
Soft constraints: Algorithms (1)
T. Schiex

INRA - Toulouse, France

Padova 2004 - Soft constraints (algorithms 1) – p. 1

Solving soft CSP

Traditional queries:

compute the cost of an optimal (non dominated)
solution;

find one/all optimal (non dominated) solutions;

find a sufficiently good solution (cost less than k);

prove that a given value/tuple is not used in any
(optimal) solution;

transform a soft CN into an equivalent but simpler
soft CN. . .

In this part, we concentrate on the 3 first one, only for
totally ordered structures (binary VCSP: minimization).

Padova 2004 - Soft constraints (algorithms 1) – p. 2

A simple case: idempotent VCSP

From the VCSP axioms:

Consider ∀b 4v a,

a = (a⊕⊥) 4v (a⊕ b),

⇒ (a⊕ b) <v a.

b 4v a⇒ (a⊕ b) 4v (a⊕ a) = a therefore a⊕ b = a.

⊕ = maxv. Min-Max optimization problem:
possibilistic/fuzzy CSP.

Padova 2004 - Soft constraints (algorithms 1) – p. 3

Introducing α-cuts

Consider a VCSP 〈X,D,C, S〉 and α ∈ E.

The α-slice of 〈X,D,C, S〉 is the classical CSP
〈X,D,C ′〉 where we authorize weakly forbidden tuples
(less than α) and make all other hard (ex: fuzzy CSP).

All tuples with valuation lower than α are assigned
valuation ⊥ and all others are assigned >.

C ′ = {ϕα ◦ c,∀c ∈ C} ϕα(a) = (a <v α?> : ⊥)

The α-cut of a VCSP is a classical CSP (α = >:
underlying CSP).

Padova 2004 - Soft constraints (algorithms 1) – p. 4

Solving a possibilistic VCSP

Let t be an optimal solution of a possibilistic VCSP
〈X,D,C, S〉

o its valuation.

then, for any α �v o, t is a solution of the α-cut of
〈X,D,C, S〉

all α-cuts with α 4v o are inconsistent.

Ex: Prove.

Padova 2004 - Soft constraints (algorithms 1) – p. 5

Solving a possibilistic VCSP

Let A be the set of all valuations used in a possibilistic
VCSP 〈X,D,C, S〉.|A| ≤ ed2.

Solve all α-cuts for α ∈ A: O(ed2) classical CSP to
solve.

Use binary (dichotomic) search: O(log(ed)) CSP to
solve.

Practical. All polynomial CSP classes conserved by
α-cutting are also polynomial classes for
possibilistic/fuzzy VCSP.

Padova 2004 - Soft constraints (algorithms 1) – p. 6

Solving a possibilistic VCSP

Open: is there a similar argument for partially ordered
idempotent SCSP?
Ex: appply to the fuzzy dinner problem (reverse scale)
Ex: show the property does not hold for non
idempotent (a solution of cost 100 may violate only
constraints of cost 1).

fish or meat: f 0.8, m 0.3

water, Barolo or Greco di Tufo w 0.7, b 1.0, g 0.9

w b g

f 0.6 0.7 1.0

m 0.6 1.0 0.5
Padova 2004 - Soft constraints (algorithms 1) – p. 7

Solving by Branch and Bound

Finding an optimal solution with a complete algorithm:

finding an optimal solution (NP)

proving that no better solution exists (optimality
proof: co-NP)

The search space is in O(dn).

Branch: partition the search space in (independant)
subproblems.

Bound: ignore subproblems that cannot contain an
optimal solution

Padova 2004 - Soft constraints (algorithms 1) – p. 8

Simple: branching

The search space is described by 〈X,D,C, S〉 itself.

Consider a collection of hard constraints ki. We can
decompose the original problem into the collection
〈X,D,C ∪ {ki}, S〉.

exhaustivity: ∨iki must eliminate no potential
(optimal) solution.

efficiency: do not search the same space twice
ki ∧ kj inconsistent.

progress: the addition of ki should simplify
〈X,D,C, S〉 and in fine make (X,D,C, S) trivial.

Padova 2004 - Soft constraints (algorithms 1) – p. 9

Branching methods

Variable based: select xj ∈ X s.t. |Dj | > 1.

Use (xj = di) as ki (by assignment). Branching
factor |Dj |, depth n.

Use {(xj = d1), (xj 6= d1)} as {k1, k2} (by assignment
and refutation). BF 2, depth nd.

Let {di} be a partition of Dj. Use (xj ∈ di) as ki (by
domain spliting).

Constraint based: choose c ∈ C s.t. c = c1 ∨ c2. Use
k1 = c1 and k2 = c2(∧¬c1) (eg. job shop scheduling:
constraint splitting).

Padova 2004 - Soft constraints (algorithms 1) – p. 10

The branching tree

A rooted tree such that:

the root is the original problem

each son of a node is obtained by adding one of
the selected ki for the node.

leaves are unbranchable problems (trivial to solve).

Branching by assignment: past (assigned) variables,
future (unassigned) variables.

Ex: branching by assignment on the 3 queens problem.

Padova 2004 - Soft constraints (algorithms 1) – p. 11

Bounding

The branching tree is huge: pruning.
We suppose we have:

a “procedure” that can compute a lower bound lb on
the cost of an optimal solution of 〈X,D,C, S〉 at a
given node.

an upper bound ub on the cost of the problem (best
known solution)

(opt) a global lower bound glb on the cost of an
optimal solution of the root problem.

At some node: if lb ≥ ub we can ignore the problem
(cannot improve). If we find a solution of cost glb: we
can stop.

Padova 2004 - Soft constraints (algorithms 1) – p. 12

Exploration strategy

Depth first search: we branch on one of the most
recently branched (deepest) subproblem.

Breadth first search: we branch on one of the
oldest (shallowest) subproblem.

Best first search: we branch on the most promising
subproblem (minimum lb in the open nodes).

BFS: explores less nodes. Offers a glb (min. of the
open lb). Space exponential.

DFS: linear space.

Padova 2004 - Soft constraints (algorithms 1) – p. 13

Branch and Bound algorithm

Fonction DFBB(t : assig., ub : val.) : valuation
v ← lb(t);
if v ≺ ub then

if (|t| = n) then return v;
Let i be a future variable;
foreach a ∈ di do

ub← min(ub,DFBB(t ∪ {(i, a)}, ub));

return ub;

return >;

Padova 2004 - Soft constraints (algorithms 1) – p. 14

Ordering heuristics

How to branch ? Select the variable xj that will be
assigned (variable ordering).

Which problem to start with ? choose the first value
(or ki) that will be assigned to xj (value ordering).

Variable: small domains (thin tree, hope that bounding
will avoid later widening), degree: increase in lb.

Value: most promising. . . find a good ub rapidly.
Problem dependent, smallest lb increase. We (almost)
always have a solution.

Padova 2004 - Soft constraints (algorithms 1) – p. 15

Crucial component: the lb procedure
Must be:

strong: the closest to the real value of the optimal
solution the better.

efficient: as costless to compute as possible.

Obviously antagonist aims. Matter of compromises and
experimental evaluation (no theory of what a good lb

is).

⊕ = + used as an ideal practical example of non
idempotent VCSP. All algorithms work for all practical
instances of VCSP (can be optimized for ⊕ = max).

Padova 2004 - Soft constraints (algorithms 1) – p. 16

A first trivial lb (PBB, Freuder et al. 1992)

At a given node, let AC ⊂ C be the set of assigned
constraints (constraints connecting past/assigned
variables).

Use
lbd(t) =

⊕

cS∈AC

c(t[S])

Also called the “distance” (Partial CSP: number of
constraints removed from the original problem needed
to reach consistency. Reference to the metrics.).

Padova 2004 - Soft constraints (algorithms 1) – p. 17

The 3x3 queens

Poor lb.

Padova 2004 - Soft constraints (algorithms 1) – p. 18

PFC: Forward-checking based lb

The “distance” lower bound only takes into account
constraints between past variables.

We should try to take into account more constraints.

FC: remove values that are inconsistent with past
variables (constraints between past and future
variables).

We cannot remove values. Assign counter fcjb to value
b ∈ Dj = extra valuation if xj = b: cij(t[i], b).

lbfc(t) = lbd(t)⊕
⊕

xi∈F

min
a∈Di

fcia

Padova 2004 - Soft constraints (algorithms 1) – p. 19

The 3x3 queens

We get: pruning, guidance, value deletion.

lbfc(j, b) = lbd(t)⊕ fc(j, b)⊕
⊕

xi∈F,i 6=j

min
a∈Di

fcia

Padova 2004 - Soft constraints (algorithms 1) – p. 20

Still more ?

We haven’t yet used the constraints between future
variables (arc consistency ?).

ac counter: acia = extra guaranteed violations
among future variables if (xi = a).

Number of future variables with no consistent
values with (i, a).

notlb = lbd ⊕
⊕

xi∈F

min
a∈Di

(fcia + acia)

notlb is not a lower bound: we may pay the same cost
twice. Ex: find a simple example that shows this.

Padova 2004 - Soft constraints (algorithms 1) – p. 21

Alternative: PFC-DAC

use only ONE acia, a “good” collection of acia ?

to avoid duplicated use: directed AC counts.

variables are ordered x1 < . . . < xn.

for variable xi, value a, dacia counts future variables
which eg. follow xi with no value compatible with
(i, a).

Each constraint can participate in only one dacia. dac

are computed before hand (statically).

lbdac = lbd ⊕
⊕

xi∈F

min
a∈Di

(fcia + dacia)

Padova 2004 - Soft constraints (algorithms 1) – p. 22

3x3 queens

Some more pruning. Re-
quires static ordering (dac

and fc redundancy).

Padova 2004 - Soft constraints (algorithms 1) – p. 23

Can the DAC direction influence efficiency ?

Padova 2004 - Soft constraints (algorithms 1) – p. 24

Reversible DACs : PFC-RDAC

at any node, a given constraint between
unassigned variables is in a given direction.

we choose the direction of constraints to maximize
the lb.

we can use dynamic variable ordering.

Maximizing the lb is NP-hard. . . heuristic greedy choice.

Value specific lb to prune (j, b) when lb(j, b) ≥ ub.

lbrdac(j, b) = lbd(t)⊕fc(j, b)⊕dac(j, b)⊕
⊕

xi∈F,i6=j

min
a∈Di

(fcia⊕dacia)

Padova 2004 - Soft constraints (algorithms 1) – p. 25

Still more: deletion propagation

when a value is deleted because of lbrdac(j, b), it is
possible that a dacia can be augmented.

dynamically update dac counters after value
deletion.

PFC-MRDAC (Larrosa et al. 1998). The flavor of arc
consistency but without arc consistency.

May be counterproductive on random problems. . .

Padova 2004 - Soft constraints (algorithms 1) – p. 26

Weighted AC counts

DAC and RDAC counts have been generalized by
so-called WAC counts (for additive VCSP).

For each constraint cij, we choose the fraction α of the
constraint that will be used in i and the rest (1− α) will
go to j.

Padova 2004 - Soft constraints (algorithms 1) – p. 27

Experimentations

Although lb strengths can be compared, the
efficiency/strength compromise is best assessed by
experimental evaluation.

academic problems: n-queens,. . .

real problems: frequency allocation, satellite
scheduling. . .

random binary problems: same as random CSP.
Use a cost of 1 when the constraint is violated.

A random CSP class is defined by 〈n, d, p1, p2〉. p1 is the
number of constraints, p2 the number of pairs in
constraints that will receive cost 1.

Padova 2004 - Soft constraints (algorithms 1) – p. 28

Phase transition in classical CSP

0

5000

10000

15000

20000

0 20 40 60 80 100

nu
m

be
r o

f n
od

es

constraint tightness

n = 30, d = 10, c = 50%

satisfaction

Padova 2004 - Soft constraints (algorithms 1) – p. 29

Additive VCSP (PFC)

0

20000

40000

60000

80000

0 20 40 60 80 100

nu
m

be
r o

f n
od

es

constraint tightness

n = 15, d = 5, c = 50%

satisfaction
optimization

Padova 2004 - Soft constraints (algorithms 1) – p. 30

Why is it so hard ?

Problem P (α): is there an assignment of valuation
strictly lower than α ?

0

100000

200000

300000

400000

0 5 10 15 20 25 30 35 40

nu
m

be
r o

f n
od

es

alpha

n = 15, d = 10, c = t = 70%

optimum

Padova 2004 - Soft constraints (algorithms 1) – p. 31

So. . .

the proof of inconsistency (P (1))
is among the simplest problems;

the proof of optimality (P (opt))
is the hardest problem;

the proof of optimality (P (opt)) is harder than the
production of an optimal solution (P (opt + 1)) ;

a depth first branch and bound algorithm solves a
sequence of problems P (α); it hsa to solve
P (opt + 1) and P (opt) at least;

starting from a good solution, possibly optimal, will
not avoid the resolution of problem P (opt).

Padova 2004 - Soft constraints (algorithms 1) – p. 32

Local search

Another general class of algorithms used to solve
combinatorial optimization problem.

General idea: starting from a potential solution t, we try
to locally modify t into t′, close to t but potentially better.
Repeat until satisfied.

Incomplete algorithms: does not try to solve P (opt).
Often quite efficient but may have pathological
behavior. No guarantee (but asymptotic guarantee for
some). Deals only with optimization.

Padova 2004 - Soft constraints (algorithms 1) – p. 33

Terminology

A solution is the object you want to optimize. Typically
a complete assignment (may violate hard constraints).

A “move” is an elementary operation that allows to go
from a solution t to another solution t′ (a neighbor of t).

Moves must allow ultimately to reach any solution after
a finite number of moves.

The set of all neighbors of t (reachable by one move):
neighborhood of t.

A trial is a succession of moves. A local search is a
succession of trials.

Padova 2004 - Soft constraints (algorithms 1) – p. 34

Moves, criteria

We assume we have additive VCSP (but works in
general) with no hard constraints.

A solution = a complete assignment t.

A move: change the value of one (or more) variable(s)
in t to another element of its domain.

Ex: in the 4 queens problem, give the neighborhood of
< 1, 2, 3, 4 >.

We optimize ϕ(t). Assume ϕ(t) is valuation of the t (but
this is not necessarily the case).

Padova 2004 - Soft constraints (algorithms 1) – p. 35

LocalSearch ();
x∗ ← NewSolution ();
for t = 1 to Max-Trials do

x← NewSolution ();
for m = 1 to Max-Moves do

x′ ← ChooseNeighbor (x);
δ ← (ϕ(x′)− ϕ(x));
if ϕ(x′) < ϕ(x∗) then

x∗ ← x′;

if Accept? (δ) then
x← x′;

return Nothing better than (x∗, ϕ(x∗))
Padova 2004 - Soft constraints (algorithms 1) – p. 36

Parameters

Max-trials: number of trials.

Max-Moves: number of moves per trial.

NewSolution: generates a new “solution” (random or
heuristically).

ChooseNeighbor (t): chooses an element in the
neighborhood of t.

Accept? (δ): accepts the move or not.

Padova 2004 - Soft constraints (algorithms 1) – p. 37

Important properties

Brute force methods. Should be able to explore a large
number of solutions.

a solution should be simple to represent

the application of a move should be typically
constant time

the change in the criteria after a move should be
incrementally computed from the previous one
(constant time).

Ad-hoc langage for incremental maintenance of
structures/criteria: LOCALIZER (P. van Hentenryck).

Padova 2004 - Soft constraints (algorithms 1) – p. 38

Descent search

ChooseNeighbor (x) : random choice of x′ in the
neighborhood of x.

Accept? (δ) : (δ ≤ 0).

Accept only when it does not get worse.

Fast, stuc in local minima.

Padova 2004 - Soft constraints (algorithms 1) – p. 39

Greedy search

ChooseNeighbor (x): choose randomly a best
neighbor (greedy).

Accept? (δ) : true
We always accept.

Greedyness does not mean we cannot go up (in a local
minima).

Padova 2004 - Soft constraints (algorithms 1) – p. 40

Usual behavior

In a trial:

1. descent: a majority of moves improve the criteria.

2. this gradually becomes less and less frequent. . .

3. we get stuck in long “plateaus” and in local minima.
Occasional improvements (greedy search).

Padova 2004 - Soft constraints (algorithms 1) – p. 41

Improvements

Random walk: with a probability p we decide to choose
a random move instead of the usual move. One more
parameter.

Taboo: we memorize the last k moves and forbid to use
them again. Avoid to go back to already explored
solutions. Again one parameter.

Padova 2004 - Soft constraints (algorithms 1) – p. 42

Simulated annealing

Inspired from physical statistics. Energy = ϕ, move =
state change.

The probability of going from a state a to a state b with
a higher (worse) energy is:

P (a, b, T) = e
(a−b)
kBT

kB is the Boltzmann constant. If we lower T

(temperature) very slowly we get in minimal energy
states.

Padova 2004 - Soft constraints (algorithms 1) – p. 43

Simulated annealing

the probability of accepting a move m from x to x′

1 if ϕ(x′) ≤ ϕ(x)

e
ϕ(x)−ϕ(x′)

T otherwise.

we start with an initial T

after a fixed number of moves, we decrease the
temperature (cooling schedule. Geometric:
T i = α.T i−1)

Padova 2004 - Soft constraints (algorithms 1) – p. 44

Hard constraints

Hard constraints are difficult to cope with: infinite costs
remove all “gradient information”.

Typical approach: relax the constraint by penalizing
violation (larger than soft constraints).

When some hard constraint is repeatedly violated,
increase its weight (for a period of time) (Breakout. . .)

Padova 2004 - Soft constraints (algorithms 1) – p. 45

	�f Solving soft CSP
	�f A simple case: idempotent VCSP
	�f Introducing $alpha $-cuts
	�f Solving a possibilistic VCSP
	�f Solving a possibilistic VCSP
	�f Solving a possibilistic VCSP
	�f Solving by Branch and Bound
	�f Simple: branching
	�f Branching methods
	�f The branching tree
	�f Bounding
	�f Exploration strategy
	�f Branch and Bound algorithm
	�f Ordering heuristics
	�f Crucial component: the lb procedure
	�f A first trivial lb (PBB, Freuder et al. 1992)
	�f The 3x3 queens
	�f PFC: Forward-checking based lb
	�f The 3x3 queens
	�f Still more ?
	�f Alternative: PFC-DAC
	�f 3x3 queens
	�f Can the DAC direction influence efficiency ?
	�f Reversible DACs : PFC-RDAC
	�f Still more: deletion propagation
	�f Weighted AC counts
	�f Experimentations
	�f Phase transition in classical CSP
	�f Additive VCSP (PFC)
	�f Why is it so hard ?
	�f Soldots
	�f Local search
	�f Terminology
	�f Moves, criteria
	�f Parameters
	�f Important properties
	�f Descent search
	�f Greedy search
	�f Usual behavior
	�f Improvements
	�f Simulated annealing
	�f Simulated annealing
	�f Hard constraints

