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Inference

In classical CSP, produces new constraints
which are by the problem. Makes implicit ¢
explicit.

(X, D,C) — cs.t. c satisfied by all solutions.

Then (X, D,CU{c}) is to (X, D,C) (same
solutions). More explicit. Simpler to solve.

. transform (X, D, C) in to an
equivalent problem where =/l forbidden combinations
are explicit (or all solutions explicit, or (in)satisfiability
proven).
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Soft constraints
P=(X,D,C,S) describes a
on the search space (combination of all constraints).
We say that ¢, is implied by P iff
Vix, cs(tx[S]) <v P es(t[S))

cse(C

Makes explicit the fact that the violation level of some
tuples is, , equal to cg(¢). Explicit [b.

Adding ¢; to P may the distribution of
valuations unless. .. & idempotent.

= replace constraints by new maximally explicit
constraints, preserving optimal cost.
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Combination and projection in VCSP
: cs M Cg IS @ constrainton SuU S’ s.t.:
cs ™ cgi(t) = c(t[S]) ® ' (t[S])
.V C X,cq[V]Is aconstrainton VN S s.t.:

esVI(t) = min sl

total order: best extension of ¢y to S.

K CcC,L =Ucg € KS. Then x.cg c[V] produces
maximally informative induced constraints on V. N L:
there is a ¢t on L such that (x.cx o)[t] = (Xcex c[V])[t].
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Variable elimination (Bertele & Brioshi 1972

No tree search. Directly synthetizes all optimal

solutions.
Consider reX,K,={cseC,xeS},
L = (Ugsex, (9)) — {2}-
Compute the x K, of all constraints in
Ky

Compute the optimal possible costs (x K,)[L]
induced on L by K,.

Remove K, from C and replace it by (x K,)[L].

Same optimal cost.
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3x3 queens
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Constraints management
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Constraints management
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Bucket elimination (Dechter 1997)

fix a T1y...,Tp

one per variable, from . contains

all constraints involving the variable (not already in
a bucket).

process from ;
all constraints K in the bucket
the current variable by on L

put the In the first that contain
one variable of L.
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Complexity

. dominated by the time to compute
the largest x K. Exponential in |L| + 1 for the
largest L.

. dominated by the space to store
the largest projection (x K)[L]. Exponential in |L|
for the same L.

Can we influence this maximum |L| ? Order of
elimination. ..
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Let see on a more complex graph...

(A
(B, (C)
7
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Ex: Order A,C, B, F,D,G. Maximum |L| =?.
Ex: Order A, F,D,C, B,G. Maximum |L| =?.
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Width

For a graph G = (V, E), an order of vertices d:

width of a vertex: number of connected
predecessors (parents)

width of ordered graph: maximum width of a vertex
width of graph: min. width over all ordering

Ex: on previous graph using order A,C, B, F, D, G and
A F D,C.B,G.
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Induced graph

Mimic : when we eliminate we induce a new
constraint = new edges.

Processing vertices from the last to the first,
of a vertex together (set L)..

The width on an induced graph is equal to the set of
the largest L we will deal during elimination (k-tree
number, max-clique size—1, tree width. . .)..

Finding a min-induced width ordering is NP-hard.
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A structural pol. time class

The induced-width of a Is 1 (all vertex have one
parent under a topological ordering of vertices)..

All problems can be solved in

caracterisation of graph with induced

width &:
They are partial k-trees. A k-tree being inductively
defined as a , or by the addition of a

to a k-tree, connecting it to In it.
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Block by block elimination (Bertele Brioshi,

when we compute x K, we actually solve a

subproblem defined on L U {z} almost completely,
ignoring other constraints.

constraints connecting variables in L will still be
handled later (they are now in a clique).

Could we do all this in one step ?
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Block by block elimination

Consider a set of variables vV c X.

S(V) the set of all variables not in VV and connected
to V (the separator).

K (V) the set of constraints with scope included in
VuS(V).

compute x K (V) and project on S(V).
replace K(V) by (x K(V))[S(V)]
forget (eliminate) V.
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Block by block elimination

Better than variable elimination (compare on k-trees).
. exponential in the largest V U S(V') used.

. exponential in S(V'). We can join and
project at the same time.

The V U S(V) can be the same as the maximal L U {x}
of VE.

In fact, this is the best way to proceed if we want to
minimize |V U S(V) (induced width+1). But we could
prefer to minize just S(V)...
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BBE and VE

Reexploited many times. ..

(Beeri et al 1983) Databases, (Lauritzen and
Spiegelhalter 1988) Bayesian Nets,(Dechter and Pearl
1989) Bayesian nets and CSP, (Shenoy and Shafer
1990) Generic,(Bistarelli Rossi 1995) SCSP. ..

Padova 2004 - Soft constraints (algorithms 2) —p. 17



Cycle cutset (Dechter 90)

We know that tree-structured problem are easy to solve
by VE.

From the graph of (X, C, D, S) identify a set of variables
whose removal makes the graph a tree: cycle-cutset.

For all possible combination of values of all the
variables in the cutset:

assign the variable in the cutset (makes elim.
easy).

solve by VE (linear time)

Overall exponential in the cutset-size. NP-hard to
minimize.
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More general: boosting search by VE

Usually using VE or BBE is to expensive in time/space.
Can it be used to perform some inference that can help
Branch and Bound search?

We know that eliminating variables with low degree is
easy.
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Boosting search by VE
Consider (X, D,C,S)

if all var. are eliminated, return

while there are to eliminate variables,
eliminate.
choose a variable to on

for all possible values
the variable value (easy to elim.)
- call recursively and update the best cost
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Example
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Computing a (b by VE: mini buckets

When we eliminate a variable =, x K(x) can be
expensive.

Instead we can:
partition K(x) in sets of bounded size
Compute each x K;(x) and project: yields «;(x)
eliminate » (and K(x)), replace by all «;(x)



Computing a (b by VE: mini buckets

The problem may be not equivalent:
We ignore interactions.

It is less constrained. Its optimal cost will be a ib on the
optimal cost of the original problem.

Repeat recursively: polynomial in O(d?). The larger b
the better the (b. Ultimately: will be bucket elim.
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Using mini-buckets inside Branch and Boul

use a static variable ordering

compute all mini-buckets (process var. in reverse
order)

Perform B&B using the static variable ordering

For a given node, with future variables F, consider all
the x;(x) for x € F. Only some are assigned at the
node. Let « be the set of these.

lbmb(t) — lbd(t) + Z/‘ﬂlz’EH} Ki [t]

PFC-MRDAC is still quite competitive.
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Russian Doll Search (Lemaitre et al. 1996)

JA to boost a lower bound that ignores
constraints linking future variables (like PFC).

At a given node, we have a set F of unassigned
variables and constraints linking them.

. the cost of an optimal solution of the
problem P defined by F' and relevant constraints can
be added to ib; @ Ibs. and is still a [b. We must solve Pr
beforehand.
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RDS in image
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RDS

use a T1...Tn

call P, the problem defined by variables z;, to z,,
and relevant constraints.

Solve P, to P, using the following b (where O,
denotes the optimal cost of P;:

Ib(t) = lbse(t) ® O

where k is the first unassigned variable in .

Solving P, gives also value ordering heuristics and
upper bounds (using the solution found when solving
P).
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Specialized RDS

When we solve P, we do not only compute the optimal

solution Oy, but for each value « of z, the first variable
of Py

O¢ = best solution of P, that uses z;, = a.

1b(t) = 1bg(t) ® min (fere ® OF) @ P min fej

where k is the first unassigned variable in .
A flavor of VE: solves path-structured efficiently.
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