Soft constraints: Algorithms (1)

T. Schiex INRA - Toulouse, France

Padova 2004 - Soft constraints (algorithms 1) - p. 1

Solving soft CSP

Traditional queries:

- compute the cost of an optimal (non dominated) solution;
- find one/all optimal (non dominated) solutions;
- find a sufficiently good solution (cost less than k);
- prove that a given value/tuple is not used in any (optimal) solution;
- transform a soft CN into an equivalent but simpler soft CN...

In this part, we concentrate on the 3 first one, only for totally ordered structures (binary VCSP: minimization).

A simple case: idempotent VCSP

From the VCSP axioms:

Consider $\forall b \preccurlyeq_v a$,

- $\Rightarrow (a \oplus b) \succcurlyeq_v a.$

▶ $b \preccurlyeq_v a \Rightarrow (a \oplus b) \preccurlyeq_v (a \oplus a) = a$ therefore $a \oplus b = a$.

 $\oplus = \max_v$. Min-Max optimization problem: possibilistic/fuzzy CSP.

Introducing α -cuts

Consider a VCSP $\langle X, D, C, S \rangle$ and $\alpha \in E$.

The α -slice of $\langle X, D, C, S \rangle$ is the classical CSP $\langle X, D, C' \rangle$ where we authorize weakly forbidden tuples (less than α) and make all other hard (ex: fuzzy CSP).

All tuples with valuation lower than α are assigned valuation \perp and all others are assigned \top .

 $C' = \{\varphi_{\alpha} \circ c, \forall c \in C\} \quad \varphi_{\alpha}(a) = (a \succcurlyeq_{v} \alpha?\top : \bot)$

The α -cut of a VCSP is a classical CSP ($\alpha = \top$: underlying CSP).

Solving a possibilistic VCSP

- Let *t* be an optimal solution of a possibilistic VCSP $\langle X, D, C, S \rangle$
- o its valuation.
- then, for any $\alpha \succ_v o$, t is a solution of the α -cut of $\langle X, D, C, S \rangle$
- all α -cuts with $\alpha \preccurlyeq_v o$ are inconsistent.

Ex: Prove.

Solving a possibilistic VCSP

Let A be the set of all valuations used in a possibilistic VCSP $\langle X, D, C, S \rangle$. $|A| \le ed^2$.

- Solve all α -cuts for $\alpha \in A$: $O(ed^2)$ classical CSP to solve.
- Use binary (dichotomic) search: O(log(ed)) CSP to solve.

Practical. All polynomial CSP classes conserved by α -cutting are also polynomial classes for possibilistic/fuzzy VCSP.

Solving a possibilistic VCSP

water, Barolo or Greco di Tufo

Open: is there a similar argument for partially ordered idempotent SCSP? Ex: appply to the fuzzy dinner problem (reverse scale) Ex: show the property does not hold for non idempotent (a solution of cost 100 may violate only constraints of cost 1).

fish or meat:

f 0.8, m 0.3w 0.7, b 1.0, g 0.9

Solving by Branch and Bound

Finding an optimal solution with a complete algorithm:

- finding an optimal solution (NP)
- proving that no better solution exists (optimality proof: co-NP)
- The search space is in $O(d^n)$.
- Branch: partition the search space in (independent) subproblems.
- Bound: ignore subproblems that cannot contain an optimal solution

Simple: branching

The search space is described by $\langle X, D, C, S \rangle$ itself.

Consider a collection of hard constraints k_i . We can decompose the original problem into the collection $\langle X, D, C \cup \{k_i\}, S \rangle$.

- exhaustivity: $\lor_i k_i$ must eliminate no potential (optimal) solution.
- efficiency: do not search the same space twice $k_i \wedge k_j$ inconsistent.
- progress: the addition of k_i should simplify $\langle X, D, C, S \rangle$ and in fine make (X, D, C, S) trivial.

Branching methods

Variable based: select $x_j \in X$ s.t. $|D_j| > 1$.

- Use $(x_j = d_i)$ as k_i (by assignment). Branching factor $|D_j|$, depth n.
- Use $\{(x_j = d_1), (x_j \neq d_1)\}$ as $\{k_1, k_2\}$ (by assignment and refutation). BF 2, depth *nd*.

• Let $\{d_i\}$ be a partition of D_j . Use $(x_j \in d_i)$ as k_i (by domain splitting).

Constraint based: choose $c \in C$ s.t. $c = c_1 \lor c_2$. Use $k_1 = c_1$ and $k_2 = c_2(\land \neg c_1)$ (eg. job shop scheduling: constraint splitting).

The branching tree

A rooted tree such that:

- the root is the original problem
- each son of a node is obtained by adding one of the selected k_i for the node.
- leaves are unbranchable problems (trivial to solve). Branching by assignment: past (assigned) variables,
- future (unassigned) variables.
- Ex: branching by assignment on the 3 queens problem.

Bounding

The branching tree is huge: pruning. We suppose we have:

- a "procedure" that can compute a lower bound *lb* on the cost of an optimal solution of (*X*, *D*, *C*, *S*) at a given node.
- an upper bound ub on the cost of the problem (best known solution)
- (opt) a global lower bound *glb* on the cost of an optimal solution of the root problem.

At some node: if $lb \ge ub$ we can ignore the problem (cannot improve). If we find a solution of cost *glb*: we can stop.

Exploration strategy

- Depth first search: we branch on one of the most recently branched (deepest) subproblem.
- Breadth first search: we branch on one of the oldest (shallowest) subproblem.
- Best first search: we branch on the most promising subproblem (minimum *lb* in the open nodes).

BFS: explores less nodes. Offers a *glb* (min. of the open *lb*). Space exponential.

DFS: linear space.

Branch and Bound algorithm

```
Fonction DFBB (t: assig., ub: val. ) : valuation
v \leftarrow lb(t);
if v \prec ub then
   if (|t| = n) then return v;
   Let i be a future variable;
   foreach a \in d_i do
    | ub \leftarrow \min(ub, \text{DFBB}(t \cup \{(i, a)\}, ub));
   return ub;
 return \top;
```

Ordering heuristics

- How to branch ? Select the variable x_j that will be assigned (variable ordering).
- Which problem to start with ? choose the first value (or k_i) that will be assigned to x_j (value ordering).

Variable: small domains (thin tree, hope that bounding will avoid later widening), degree: increase in *lb*.

Value: most promising... find a good *ub* rapidly. Problem dependent, smallest *lb* increase. We (almost) always have a solution.

Crucial component: the *lb* procedure

Must be:

- strong: the closest to the real value of the optimal solution the better.
- efficient: as costless to compute as possible.

Obviously antagonist aims. Matter of compromises and experimental evaluation (no theory of what a good *lb* is).

 \oplus = + used as an ideal practical example of non idempotent VCSP. All algorithms work for all practical instances of VCSP (can be optimized for \oplus = max).

A first trivial lb (PBB, Freuder et al. 1992)

At a given node, let $AC \subset C$ be the set of assigned constraints (constraints connecting past/assigned variables).

Use

$$lb_d(t) = \bigoplus_{c_S \in AC} c(t[S])$$

Also called the "distance" (Partial CSP: number of constraints removed from the original problem needed to reach consistency. Reference to the metrics.).

The 3x3 queens

•

Padova 2004 - Soft constraints (algorithms 1) – p. 18

PFC: Forward-checking based *lb*

The "distance" lower bound only takes into account constraints between past variables.

We should try to take into account more constraints.

FC: remove values that are inconsistent with past variables (constraints between past and future variables).

We cannot remove values. Assign counter fc_{jb} to value $b \in D_j = \text{extra valuation if } x_j = b$: $c_{ij}(t[i], b)$.

$$lb_{fc}(t) = lb_d(t) \oplus \bigoplus_{x_i \in F} \min_{a \in D_i} fc_{ia}$$

Padova 2004 - Soft constraints (algorithms 1) - p. 19

The 3x3 queens

ub=1

We get: pruning, guidance, value deletion.

 $lb_{fc}(j,b) = lb_d(t) \oplus fc(j,b) \oplus \bigoplus_{x_i \in F, i \neq j} \min_{a \in D_i} fc_{ia}$

Still more ?

We haven't yet used the constraints between inture variables (arc consistency ?).

- *ac* counter: ac_{ia} = extra guaranteed violations among future variables if $(x_i = a)$.
- Number of future variables with no consistent values with (i, a).

$$notlb = lb_d \oplus \bigoplus_{x_i \in F} \min_{a \in D_i} (fc_{ia} + ac_{ia})$$

notlb is not a lower bound: we may pay the same cost twice. Ex: find a simple example that shows this.

Alternative: PFC-DAC

- use only ONE ac_{ia} , a "good" collection of ac_{ia} ?
- to avoid duplicated use: directed AC counts.
- variables are ordered $x_1 < \ldots < x_n$.
- for variable x_i, value a, dac_{ia} counts future variables which eg. follow x_i with no value compatible with (i, a).

Each constraint can participate in only one dac_{ia} . dac are computed before hand (statically).

$$lb_{dac} = lb_d \oplus \bigoplus_{x_i \in F} \min_{a \in D_i} (fc_{ia} + dac_{ia})$$

3x3 queens

Some more pruning. Requires static ordering (dac and fc redundancy).

Can the DAC direction influence efficiency '

Reversible DACs : PFC-RDAC

- at any node, a given constraint between unassigned variables is in a given direction.
- we choose the direction of constraints to maximize the *lb*.
- we can use dynamic variable ordering.

Maximizing the *lb* is NP-hard...heuristic greedy choice. Value specific *lb* to prune (j, b) when $lb(j, b) \ge ub$.

 $lb_{rdac}(j,b) = lb_d(t) \oplus fc(j,b) \oplus dac(j,b) \oplus \bigoplus_{x_i \in F, i \neq j} \min_{a \in D_i} (fc_{ia} \oplus dac_{ia})$

Still more: deletion propagation

- when a value is deleted because of $lb_{rdac}(j,b)$, it is possible that a dac_{ia} can be augmented.
- dynamically update *dac* counters after value deletion.

PFC-MRDAC (Larrosa et al. 1998). The flavor of arc consistency but without arc consistency.

May be counterproductive on random problems...

Weighted AC counts

DAC and RDAC counts have been generalized by so-called WAC counts (for additive VCSP).

For each constraint c_{ij} , we choose the fraction α of the constraint that will be used in *i* and the rest $(1 - \alpha)$ will go to *j*.

Experimentations

Although *lb* strengths can be compared, the efficiency/strength compromise is best assessed by experimental evaluation.

- academic problems: n-queens,...
- real problems: frequency allocation, satellite scheduling...
- random binary problems: same as random CSP.
 Use a cost of 1 when the constraint is violated.

A random CSP class is defined by $\langle n, d, p_1, p_2 \rangle$. p_1 is the number of constraints, p_2 the number of pairs in constraints that will receive cost 1.

Phase transition in classical CSP

Additive VCSP (PFC)

Why is it so hard ?

Problem $P(\alpha)$: is there an assignment of valuation strictly lower than α ?

So...

- the proof of inconsistency (P(1)) is among the simplest problems;
- the proof of optimality (P(opt)) is the hardest problem;
- the proof of optimality (P(opt)) is harder than the production of an optimal solution (P(opt+1));
- a depth first branch and bound algorithm solves a sequence of problems $P(\alpha)$; it has to solve P(opt+1) and P(opt) at least;
- starting from a good solution, possibly optimal, will not avoid the resolution of problem P(opt).

Local search

Another general class of algorithms used to solve combinatorial optimization problem.

General idea: starting from a potential solution t, we try to locally modify t into t', close to t but potentially better. Repeat until satisfied.

Incomplete algorithms: does not try to solve P(opt). Often quite efficient but may have pathological behavior. No guarantee (but asymptotic guarantee for some). Deals only with optimization.

Terminology

A solution is the object you want to optimize. Typically a complete assignment (may violate hard constraints).

A "move" is an elementary operation that allows to go from a solution t to another solution t' (a neighbor of t).

Moves must allow ultimately to reach any solution after a finite number of moves.

The set of all neighbors of t (reachable by one move): neighborhood of t.

A trial is a succession of moves. A local search is a succession of trials.

Moves, criteria

We assume we have additive VCSP (but works in general) with no hard constraints.

A solution = a complete assignment t.

A move: change the value of one (or more) variable(s) in t to another element of its domain.

Ex: in the 4 queens problem, give the neighborhood of < 1, 2, 3, 4 >.

We optimize $\varphi(t)$. Assume $\varphi(t)$ is valuation of the *t* (but this is not necessarily the case).

LocalSearch (); $x^* \leftarrow \text{NewSolution ()};$ for t = 1 to Max-Trials do $x \leftarrow \text{NewSolution ()};$ for m = 1 to Max-Moves do $x' \leftarrow ChooseNeighbor (x);$ $\delta \leftarrow (\varphi(x') - \varphi(x));$ if $\varphi(x') < \varphi(x^*)$ then $x^* \leftarrow x'$ if *Accept?* (δ) then $x \leftarrow x';$

return Nothing better than $(x^*, \varphi(x^*))$

Max-trials: number of trials.

Max-Moves: number of moves per trial.

NewSolution: generates a new "solution" (random or heuristically).

ChooseNeighbor (t): chooses an element in the neighborhood of t.

Accept? (δ): accepts the move or not.

Important properties

Brute force methods. Should be able to explore a large number of solutions.

- a solution should be simple to represent
- the application of a move should be typically constant time

 the change in the criteria after a move should be incrementally computed from the previous one (constant time).

Ad-hoc langage for incremental maintenance of structures/criteria: LOCALIZER (P. van Hentenryck).

Descent search

ChooseNeighbor (x) : random choice of x' in the neighborhood of x.

Accept? (δ) : ($\delta \leq 0$).

Accept only when it does not get worse. Fast, stuc in local minima.

Greedy search

ChooseNeighbor (x): choose randomly a best neighbor (greedy).

Accept? (6) : true We always accept.

Greedyness does not mean we cannot go up (in a local minima).

Usual behavior

In a trial:

- 1. descent: a majority of moves improve the criteria.
- 2. this gradually becomes less and less frequent...
- 3. we get stuck in long "plateaus" and in local minima. Occasional improvements (greedy search).

Improvements

Handom walk: with a probability *p* we decide to choose a random move instead of the usual move. One more parameter.

Taboo: we memorize the last k moves and forbid to use them again. Avoid to go back to already explored solutions. Again one parameter.

Simulated annealing

Inspired from physical statistics. Energy = φ , move = state change.

The probability of going from a state *a* to a state *b* with a higher (worse) energy is:

$$P(a, b, T) = e^{\frac{(a-b)}{k_B T}}$$

 k_B is the Boltzmann constant. If we lower T (temperature) very slowly we get in minimal energy states.

Simulated annealing

 \checkmark the probability of accepting a move m from x to x'

- 1 if $\varphi(x') \leq \varphi(x)$
- $e^{\frac{\varphi(x)-\varphi(x')}{T}}$ otherwise.
- \checkmark we start with an initial T
- after a fixed number of moves, we decrease the temperature (cooling schedule. Geometric: $T^i = \alpha . T^{i-1}$)

Hard constraints

Hard constraints are difficult to cope with: infinite costs remove all "gradient information".

Typical approach: relax the constraint by penalizing violation (larger than soft constraints).

When some hard constraint is repeatedly violated, increase its weight (for a period of time) (Breakout...)