Soft constraints: Algorithms (1)

T. Schiex

INRA - Toulouse, France

Solving soft CSP

Traditional queries:

- compute the cost of an optimal (non dominated) solution;
- find one/all optimal (non dominated) solutions;
- find a sufficiently good solution (cost less than k);
- prove that a given value/tuple is not used in any (optimal) solution;
- transform a soft CN into an equivalent but simpler soft CN...

In this part, we concentrate on the 3 first one, only for totally ordered structures (binary VCSP: minimization).

A simple case: idempotent VCSP

From the VCSP axioms:
Consider $\forall b \preccurlyeq v a$,

- $a=(a \oplus \perp) \preccurlyeq_{v}(a \oplus b)$,
- $\Rightarrow(a \oplus b) \succcurlyeq_{v} a$.
- $b \preccurlyeq_{v} a \Rightarrow(a \oplus b) \preccurlyeq_{v}(a \oplus a)=a$ therefore $a \oplus b=a$.
$\oplus=\max _{v}$. Min-Max optimization problem: possibilistic/fuzzy CSP.

Introducing α-cuts

Consider a VCSP $\langle X, D, C, S\rangle$ and $\alpha \in E$.
The α-slice of $\langle X, D, C, S\rangle$ is the classical CSP $\left\langle X, D, C^{\prime}\right\rangle$ where we authorize weakly forbidden tuples (less than α) and make all other hard (ex: fuzzy CSP).
All tuples with valuation lower than α are assigned valuation \perp and all others are assigned T.

$$
C^{\prime}=\left\{\varphi_{\alpha} \circ c, \forall c \in C\right\} \quad \varphi_{\alpha}(a)=\left(a \succcurlyeq_{v} \alpha ? T: \perp\right)
$$

The α-cut of a VCSP is a classical CSP $(\alpha=\mathrm{T}$: underlying CSP).

Solving a possibilistic VCSP

- Let t be an optimal solution of a possibilistic VCSP $\langle X, D, C, S\rangle$
- o its valuation.
- then, for any $\alpha \succ_{v} 0, t$ is a solution of the α-cut of $\langle X, D, C, S\rangle$
- all α-cuts with $\alpha \preccurlyeq v o ~ a r e ~ i n c o n s i s t e n t . ~_{\text {a }}$

Ex: Prove.

Solving a possibilistic VCSP

Let A be the set of all valuations used in a possibilistic $\operatorname{VCSP}\langle X, D, C, S\rangle .|A| \leq e d^{2}$.

- Solve all α-cuts for $\alpha \in A$: $O\left(e d^{2}\right)$ classical CSP to solve.
- Use binary (dichotomic) search: $O(\log (e d))$ CSP to solve.

Practical. All polynomial CSP classes conserved by α-cutting are also polynomial classes for possibilistic/fuzzy VCSP.

Solving a possibilistic VCSP

Open: is there a similar argument for partially ordered idempotent SCSP?
Ex: appply to the fuzzy dinner problem (reverse scale)
Ex: show the property does not hold for non idempotent (a solution of cost 100 may violate only constraints of cost 1).

- fish or meat:
- water, Barolo or Greco di Tufo
$w 0.7, b 1.0, g 0.9$

	w	b	g
f	0.6	0.7	1.0
m	0.6	1.0	0.5

Solving by Branch and Bound

Finding an optimal solution with a complete algorithm:

- finding an optimal solution (NP)
- proving that no better solution exists (optimality proof: co-NP)
The search space is in $O\left(d^{n}\right)$.
- Branch: partition the search space in (independant) subproblems.
- Bound: ignore subproblems that cannot contain an optimal solution

Simple: branching

The search space is described by $\langle X, D, C, S\rangle$ itself.
Consider a collection of hard constraints k_{i}. We can decompose the original problem into the collection $\left\langle X, D, C \cup\left\{k_{i}\right\}, S\right\rangle$.

- exhaustivity: $V_{i} k_{i}$ must eliminate no potential (optimal) solution.
- efficiency: do not search the same space twice $k_{i} \wedge k_{j}$ inconsistent.
- progress: the addition of k_{i} should simplify $\langle X, D, C, S\rangle$ and in fine make (X, D, C, S) trivial.

Branching methods

Variable based: select $x_{j} \in X$ s.t. $\left|D_{j}\right|>1$.

- Use $\left(x_{j}=d_{i}\right)$ as k_{i} (by assignment). Branching factor $\left|D_{j}\right|$, depth n.
- Use $\left\{\left(x_{j}=d_{1}\right),\left(x_{j} \neq d_{1}\right)\right\}$ as $\left\{k_{1}, k_{2}\right\}$ (by assignment and refutation). BF 2, depth nd.
- Let $\left\{d_{i}\right\}$ be a partition of D_{j}. Use $\left(x_{j} \in d_{i}\right)$ as k_{i} (by domain spliting).
Constraint based: choose $c \in C$ s.t. $c=c_{1} \vee c_{2}$. Use $k_{1}=c_{1}$ and $k_{2}=c_{2}\left(\wedge \neg c_{1}\right)$ (eg. job shop scheduling: constraint splitting).

The branching tree

A rooted tree such that:

- the root is the original problem
- each son of a node is obtained by adding one of the selected k_{i} for the node.
- leaves are unbranchable problems (trivial to solve).

Branching by assignment: past (assigned) variables, future (unassigned) variables.

Ex: branching by assignment on the 3 queens problem.

Bounding

The branching tree is huge: pruning.
We suppose we have:

- a "procedure" that can compute a lower bound $l b$ on the cost of an optimal solution of $\langle X, D, C, S\rangle$ at a given node.
- an upper bound $u b$ on the cost of the problem (best known solution)
- (opt) a global lower bound glb on the cost of an optimal solution of the root problem.
At some node: if $l b \geq u b$ we can ignore the problem (cannot improve). If we find a solution of cost $g l b$: we can stop.

Exploration strategy

- Depth first search: we branch on one of the most recently branched (deepest) subproblem.
- Breadth first search: we branch on one of the oldest (shallowest) subproblem.
- Best first search: we branch on the most promising subproblem (minimum $l b$ in the open nodes).

BFS: explores less nodes. Offers a glb (min. of the open $l b$). Space exponential.
DFS: linear space.

Branch and Bound algorithm

Fonction $\operatorname{DFBB}(t:$ assig., $u b$: val.) : valuation

```
    v\leftarrowlb(t);
    if v\precub then
        if (|t|=n) then return v;
        Let i be a future variable;
        foreach }a\in\mp@subsup{d}{i}{}\mathrm{ do
        Lub\leftarrow\operatorname{min}(ub,\operatorname{DFBB}(t\cup{(i,a)},ub));
        return ub;
    return T;
```


Ordering heuristics

- How to branch ? Select the variable x_{j} that will be assigned (variable ordering).
- Which problem to start with ? choose the first value (or k_{i}) that will be assigned to x_{j} (value ordering).

Variable: small domains (thin tree, hope that bounding will avoid later widening), degree: increase in $l b$.
Value: most promising. . . find a good ub rapidly. Problem dependent, smallest $l b$ increase. We (almost) always have a solution.

Crucial component: the $l b$ procedure

Must be:

- strong: the closest to the real value of the optimal solution the better.
- efficient: as costless to compute as possible.

Obviously antagonist aims. Matter of compromises and experimental evaluation (no theory of what a good $l b$ is).
$\oplus=+$ used as an ideal practical example of non idempotent VCSP. All algorithms work for all practical instances of VCSP (can be optimized for $\oplus=$ max).

A first trivial $l b$ (PBB, Freuder et al. 1992)

At a given node, let $A C \subset C$ be the set of assigned constraints (constraints connecting past/assigned variables).

Use

$$
l b_{d}(t)=\bigoplus_{c_{s} \in A C} c(t[S])
$$

Also called the "distance" (Partial CSP: number of constraints removed from the original problem needed to reach consistency. Reference to the metrics.).

The 3×3 queens

PFC: Forward-checking based $l b$

The "distance" lower bound only takes into account constraints between past variables.
We should try to take into account more constraints.
FC: remove values that are inconsistent with past variables (constraints between past and future variables).
We cannot remove values. Assign counter $f c_{j b}$ to value $b \in D_{j}=$ extra valuation if $x_{j}=b: c_{i j}(t[i], b)$.

$$
l b_{f c}(t)=l b_{d}(t) \oplus \bigoplus_{x_{i} \in F^{a}} \min _{a \in D_{i}} f c_{i a}
$$

The 3×3 queens

We get: pruning, guidance, value deletion.

$$
l b_{f c}(j, b)=l b_{d}(t) \oplus f c(j, b) \oplus \bigoplus_{x_{i} \in F, i \neq j} \min _{a \in D_{i}} f c_{i a}
$$

Still more ?

We haven't yet used the constraints between future variables (arc consistency ?).

- ac counter: $a c_{i a}=$ extra guaranteed violations among future variables if ($x_{i}=a$).
- Number of future variables with no consistent values with (i, a).

$$
n o t l b=l b_{d} \oplus \bigoplus_{x_{i} \in F} \min _{a \in D_{i}}\left(f c_{i a}+a c_{i a}\right)
$$

notlb is not a lower bound: we may pay the same cost twice. Ex: find a simple example that shows this.

Alternative: PFC-DAC

2 use only ONE $a c_{i a}$, a "good" collection of $a c_{i a}$?

- to avoid duplicated use: directed AC counts.
- variables are ordered $x_{1}<\ldots<x_{n}$.
- for variable x_{i}, value a, dacia counts future variables which eg. follow x_{i} with no value compatible with (i,a).

Each constraint can participate in only one dacia. dac are computed before hand (statically).

$$
l b_{d a c}=l b_{d} \oplus \bigoplus_{x_{i} \in F} \min _{a \in D_{i}}\left(f c_{i a}+d a c_{i a}\right)
$$

3×3 queens

Some more pruning. Requires static ordering (dac and $f c$ redundancy).

Can the DAC direction influence efficiency

Reversible DACs : PFC-RDAC

- at any node, a given constraint between unassigned variables is in a given direction.
- we choose the direction of constraints to maximize the $l b$.
- we can use dynamic variable ordering.

Maximizing the $l b$ is NP-hard. . . heuristic greedy choice.
Value specific $l b$ to prune (j, b) when $l b(j, b) \geq u b$.

$$
l b_{r d a c}(j, b)=l b_{d}(t) \oplus f c(j, b) \oplus \operatorname{dac}(j, b) \oplus \bigoplus_{x_{i} \in F, i \neq j} \min _{a \in D_{i}}\left(f c_{i a} \oplus d a c_{i a}\right)
$$

Still more: deletion propagation

- when a value is deleted because of $l b_{r d a c}(j, b)$, it is possible that a dacia can be augmented.
- dynamically update dac counters after value deletion.

PFC-MRDAC (Larrosa et al. 1998). The flavor of arc consistency but without arc consistency.
May be counterproductive on random problems. . .

Weighted AC counts

DAC and RDAC counts have been generalized by so-called WAC counts (for additive VCSP).
For each constraint $c_{i j}$, we choose the fraction α of the constraint that will be used in i and the rest $(1-\alpha)$ will go to j.

Experimentations

Although $l b$ strengths can be compared, the efficiency/strength compromise is best assessed by experimental evaluation.

- academic problems: n-queens,...
- real problems: frequency allocation, satellite scheduling. . .
- random binary problems: same as random CSP. Use a cost of 1 when the constraint is violated.

A random CSP class is defined by $\left\langle n, d, p_{1}, p_{2}\right\rangle . p_{1}$ is the number of constraints, p_{2} the number of pairs in constraints that will receive cost 1.

Phase transition in classical CSP

Additive VCSP (PFC)

Why is it so hard ?

Problem $P(\alpha)$: is there an assignment of valuation strictly lower than α ?

So...

. the proof of inconsistency $(P(1))$ is among the simplest problems;

- the proof of optimality $(P(o p t))$ is the hardest problem;
- the proof of optimality $(P(o p t))$ is harder than the production of an optimal solution $(P($ opt +1$))$;
- a depth first branch and bound algorithm solves a sequence of problems $P(\alpha)$; it hsa to solve $P(o p t+1)$ and $P(o p t)$ at least;
- starting from a good solution, possibly optimal, will not avoid the resolution of problem $P(o p t)$.

Local search

Another general class of algorithms used to solve combinatorial optimization problem.
General idea: starting from a potential solution t, we try to locally modify t into t^{\prime}, close to t but potentially better. Repeat until satisfied.
Incomplete algorithms: does not try to solve $P(o p t)$. Often quite efficient but may have pathological behavior. No guarantee (but asymptotic guarantee for some). Deals only with optimization.

Terminology

A solution is the object you want to optimize. Typically a complete assignment (may violate hard constraints). A "move" is an elementary operation that allows to go from a solution t to another solution t^{\prime} (a neighbor of t). Moves must allow ultimately to reach any solution after a finite number of moves.
The set of all neighbors of t (reachable by one move): neighborhood of t.
A trial is a succession of moves. A local search is a succession of trials.

Moves, criteria

We assume we have additive VCSP (but works in general) with no hard constraints. A solution = a complete assignment t.
A move: change the value of one (or more) variable(s) in t to another element of its domain.

Ex: in the 4 queens problem, give the neighborhood of $<1,2,3,4>$.
We optimize $\varphi(t)$. Assume $\varphi(t)$ is valuation of the t (but this is not necessarily the case).

LocalSearch (); $x^{*} \leftarrow$ NewSolution (); for $t=1$ to Max-Trials do $x \leftarrow$ NewSolution (); for $m=1$ to Max-Moves do $x^{\prime} \leftarrow$ ChooseNeighbor (x);
$\delta \leftarrow\left(\varphi\left(x^{\prime}\right)-\varphi(x)\right)$;
if $\varphi\left(x^{\prime}\right)<\varphi\left(x^{*}\right)$ then $L x^{*} \leftarrow x^{\prime}$;
if Accept? (δ) then
$L x \leftarrow x^{\prime}$;
return Nothing better than $\left(x^{*}, \varphi\left(x^{*}\right)\right)$

Parameters

Max-trials: number of trials.
Max-Moves: number of moves per trial.
NewSolution: generates a new "solution" (random or heuristically).
ChooseNeighbor (t): chooses an element in the neighborhood of t.
Accept? (δ): accepts the move or not.

Important properties

Brute force methods. Should be able to explore a large number of solutions.

- a solution should be simple to represent
- the application of a move should be typically

constant time

- the change in the criteria after a move should be incrementally computed from the previous one (constant time).
Ad-hoc langage for incremental maintenance of structures/criteria: LOCALIZER (P. van Hentenryck).

Descent search

ChooseNeighbor (x) : random choice of x^{\prime} in the neighborhood of x.

Accept? (δ) : $(\delta \leq 0)$.

Accept only when it does not get worse.
Fast, stuc in local minima.

Greedy search

ChooseNeighbor (x): choose randomly a best neighbor (greedy).
Accept? (δ) : true
We always accept.
Greedyness does not mean we cannot go up (in a local minima).

Usual behavior

In a trial:

1. descent: a majority of moves improve the criteria.
2. this gradually becomes less and less frequent. . .
3. we get stuck in long "plateaus" and in local minima. Occasional improvements (greedy search).

Improvements

Random walk: with a probability p we decide to choose a random move instead of the usual move. One more parameter.
Taboo: we memorize the last k moves and forbid to use them again. Avoid to go back to already explored solutions. Again one parameter.

Simulated annealing

Inspired from physical statistics. Energy $=\varphi$, move $=$ state change.
The probability of going from a state a to a state b with a higher (worse) energy is:

$$
P(a, b, T)=e^{\frac{(a-b)}{k_{B} T}}
$$

k_{B} is the Boltzmann constant. If we lower T (temperature) very slowly we get in minimal energy states.

Simulated annealing

- the probability of accepting a move m from x to x^{\prime}
- 1 if $\varphi\left(x^{\prime}\right) \leq \varphi(x)$
$-e^{\frac{\varphi(x)-\varphi\left(x^{\prime}\right)}{T}}$ otherwise.
- we start with an initial T
- after a fixed number of moves, we decrease the temperature (cooling schedule. Geometric: $\left.T^{i}=\alpha \cdot T^{i-1}\right)$

Hard constraints

Hard constraints are difficult to cope with: infinite costs remove all "gradient information".
Typical approach: relax the constraint by penalizing violation (larger than soft constraints).
When some hard constraint is repeatedly violated, increase its weight (for a period of time) (Breakout. . .)

