC* while loop: atmost $n d$ times, $O\left(n^{2} d\right)$ calls to PruneVar.

Time $O\left(n^{2} d^{2}+e d^{3}\right)$. Space can be reduced to $O(e d)$.

Can we do more ?

AC: information flows from binary to unary. And the converse?

And back again ? No fix point !

Directional AC

Another way to enforce a fix point: an order on variables $i<j$.

DAC: NC and $\forall i, j$ s.t. $c_{i j} \in C, i<j$

- $\forall \in D_{i} \exists b \in D_{j}$ s.t. $c_{i j}(a, b) \oplus c_{j}(b)=\perp$
- b is a full support for a on $c_{i j}$.

Full DAC = AC + DAC.

NC, DAC, AC, FDAC ($x y z$)

$$
C_{\theta}=2
$$

Complexities/strengths

Using an AC2001 based propagation.

- NC: O(nd)
- AC: $O\left(n^{2} d^{3}\right)$
- DAC: $O\left(e d^{2}\right)$
- FDAC: $O\left(e n d^{3}\right)$

$A C>N C$
DAC > NC
FDAC >AC, FDAC > DAC

Integrating local consistencies in B \& B

- at each node we have a VCSP with branching constraints.
- the $u b$ gives the T
- c_{\varnothing} gives the $l b$

We can enforce NçAC, DAC, FDAC at every node and backtrack when wipe out (T and c_{\varnothing} meet).

Example on AC

Z

Padova 2004 - Soft constraints (algorithms 2) - p. 35

Example on AC

Z

$$
\begin{aligned}
& \mathrm{T}=4 \\
& \mathrm{C}_{\varnothing}=2
\end{aligned}
$$

Practical comparison

- Using random overconstrained CSP
- Max-CSP: maximize the number of satisfied constraints
- Obvious WCSP translation (forbidden tuple have cost 1)
- Compare with previous algorithms (PFC-RDAC)

CPU-time on Sparse tight problems

Not always that good (simple problems).

Conclusion

- Local consistency extends simply to idempotent cases
- for non idempotent, we must compensate. Higher order (k-consistency) undefined yet.
- provides practically interesting $l b$.

