Soft constraints: Algorithms (1)

T. Schiex
INRA - Toulouse, France

Solving soft CSP

Traditional queries:

compute the cost of an (non dominated)
solution;

(non dominated) solutions;

find a (cost less than k);
prove that a given value/tuple is In any
(optimal) solution;

transform a soft CN into an but simpler
soft CN. ..

In this part, we concentrate on the 3 first one, only for
totally ordered structures (binary VCSP: minimization).

Padova 2004 - Soft constraints (algorithms 1) —p. 2

A simple case: idempotent VCSP

From the VCSP axioms:
Consider Vb <, a,
a=(a® L)<y (adb),
= (a B b) =y a.
b<pa= (a®b) <y (a®a)=atherefore a ® b = a.

® = max,. Min-Max optimization problem:
possibilistic/fuzzy CSP.

Padova 2004 - Soft constraints (algorithms 1) —p. 3

Introducing a-cuts

Consider a VCSP (X, D,C,S) and a € E.

The of (X,D,C,S) is the CSP
(X, D,C") where we authorize weakly forbidden tuples
(less than «) and make all other hard (ex: fuzzy CSP).

All tuples with valuation lower than « are assigned
valuation 1 and all others are assigned T.

C'={paoc,Vce C} ula)=(as=,a?T: 1)

The a-cut of a VCSP is a classical CSP (o = T
underlying CSP).

Padova 2004 - Soft constraints (algorithms 1) —p. 4

Solving a possibilistic VCSP

Let ¢t be an optimal solution of a possibilistic VCSP
(X,D,C,S)

o 1ts valuation.

then, for any o =, o, t Is a solution of the «-cut of
(X,D,C,S)

all a-cuts with a <, 0 are inconsistent.

Ex: Prove.

Padova 2004 - Soft constraints (algorithms 1) —p. 5

Solving a possibilistic VCSP

Let A be the set of all valuations used in a possibilistic
VCSP (X, D, C,S).|A| < ed?.

Solve all a-cuts for o € A: O(ed?) classical CSP to
solve.
Use binary (dichotomic) search: O(log(ed)) CSP to
solve.

. All polynomial CSP classes conserved by
a-cutting are also polynomial classes for
possibilistic/fuzzy VCSP.

Padova 2004 - Soft constraints (algorithms 1) —p. 6

Solving a possibilistic VCSP

Open: is there a similar argument for partially ordered
idempotent SCSP?

Ex: appply to the fuzzy dinner problem (reverse scale)
Ex: show the property does not hold for non

idempotent (a solution of cost 100 may violate only
constraints of cost 1).

fish or meat: f0.8,m0.3
water, Barolo or Greco di Tufo w 0.7, b 1.0, g 0.9

Padova 2004 - Soft constraints (algorithms 1) —p. 7

Solving by Branch and Bound

Finding an with a complete algorithm:

finding an optimal solution (NP)

proving that exists (optimality
proof: co-NP)

The search space is in O(d").

. partition the search space in (independant)
subproblems.

. Ignore subproblems that cannot contain an
optimal solution

Padova 2004 - Soft constraints (algorithms 1) —p. 8

Simple: branching

The search space is described by (X, D, C, S) itself.

Consider a collection of k;. We can

decompose the original problem into the
<X, D,CU {k’z}, S>

. V;k; must eliminate no potential
(optimal) solution.

. do not search the same space twice
ki A k; Inconsistent.

: the addition of k; should simplify
(X,D,C,S) and in fine make (X, D, C, S) trivial.

Padova 2004 - Soft constraints (algorithms 1) —p. 9

Branching methods

> selectx; € X s.t. |Dj| > 1.

Use (z; = d;) as k; (by). Branching
factor | D;|, depth n.
Use {(ZE] — d1)7 (CIZ‘]' 7& dl)} as {klka} (by
). BF 2, depth nd.
Let {d;} be a partition of D;. Use (z; € d;) as k; (by
).
: choose ce C s.t. c=c1 V. Use

k1 = c1 and ks = co(A—cp) (eg. Job shop scheduling:
constraint splitting).

Padova 2004 - Soft constraints (algorithms 1) —p. 10

The branching tree

A such that:
the IS the original problem

each of a node is obtained by one of
the selected k; for the node.

leaves are problems (trivial to solve).

Branching by assignment: (assigned) variables,
(unassigned) variables.

Ex: branching by assignment on the 3 queens problem.

Padova 2004 - Soft constraints (algorithms 1) —p. 11

Bounding

The branching tree is huge: pruning.
We suppose we have:

a “procedure” that can compute a b on
the cost of an of (X,D,C,S) ata
given node.

an ub on the cost of the problem (best
known solution)

(opt) a glb on the cost of an

of the root problem.

At some node: if [b > ub we can ignore the problem
(cannot improve). If we find a solution of cost glb: we
can stop.

Padova 2004 - Soft constraints (algorithms 1) —p. 12

Exploration strategy

: we branch on one of the most
recently branched (deepest) subproblem.

: we branch on one of the
oldest (shallowest) subproblem.

. we branch on the most promising
subproblem (minimum [b in the open nodes).
BFS: explores less nodes. Offers a ¢gib (min. of the
open [b). Space exponential.

DFS: linear space.

Padova 2004 - Soft constraints (algorithms 1) —p. 13

Branch and Bound algorithm

Fonction DEBB (¢ : assig., ub : val.) : valuation
v« 1b(t);

If v < ub then

if (|t| = n) then return v;

Let i be a future variable;

foreach o c d; do

| ub «— min(ub,DFBB (t U {(¢,a)},ub));

- return ub;

- return T;

Padova 2004 - Soft constraints (algorithms 1) —p. 14

Ordering heuristics

Select the variable z; that will be
assigned (variable ordering).

choose the first value
(or k;) that will be assigned to z; (value ordering).
: small domains (thin tree, hope that bounding
will avoid later widening), degree: increase in [b.

. most promising. . . find a good b rapidly.
Problem dependent, smallest ib increase. We (almost)
always have a solution.

Padova 2004 - Soft constraints (algorithms 1) —p. 15

Crucial component: the [b procedure

Must be:

. the closest to the real value of the optimal
solution the better.

. as costless to compute as possible.

Obviously antagonist aims. Matter of compromises and
experimental evaluation (no theory of what a good b
1S).

® = + used as an ideal practical example of non
idempotent VCSP. All algorithms work for all practical
iInstances of VCSP (can be optimized for & = max).

Padova 2004 - Soft constraints (algorithms 1) —p. 16

A first trivial [b (PBB, Freuder et al. 1992)

At a given node, let AC' c C be the set of assigned

constraints (constraints connecting past/assigned
variables).

Use

ba(t) = B c(t[S])

cs€AC

Also called the “distance” (Partial CSP: number of
constraints removed from the original problem needed
to reach consistency. Reference to the metrics.).

Padova 2004 - Soft constraints (algorithms 1) —p. 17

The 3x3 queens

Poor [b.

Padova 2004 - Soft constraints (algorithms 1) —p. 18

PFC: Forward-checking based [0

The © " lower bound only takes into account
constraints between

We should try to take into account constraints.

FC: remove values that are inconsistent with past
variables (constraints between past and future
variables).

We cannot remove values. Assign counter fc;, to value
b € D; = extra valuation if x; = b: ¢;;(t[i],b).

Ibse(t) = Ibg(t) & €P min feiq

Padova 2004 - Soft constraints (algorithms 1) —p. 19

The 3x3 queens

We get: pruning, guidance, value deletion.

lbc .,b = [b(t .,b] .
fe(d,b) = 1bg(t) @ fe(y)@x.g%#j;gﬂfc

Padova 2004 - Soft constraints (algorithms 1) — p. 20

Still more ?

We haven't yet used the constraints between
(arc consistency ?).

. ac;, = €xtra guaranteed violations
among future variables if (z; = a).

Number of with no consistent
values with (i, a).

notlb = [by; P @ggg(]pcm + aciq)
L

notlb IS . we may pay the same cost
twice. Ex: find a simple example that shows this.

Padova 2004 - Soft constraints (algorithms 1) — p. 21

Alternative: PFC-DAC

use only ONE ac;,, a “good” collection of ac;, ?
to avoid duplicated use: AC counts.

variables are T < ...< Tp.

for variable z;, value a, dac;, counts future variables
which eg. follow z; with no value compatible with

(,a).

Each constraint can participate in only one dac;,. dac
are computed before hand (statically).

Ibdac = 1bg & P min(feia + dacia)
acl);
r,€F

Padova 2004 - Soft constraints (algorithms 1) — p. 22

3x3 queens

el
HEE

mmE Some more pruning. Re-
BB quires static ordering (dac
and fc redundancy).

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 1) — p. 23

Can the DAC direction influence efficiency

Reversible DACs : PFC-RDAC

at any node, a given constraint between
unassigned variables is in a given

we choose the to maximize
the ib.
we can use

Maximizing the b is ... heuristic greedy choice.

Value specific /b to prune (j,b) when [b(5,b) > ub.

Ibraac(5,b) = ba(t) fc(j, b)dac(j,b)e D min(feiadbdacia)
T A

Padova 2004 - Soft constraints (algorithms 1) — p. 25

Still more: deletion propagation

when a value is deleted because of /b,.4,.(7,b), It IS
possible that a dac;, can be augmented.

dynamically update dac counters after value
deletion.

PFC-MRDAC (Larrosa et al. 1998). The flavor of
but without arc consistency.

May be counterproductive on random problems. ..

Padova 2004 - Soft constraints (algorithms 1) — p. 26

Weighted AC counts

DAC and RDAC counts have been 0}
so-called WAC counts (for additive VCSP).
For each constraint ¢;;, we choose the « of the

constraint that will be used in i and the rest (1 — «) will
go to j.

Padova 2004 - Soft constraints (algorithms 1) — p. 27

Experimentations

Although b strengths can be compared, the
efficiency/strength compromise is best assessed by

. n-queens,. . .

. frequency allocation, satellite
scheduling. ..

: same as random CSP.
Use a cost of 1 when the constraint is violated.

A random CSP class is defined by (n, d, p1,p2). p1 is the
) the N
constraints that will receive cost 1.

Padova 2004 - Soft constraints (algorithms 1) — p. 28

Phase transition in classical CSP

Padova 2004 - Soft constraints (algorithms 1) — p. 29

Additive VCSP (PFC)

Why is it so hard ?

Problem P(«a): Is there an assignment of valuation
strictly lower than o ?

Padova 2004 - Soft constraints (algorithms 1) — p. 31

So...

the (P(1))

IS among the simplest problems;

the (P(opt))

IS the hardest problem;

the (P(opt)) Is harder than the
(P(opt + 1)) ;

a algorithm solves a

P(«); It hsa to solve
P(opt + 1) and P(opt) at least;

starting from a , possibly optimal, will
not avoid the resolution of problem P(opt).

Padova 2004 - Soft constraints (algorithms 1) — p. 32

Local search

Another general class of algorithms used to solve

. starting from a potential solution ¢, we try
to ¢t Into ¢/, close to ¢ but potentially better.
Repeat until satisfied.

. does not try to solve P(opt).
Often quite efficient but may have pathological
behavior. (but asymptotic guarantee for
some). Deals only with optimization.

Padova 2004 - Soft constraints (algorithms 1) — p. 33

Terminology

A IS the object you want to optimize. Typically
a complete assignment (may violate hard constraints).

A " 1s an elementary operation that allows to go
from a solution ¢ to another solution ¢’ (a of t).

Moves must allow ultimately to reach any solution after
a finite number of moves.

The set of all neighbors of ¢ (reachable by one move):
of ¢.

A IS a succession of moves. A IS a
succession of trials.

Padova 2004 - Soft constraints (algorithms 1) — p. 34

Moves, criteria

We assume we have (but works In
general) with no hard constraints.

JA = t.

JA . change the value of one (or more) variable(s)

In ¢ to another element of its domain.

Ex: in the 4 queens problem, give the neighborhood of
<1,2,3,4 >.

We optimize ¢(t). Assume o(t) is valuation of the ¢ (but
this is not necessarily the case).

Padova 2004 - Soft constraints (algorithms 1) — p. 35

LocalSearch (),

z* «— NewSolution ();

fort = 1 to Max-Trials do

r — NewSolution ();

for m = 1 to Max-Moves do
2’ «— ChooseNeighbor (z);
0 — (p(z') — ¢(z));

if p(2') < p(2*) then

| o — 2]

if Accept? (5) then

| x— 2

return Nothing better than (z*, o(z*))

Padova 2004 - Soft constraints (algorithms 1) — p. 36

EICINEER

. number of trials.
. number of moves per trial.

. generates a new “solution” (random or
heuristically).

: chooses an element in the
neighborhood of ¢.

. accepts the move or not.

° ° ° ° ° ° ° ° °
Padova 2004 - Soft constraints (algorithms 1) — p. 37

Important properties

Brute force methods. Should be able to explore a large
number of solutions.

a solution should be simple to represent
the application of a move should be typically

the change in the criteria after a move should be
from the previous one
(constant time).

Ad-hoc langage for incremental maintenance of
structures/criteria: LOCALIZER (P. van Hentenryck).

Padova 2004 - Soft constraints (algorithms 1) — p. 38

Descent search

: random choice of 2/ in the
neighborhood of z.

> (0 <0).
Accept only when it does not get worse.
Fast, stuc in local minima.

Padova 2004 - Soft constraints (algorithms 1) — p. 39

Greedy search

. choose randomly a best
neighbor (greedy).

. true
We always accept.

Greedyness does not mean we cannot go up (in a local
minima).

Padova 2004 - Soft constraints (algorithms 1) — p. 40

Usual behavior

In a trial:
descent: a majority of moves improve the criteria.
this gradually becomes less and less frequent. ..

we get stuck in long “plateaus” and in local minima.
Occasional improvements (greedy search).

Padova 2004 - Soft constraints (algorithms 1) — p. 41

Improvements

. with a probability »p we decide to choose
a random move instead of the usual move. One more
parameter.

. we memorize the last £ moves and forbid to use
them again. Avoid to go back to already explored
solutions. Again one parameter.

Padova 2004 - Soft constraints (algorithms 1) — p. 42

Simulated annealing

Inspired from physical statistics. = |,
state change.

The probabillity of going from a state « to a state b with
a higher () energy Is:

(a—b)

P(a,b,T) = e "5T

kg 1s the Boltzmann constant. If we lower T
(temperature) very slowly we get in minimal energy

states.

Padova 2004 - Soft constraints (algorithms 1) —p. 43

Simulated annealing

the probability of accepting a move m from z to z’
- 1if p(2)) < ¢(x)

o(z)—p(z’

) .
e T otherwise.

we start with an initial T

after a fixed number of moves, we decrease the
temperature (cooling schedule. Geometric:
T = a1

Padova 2004 - Soft constraints (algorithms 1) — p. 44

Hard constraints

are difficult to cope with: infinite costs
remove all “gradient information”.

Typical approach: the constraint by penalizing
violation (larger than soft constraints).

When some hard constraint is repeatedly violated,
Increase its weight (for a period of time) (Breakout. . .)

Padova 2004 - Soft constraints (algorithms 1) — p. 45

	�f Solving soft CSP
	�f A simple case: idempotent VCSP
	�f Introducing $alpha $-cuts
	�f Solving a possibilistic VCSP
	�f Solving a possibilistic VCSP
	�f Solving a possibilistic VCSP
	�f Solving by Branch and Bound
	�f Simple: branching
	�f Branching methods
	�f The branching tree
	�f Bounding
	�f Exploration strategy
	�f Branch and Bound algorithm
	�f Ordering heuristics
	�f Crucial component: the lb procedure
	�f A first trivial lb (PBB, Freuder et al. 1992)
	�f The 3x3 queens
	�f PFC: Forward-checking based lb
	�f The 3x3 queens
	�f Still more ?
	�f Alternative: PFC-DAC
	�f 3x3 queens
	�f Can the DAC direction influence efficiency ?
	�f Reversible DACs : PFC-RDAC
	�f Still more: deletion propagation
	�f Weighted AC counts
	�f Experimentations
	�f Phase transition in classical CSP
	�f Additive VCSP (PFC)
	�f Why is it so hard ?
	�f Soldots
	�f Local search
	�f Terminology
	�f Moves, criteria
	�f Parameters
	�f Important properties
	�f Descent search
	�f Greedy search
	�f Usual behavior
	�f Improvements
	�f Simulated annealing
	�f Simulated annealing
	�f Hard constraints

