Soft constraints: Algorithms (2)

T. Schiex
INRA - Toulouse, France

Inference

In classical CSP, inference produces new constraints which are implied by the problem. Makes implicit c explicit.
(X, D, C) $\rightarrow c$ s.t. c satisfied by all solutions.
Then $(X, D, C \cup\{c\})$ is equivalent to (X, D, C) (same solutions). More explicit. Simpler to solve.

Complete inference: transform (X, D, C) in to an equivalent problem where all forbidden combinations are explicit (or all solutions explicit, or (in)satisfiability proven).

Soft constraints

$P=\langle X, D, C, S\rangle$ describes a distribution of valuations on the search space (combination of all constraints).
We say that c_{s} is implied by P iff

$$
\forall t_{X}, c_{S}\left(t_{X}[S]\right) \preccurlyeq v \bigoplus_{c_{s} \in C} c_{S}(t[S])
$$

Makes explicit the fact that the violation level of some tuples is, at lest, equal to $c_{S}(t)$. Explicit $l b$.
Adding c_{s} to P may change the distribution of valuations unless. . . \oplus idempotent.
\Rightarrow replace constraints by new maximally explicit constraints, preserving optimal cost.

Combination and projection in VCSP

- Combination: $c_{S} \bowtie c_{S^{\prime}}^{\prime}$ is a constraint on $S \cup S^{\prime}$ s.t.:

$$
c_{S} \bowtie c_{S^{\prime}}^{\prime}(t)=c(t[S]) \oplus c^{\prime}\left(t\left[S^{\prime}\right]\right)
$$

- Projection: $V \subset X, c_{S}[V]$ is a constraint on $V \cap S$ s.t.:

$$
c_{S}[V](t)=\min _{t^{\prime}[V]=t} c_{S}\left[t^{\prime}\right]
$$

total order: best extension of t_{V} to S.
$K \subset C, L=U c_{S} \in K S$. Then $\bowtie_{c \in K} c[V]$ produces maximally informative induced constraints on $V \cap L$: there is a t on L such that $\left(\bowtie_{c \in K} c\right)[t]=\left(\bowtie_{c \in K} c[V]\right)[t]$.

Variable elimination (Bertele \& Brioshi 1972

No tree search. Directly synthetizes all optimal solutions.

- Consider variable $x \in X, K_{x}=\left\{c_{S} \in C, x \in S\right\}$, $L=\left(\cup_{c s} \in K_{x}(S)\right)-\{x\}$.
- Compute the combination $\bowtie K_{x}$ of all constraints in K_{x}
- Compute the optimal possible costs $\left(\bowtie K_{x}\right)[L]$ induced on L by K_{x}.
- Remove K_{x} from C and replace it by $\left(\bowtie K_{x}\right)[L]$.

Same optimal cost.

3×3 queens

Padova 2004 - Soft constraints (algorithms 2) - p. 6

3x3 queens

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{X}}=\{\mathrm{C} 12, \mathrm{C} 13\} \\
& \mathrm{L}=\{\mathrm{X} 2, \mathrm{X} 3\}
\end{aligned}
$$

3×3 queens

3×3 queens

3×3 queens

$K_{K}=\{C 23\}$
$L=\{X 3\}$

Constraints management

Constraints management

X1 X2 V	X1 X3 V	X1 X2 X3 V	X1 X2 X3 V	X1 X2 X3 V
$\begin{array}{lll}1 & 1 & 1\end{array}$	$\begin{array}{lll}1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 2\end{array}$	$\begin{array}{llll}1 & 1 & 2 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 3 & 2\end{array}$
$\begin{array}{llll}2 & 1 & 1\end{array}$	$2 \begin{array}{lll}2 & 1 & 0\end{array}$	$\begin{array}{lllll}2 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}2 & 1 & 2 & 2\end{array}$	$\begin{array}{llll}2 & 1 & 3 & 1\end{array}$
$\begin{array}{lll}3 & 1 & 0\end{array}$	3 1 1	$\begin{array}{llll}3 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}3 & 1 & 2 & 0\end{array}$	$\begin{array}{llll}3 & 1 & 3 & 1\end{array}$
$\begin{array}{lll}1 & 2 & 1\end{array}$	$\begin{array}{lll}1 & 2 & 0\end{array}$	$\begin{array}{llll}1 & 2 & 1 & 2\end{array}$	$\begin{array}{llll}1 & 2 & 2 & 1\end{array}$	$\begin{array}{llll}1 & 2 & 3 & 2\end{array}$
$\begin{array}{llll}2 & 2 & 1\end{array}$	221	$\begin{array}{llll}2 & 2 & 1 & 1\end{array}$	$\begin{array}{llll}2 & 2 & 2 & 2\end{array}$	$\begin{array}{llll}2 & 2 & 3 & 1\end{array}$
3 2 1 	$\begin{array}{llll}3 & 2 & 0\end{array}$	3 2 1 2	$\begin{array}{llll}3 & 2 & 2 & 1\end{array}$	$\begin{array}{llll}3 & 2 & 3 & 2\end{array}$
$\begin{array}{lll}1 & 3 & 0\end{array}$	$\begin{array}{lll}1 & 3 & 1\end{array}$	$\begin{array}{llll}1 & 3 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 3 & 2 & 0\end{array}$	$\begin{array}{llll}1 & 3 & 3 & 1\end{array}$
$\begin{array}{lll}2 & 3 & 1\end{array}$	230	$\begin{array}{llll}2 & 3 & 1 & 1\end{array}$	$\begin{array}{llll}2 & 3 & 2 & 2\end{array}$	$\begin{array}{llll}2 & 3 & 3 & 1\end{array}$
$\begin{array}{llll}3 & 3\end{array}$	$\begin{array}{lll}3 & 3 & 1\end{array}$	$\begin{array}{llll}3 & 3 & 1 & 2\end{array}$	$\begin{array}{llll}3 & 3 & 2 & 1\end{array}$	$\begin{array}{llll}3 & 3 & 3 & 2\end{array}$

Constraints management

Constraints management

X1 X2 V	X1 X3 V
$\begin{array}{lll}1 & 1 & 1\end{array}$	$\begin{array}{lll}1 & 1 & 1\end{array}$
$\begin{array}{lll}2 & 1 & 1\end{array}$	210
$3 \begin{array}{lll}3 & 1 & 0\end{array}$	$\begin{array}{lll}3 & 1 & 1\end{array}$
$\begin{array}{lll}1 & 2 & 1\end{array}$	120
$2 \quad 21$	$2 \quad 21$
3 l	$3 \quad 20$
130	$1 \begin{array}{lll}1 & 3 & 1\end{array}$
$\begin{array}{lll}2 & 3 & 1\end{array}$	230
$3 \begin{array}{lll}3 & 3\end{array}$	

	X2	X3			X2	X3		X1 X2 X3 V			
1	1	1	2	1	1	2	1	1	1	3	2
2	1	1	1	2	1	2	2	2	1	3	1
3	1	1	1	3	1	2	0	3	1	3	1
1	2	1	2	1	2	2	1	1	2	3	2
2	2	1	1	2	2	2	2	2	2	3	1
3	2	1	2	3	2	2	1	3	2	3	2
1	3	1	1	1	3	2	0	1	3	3	1
2	3	1	1	2	3	2	2	2	3	3	1
3	3	1	2	3	3	2	1	3	3	3	

Constraints management

X						
X 2 V		X 1			X 3	
1	1	1		1	1	1
2	1	1		2	1	0
3	1	0		3	1	1
1	2	1		1	2	0
2	2	1		2	2	1
3	2	1		3	2	0
1	3	0		1	3	1
2	3	1		2	3	0
3	3	1	3	3	1	

Constraints management

X1	X2	V	X1		
1	1	1	1	1	1
2	1	1		2	1

Bucket elimination (Dechter 1997)

- fix a variable ordering x_{1}, \ldots, x_{n}
- one bucket per variable, from last to first: contains all constraints involving the variable (not already in a bucket).
- process from last to first:

1. join all constraints K in the bucket
2. eliminate the current variable by projecting on L
3. put the projection in the first bucket that contain one variable of L.

Complexity

- Time complexity: dominated by the time to compute the largest $\bowtie K$. Exponential in $|L|+1$ for the largest L.
- Space complexity: dominated by the space to store the largest projection $(\bowtie K)[L]$. Exponential in $|L|$ for the same L.

Can we influence this maximum $|L|$? Order of elimination. . .

Let see on a more complex graph. . .

Ex: Order A, C, B, F, D, G. Maximum $|L|=$?. Ex: Order A, F, D, C, B, G. Maximum $|L|=$?.

Width

For a graph $G=(V, E)$, an order of vertices d :

- width of a vertex: number of connected predecessors (parents)
- width of ordered graph: maximum width of a vertex
- width of graph: min. width over all ordering

Ex: on previous graph using order A, C, B, F, D, G and A, F, D, C, B, G.

Induced graph

Mimic elimination: when we eliminate we induce a new constraint \Rightarrow new edges.
Processing vertices from the last to the first, connect all the parents of a vertex together (set L)..
The width on an induced graph is equal to the set of the largest L we will deal during elimination (k-tree number, max-clique size-1, tree width. . .)..
Finding a min-induced width ordering is NP-hard.

A structural pol. time class

The induced-width of a tree is 1 (all vertex have one parent under a topological ordering of vertices)..
All tree-structured problems can be solved in polynomial time.
Understandable caracterisation of graph with induced width k :
They are partial k-trees. A k-tree being inductively defined as a k-clique, or by the addition of a new vertex to a k-tree, connecting it to all vertices of a k-clique in it.

Block by block elimination (Bertelé Brioshi,

- when we compute $\star K$, we actually solve a subproblem defined on $L \cup\{x\}$ almost completely, ignoring other constraints.
- constraints connecting variables in L will still be handled later (they are now in a clique).

Could we do all this in one step ?

Block by block elimination

Consider a set of variables $V \subset X$.

- $S(V)$ the set of all variables not in V and connected to V (the separator).
- $K(V)$ the set of constraints with scope included in $V \cup S(V)$.

1. compute $\ltimes K(V)$ and project on $S(V)$.
2. replace $K(V)$ by $(\bowtie K(V))[S(V)]$
3. forget (eliminate) V.

Block by block elimination

Better than variable elimination (compare on k-trees).

- Time: exponential in the largest $V \cup S(V)$ used.
- Space: exponential in $S(V)$. We can join and project at the same time.
The $V \cup S(V)$ can be the same as the maximal $L \cup\{x\}$ of VE.

In fact, this is the best way to proceed if we want to minimize $\mid V \cup S(V)$ (induced width+1). But we could prefer to minize just $S(V)$. .

BBE and VE

Reexploited many times. .
(Beeri et al 1983) Databases, (Lauritzen and
Spiegelhalter 1988) Bayesian Nets,(Dechter and Pearl 1989) Bayesian nets and CSP, (Shenoy and Shafer 1990) Generic,(Bistarelli Rossi 1995) SCSP...

Cycle cutset (Dechter 90)

We know that tree-structured problem are easy to solve by VE.
From the graph of (X, C, D, S) identify a set of variables whose removal makes the graph a tree: cycle-cutset.
For all possible combination of values of all the variables in the cutset:

- assign the variable in the cutset (makes elim. easy).
- solve by VE (linear time)

Overall exponential in the cutset-size. NP-hard to minimize.

More general: boosting search by VE

Usually using VE or BBE is to expensive in time/space. Can it be used to perform some inference that can help Branch and Bound search?

We know that eliminating variables with low degree is easy.

Boosting search by VE

Consider (X, D, C, S)

- if all var. are eliminated, return optimal cost.
- while there are easy to eliminate variables, eliminate.
- choose a variable to branch on
- for all possible values
- fix the variable value (easy to elim.)
- call recursively and update the best cost

Example

Example

Example

Example

Example

Example

Example

Example

Example
©

Example

Computing a $l b$ by VE: mini buckets

When we eliminate a variable $x, \bowtie K(x)$ can be expensive.
Instead we can:

- partition $K(x)$ in sets of bounded size

$$
K(x)=\cup K_{i}(x)\left|K_{i}(x)\right| \leq b .
$$

- Compute each $\bowtie K_{i}(x)$ and project: yields $\kappa_{i}(x)$
- eliminate x (and $K(x)$), replace by all $\kappa_{i}(x)$

Computing a $l b$ by VE: mini buckets

The problem may be not equivalent:
We ignore interactions.
It is less constrained. Its optimal cost will be a $l b$ on the optimal cost of the original problem.
Repeat recursively: polynomial in $O\left(d^{b}\right)$. The larger b the better the $l b$. Ultimately: will be bucket elim.

Using mini-buckets inside Branch and Bou

- use a static variable ordering
- compute all mini-buckets (process var. in reverse order)
- Perform B\&B using the static variable ordering

For a given node, with future variables F, consider all the $\kappa_{i}(x)$ for $x \in F$. Only some are assigned at the node. Let κ be the set of these.
$l b_{m b}(t)=l b_{d}(t)+\sum_{\kappa_{i} \in \kappa} \kappa_{i}[t]$.
PFC-MRDAC is still quite competitive.

Russian Doll Search (Lemaitre et al. 1996)

A general way to boost a lower bound that ignores constraints linking future variables (like PFC).
At a given node, we have a set F of unassigned variables and constraints linking them.
Main idea: the cost of an optimal solution of the problem P_{F} defined by F and relevant constraints can be added to $l b_{d} \oplus l b_{f c}$ and is still a $l b$. We must solve P_{F} beforehand.

RDS in image

RDS in image

RDS in image

RDS in image

RDS

- use a static variable ordering $x_{1} \ldots x_{n}$
- call P_{k} the problem defined by variables x_{k} to x_{n} and relevant constraints.
- Solve P_{n} to P_{1} using the following $l b$ (where O_{k} denotes the optimal cost of P_{k} :

$$
l b(t)=l b_{f c}(t) \oplus O_{k}
$$

where k is the first unassigned variable in t.
Solving P_{k} gives also value ordering heuristics and upper bounds (using the solution found when solving P_{k}).

Specialized RDS

When we solve P_{k}, we do not only compute the optimal solution O_{k} but for each value a of x_{k}, the first variable of P_{k} :
$O_{k}^{a}=$ best solution of P_{k} that uses $x_{k}=a$.

$$
l b(t)=l b_{d}(t) \oplus \min _{a \in D_{k}}\left(f c_{k a} \oplus O_{k}^{a}\right) \oplus \bigoplus_{x_{i} \in F, j \neq k} \min _{a \in D i} f c_{j a}
$$

where k is the first unassigned variable in t. A flavor of VE: solves path-structured efficiently.

