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Inference

In classical CSP, inference produces new constraints
which are implied by the problem. Makes implicit c

explicit.

(X,D,C) → c s.t. c satisfied by all solutions.

Then (X,D,C ∪ {c}) is equivalent to (X,D,C) (same
solutions). More explicit. Simpler to solve.

Complete inference: transform (X,D,C) in to an
equivalent problem where all forbidden combinations
are explicit (or all solutions explicit, or (in)satisfiability
proven).
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Soft constraints

P = 〈X,D,C, S〉 describes a distribution of valuations
on the search space (combination of all constraints).

We say that cs is implied by P iff

∀tX , cS(tX [S]) 4v

⊕

cS∈C

cS(t[S])

Makes explicit the fact that the violation level of some
tuples is, at lest, equal to cS(t). Explicit lb.

Adding cs to P may change the distribution of
valuations unless. . .⊕ idempotent.

⇒ replace constraints by new maximally explicit
constraints, preserving optimal cost.
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Combination and projection in VCSP

Combination: cS on c′S′ is a constraint on S ∪ S ′ s.t.:

cS on c′S′(t) = c(t[S]) ⊕ c′(t[S′])

Projection: V ⊂ X, cS [V ] is a constraint on V ∩ S s.t.:

cS [V ](t) = min
t′[V ]=t

cS [t′]

total order: best extension of tV to S.

K ⊂ C,L = ∪cS ∈ KS. Then onc∈K c[V ] produces
maximally informative induced constraints on V ∩ L:
there is a t on L such that (onc∈K c)[t] = (onc∈K c[V ])[t].
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Variable elimination (Bertele & Brioshi 1972)

No tree search. Directly synthetizes all optimal
solutions.

Consider variable x ∈ X, Kx = {cS ∈ C, x ∈ S},
L = (∪cS∈Kx

(S)) − {x}.

Compute the combination on Kx of all constraints in
Kx

Compute the optimal possible costs (on Kx)[L]
induced on L by Kx.

Remove Kx from C and replace it by (on Kx)[L].

Same optimal cost.
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3x3 queens
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3x3 queens

X1

X2

X3

K={C12,C13}
L={X2,X3}

x
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3x3 queens
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3x3 queens
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Constraints management
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Constraints management
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Bucket elimination (Dechter 1997)

fix a variable ordering x1, . . . , xn

one bucket per variable, from last to first: contains
all constraints involving the variable (not already in
a bucket).

process from last to first:
1. join all constraints K in the bucket
2. eliminate the current variable by projecting on L

3. put the projection in the first bucket that contain
one variable of L.
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Complexity

Time complexity: dominated by the time to compute
the largest on K. Exponential in |L| + 1 for the
largest L.

Space complexity: dominated by the space to store
the largest projection (on K)[L]. Exponential in |L|
for the same L.

Can we influence this maximum |L| ? Order of
elimination. . .
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Let see on a more complex graph. . .

A

B C

D
F

G
Ex: Order A,C,B, F,D,G. Maximum |L| =?.
Ex: Order A,F,D,C,B,G. Maximum |L| =?.
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Width

For a graph G = (V,E), an order of vertices d:

width of a vertex: number of connected
predecessors (parents)

width of ordered graph: maximum width of a vertex

width of graph: min. width over all ordering

Ex: on previous graph using order A,C,B, F,D,G and
A,F,D,C,B,G.
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Induced graph

Mimic elimination: when we eliminate we induce a new
constraint ⇒ new edges.

Processing vertices from the last to the first, connect all
the parents of a vertex together (set L)..

The width on an induced graph is equal to the set of
the largest L we will deal during elimination (k-tree
number, max-clique size−1, tree width. . . )..

Finding a min-induced width ordering is NP-hard.
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A structural pol. time class

The induced-width of a tree is 1 (all vertex have one
parent under a topological ordering of vertices)..

All tree-structured problems can be solved in
polynomial time.

Understandable caracterisation of graph with induced
width k:

They are partial k-trees. A k-tree being inductively
defined as a k-clique, or by the addition of a new vertex
to a k-tree, connecting it to all vertices of a k-clique in it.
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Block by block elimination (Bertelé Brioshi, 1972)

when we compute on K, we actually solve a
subproblem defined on L ∪ {x} almost completely,
ignoring other constraints.

constraints connecting variables in L will still be
handled later (they are now in a clique).

Could we do all this in one step ?
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Block by block elimination

Consider a set of variables V ⊂ X.

S(V ) the set of all variables not in V and connected
to V (the separator).

K(V ) the set of constraints with scope included in
V ∪ S(V ).

1. compute on K(V ) and project on S(V ).

2. replace K(V ) by (on K(V ))[S(V )]

3. forget (eliminate) V .
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Block by block elimination

Better than variable elimination (compare on k-trees).

Time: exponential in the largest V ∪ S(V ) used.

Space: exponential in S(V ). We can join and
project at the same time.

The V ∪ S(V ) can be the same as the maximal L ∪ {x}
of VE.

In fact, this is the best way to proceed if we want to
minimize |V ∪ S(V ) (induced width+1). But we could
prefer to minize just S(V ). . .
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BBE and VE

Reexploited many times. . .
(Beeri et al 1983) Databases, (Lauritzen and
Spiegelhalter 1988) Bayesian Nets,(Dechter and Pearl
1989) Bayesian nets and CSP, (Shenoy and Shafer
1990) Generic,(Bistarelli Rossi 1995) SCSP. . .
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Cycle cutset (Dechter 90)

We know that tree-structured problem are easy to solve
by VE.

From the graph of (X,C,D, S) identify a set of variables
whose removal makes the graph a tree: cycle-cutset.

For all possible combination of values of all the
variables in the cutset:

assign the variable in the cutset (makes elim.
easy).

solve by VE (linear time)

Overall exponential in the cutset-size. NP-hard to
minimize.
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More general: boosting search by VE

Usually using VE or BBE is to expensive in time/space.
Can it be used to perform some inference that can help
Branch and Bound search?

We know that eliminating variables with low degree is
easy.
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Boosting search by VE

Consider (X,D,C, S)

if all var. are eliminated, return optimal cost.

while there are easy to eliminate variables,
eliminate.

choose a variable to branch on

for all possible values
fix the variable value (easy to elim.)
call recursively and update the best cost
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Example
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Computing a lb by VE: mini buckets

When we eliminate a variable x, on K(x) can be
expensive.

Instead we can:

partition K(x) in sets of bounded size
K(x) = ∪Ki(x) |Ki(x)| ≤ b.

Compute each on Ki(x) and project: yields κi(x)

eliminate x (and K(x)), replace by all κi(x)
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Computing a lb by VE: mini buckets

The problem may be not equivalent:

We ignore interactions.

It is less constrained. Its optimal cost will be a lb on the
optimal cost of the original problem.

Repeat recursively: polynomial in O(db). The larger b

the better the lb. Ultimately: will be bucket elim.
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Using mini-buckets inside Branch and Bound

use a static variable ordering

compute all mini-buckets (process var. in reverse
order)

Perform B&B using the static variable ordering

For a given node, with future variables F , consider all
the κi(x) for x ∈ F . Only some are assigned at the
node. Let κ be the set of these.
lbmb(t) = lbd(t) +

∑
κi∈κ κi[t].

PFC-MRDAC is still quite competitive.
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Russian Doll Search (Lemaitre et al. 1996)

A general way to boost a lower bound that ignores
constraints linking future variables (like PFC).

At a given node, we have a set F of unassigned
variables and constraints linking them.

Main idea: the cost of an optimal solution of the
problem PF defined by F and relevant constraints can
be added to lbd ⊕ lbfc and is still a lb. We must solve PF

beforehand.
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RDS in image
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RDS in image

Padova 2004 - Soft constraints (algorithms 2) – p. 26



RDS

use a static variable ordering x1 . . . xn

call Pk the problem defined by variables xk to xn

and relevant constraints.

Solve Pn to P1 using the following lb (where Ok

denotes the optimal cost of Pk:

lb(t) = lbfc(t) ⊕ Ok

where k is the first unassigned variable in t.
Solving Pk gives also value ordering heuristics and
upper bounds (using the solution found when solving
Pk).
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Specialized RDS

When we solve Pk, we do not only compute the optimal
solution Ok but for each value a of xk, the first variable
of Pk:
Oa

k = best solution of Pk that uses xk = a.

lb(t) = lbd(t) ⊕ min
a∈Dk

(fcka ⊕ Oa
k) ⊕

⊕

xi∈F,j 6=k

min
a∈Di

fcja

where k is the first unassigned variable in t.
A flavor of VE: solves path-structured efficiently.
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