Soft constraints: models

T. Schiex
INRA - Toulouse, France



Outline ?

Day 1: soft constraints models

Day 2: branch and bound algorithms
Day 3: inference

Day 4: local inference and B&B

Day 5: polynomial classes, applications
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Why soft constraints ?

Constraint satisfaction problems usually allow to
represent many decision problems:

identify decision variables with their domains
list all desirable properties (constraints)
find a solution (satisfies all constraints)

Eg: job shop scheduling.

° ° °
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Job Shop scheduling

a set of tasks T'= {t1,...,t,}, task ¢; has duration d;
task t; may use some ressource R; (machine...)
ressources cannot be shared

some tasks needs to be done before others (t; — ;)
must have the raw materials delivered

must deliver the finished product in time
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CSP model

Variables: a s; for task ¢;
Constraints:

precedence ti = 1l 85 = 8+ d;
raw materials: some s; > raw;

delivery time: some s; < del
resources:

R7;:Rj$(8jZSi—I—d@')\/(SZ'ZSj—Fdj)

Finding a feasible schedule is a NP-hard problem.
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What if no feasible schedule exists ?

For most real problems, constraints may represent:
physical laws: time, space, capacity. ..
desired properties: preferences. ..
uncertain laws: not sure it will apply in practice

Precedence, raw materials, resources: hard constraints
Delivery time: preference.
Machine failure: uncertain.
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Time tabling

number of rooms, courses

size of audience/size of room

available time slots

one teacher can only give one course at a time
Soft: precedences between courses

Soft: different days for different lectures

Soft: teacher’s preferences over days/times

° ° ° ° ° ° ° ° °
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Why soft constraints are needed

stating everything as a constraint may lead to
unfeasible (inconsistent) problems

stating only physical laws ignoring preferences,
uncertainties may lead either to:
~ poor decisions

- likely inapplicable decisions

Needs to distinguish between these in the modeling
step.

Soft constraints: a natural way to locally express a
complex criteria.
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Notations

A k-tuple: a sequence of k£ objects (vy,...,v)

The " component of a tuple ¢ is denoted as ¢]i].

The cartesian product of sets Aq,...,A;

(A x -+ x Ay or []7_, 4;) is the set of all the
k-tuples (v1,...,v;) such that vy € Aq,...,v; € Ay.
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Notations

A variable represents an unknown element of its
domain, a finite set of values.

given a sequence of variables S = (z1,...,2;) and
their domains Dy, ..., Dy, arelation Ron S Is a
subset of Dy x --- x Dy (scope S, arity |S]).

Scope emphasis: tg € Rg = assignment of S.
S' C S, tg]S’] = projection of tg on S".
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Classical CSP

A constraint network (X, D, C):

a set of variables X = {x1,...,z,}

a set of domains D ={Dq,...,D,}

a set of e constraints C.
A constraint ¢ € C'Is a relation on a sequence of
variables S, denoted cg. |S| is the arity of cg.

cs C [1.,es D; specifies the allowed assignments for
the variables of S.

° ° °
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Fuzzy CN

Relies on the notion of

Given a set F, a fuzzy set f on E is defined by a
membership degree function y:

i B — (0,1

pr(x) =1 means x belongs to f
pr(x) = 0 means x does not belong to f

Intermediate values allow for intermediate degrees of
membership.

Classical sets: only 0 and 1 are used.
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from fuzzy sets to fuzzy relations

Fuzzy relation R on S: a fuzzy set of tuples on S. ug(t)
IS the membership degree of tuple ¢ to R.

Given 2 fuzzy sets f and g, the fuzzy set f N g has a
membership degree function defined by:
ppng(z) = min(pg(z), pg(z))

NB: conjunctive interpretation. Other exists (min —
mean...).

Join of 2 fuzzy relations Rg, R,: a fuzzy rel. on
Sus'...

Rsw Ry, (1) = min(urs ([S)), pry, ([S]))

Padova 2004 - Soft constraints (models) — p. 13



Fuzzy CSP

A fuzzy CN is a triple (X, D, C):
X Is the usual set of variables
D Is the usual set of domains (may be fuzzy sets).
C'Is a set e of fuzzy constraints.

A fuzzy constraint cg € C'is a fuzzy relation on S. It
assigns a degree of membership to each tuple on S
(degree of satisfaction of the constraint).

Semantics of a fuzzy network: x.c¢c c. Is a fuzzy set of
solutions.
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Fuzzy dinner: drink and meal

fish or meat:

water, Barolo or Greco di Tufo

w

b

)

f10.6
m | 0.6

0.7
1.0

1.0
0.5

f0.8,m0.3
w 0.7, 1.0, ¢ 0.9

Fuzzy set Sol of solutions: jg,;(t) = ming e (pes (E[S]).
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Fuzzy dinner, continued

g ((m,w)) = min(0.3,0.7,0.6) = 0.3

us((m,b)) = min(0.3,1.0,1.0) = 0.3

1s((f,b)) = min(0.8,1.0,0.7) = 0.7
us((f,g)) = min(0.8,1.0,1.0) = 0.8

What if no fish ? The infamous drowning effect.
Typical problem: find a complete assignment ¢ that
maximizes gy (1), 1.e.

m?X(CI?l%(Mcs (t[S])))

Max-min problem. Shift from satisfaction to
optimization.

° °
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Possibilistic CSP

We start from a classical CSP.
Each constraint is assigned a priority between 0 and 1.

We want to minimize the priority of the most violated
constraint.

Two differences with fuzzy CSP:
Weights are associated with constraint, not tuples

Min-max-optimization problem (dual to the
max-min)

Ex: translate the previous fuzzy pb. to possibilistic CSP.
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Implied constraints

Given a classical CSP (X, D, ), an implied constraint
IS a constraint wich is satisfied by all solutions of the
problem.

It can be added to the CSP without changing the
solution set.

Similar notion in fuzzy/possibilistic CSP.

Eg.: all solutions with w have a membership degree

< 0.6. A unary constraint that lowers the membership
degree of w to 0.6 can be added. Fuzzy set of solutions
unchanged.
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Improving discrimination
Lexicographic CSPs:

we keep fuzzy CSP

evaluation of a complete assignment: the sorted
vector of membership degrees of all assigned
constraints.

goal: to find a complete assignment with maximum
evaluation (lexicographic ordering).

Ex: compare solutions of the fuzzy dinner.

Ex: the optimum lex solutions are optimum fuzzy
solutions.

Ex: implied constraints ?
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Modeling additive costs
Weighted CSPs:

each constraint/tuple has a violation cost (default 1:
MaxCSP)

evaluation of a complete assignment: the sum of all
costs of all violated constraints.

goal: to find a complete assignment with minimum
cost.

Ex: consider the fuzzy dinner as a weighted CSP
Ex: transform a lex. CSP in a weighted CSP and
vice-versa

Ex: Implied constraints ?
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Modelling uncertainty

Probabilistic CSPs:

each constraint ¢ has a certain (independent)
probabillity p(c) to be part of the real problem (eg.
failure probabillity).

evaluation of a complete solution: probability that it
will be a solution of the real problem

goal: find a maximum probability assignment.

Ex: what is the evaluation ?
Ex: transform to weighted CSP
Ex: Implied constraints ?
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A puzzling situation (1994)

many frameworks, similar dedicated algorithms.
some frameworks much harder to solve than others
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Generic soft CSP models

Motivations: design a generic model that covers all
existing proposals:

to avoid repeated algorithmic work

to understand what makes some problem harder
than others

Generality: maximizes the number of frameworks
covered

Specificity: stronger properties means more theorems,
properties, algorithms.
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Expected results

to have a unique representation framework with
efficient algorithms;

to take into account in the same framework both
hard constraints and soft constraints;

to represent in the same settings consistent
problems, with preferences on the acceptable
solutions and inconsistent problems, with
preferences on the way they should be relaxed.

Soft constraints vs. optimization: emphasis on a
combination of local criteria. Overconstrained
(unfeasible) problems.
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HCSP (Borning et al. 1989)

a for each constraint (ordered:
required, strong, medium, weak. . .)

an for each constraint.

find a solution that satisfies all required and other
as much as possible, successively in each level.

some pre-defined on complete
assignments (locally-better, weighted-sum
better. . .)

Move the endpoint of an horizontal line with a mouse.
required: horizontal line, inside the window
strong: the endpoint follows the mouse position.
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Partial CSP (Freuder 1989)

when a problem is overconstrained, this means a
solution satisfies only some of them (a relaxed
problem).

define a between problems and solve the
problem which is

closest to the original
consistent

3 queens: ignore diagonal attack (constraint
relaxation), use a 4x3 chessboard (domain
relaxation). ..

Very general (metrics properties). Not completely
specified. Most results on Welghted CSP (Freuder
Wallace 1992). :

°
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Valued CSP (1995)

with each constraint/tuple: a valuation that reflects
the violation cost : preference, weight, priority,
probability of being violated. . .

the valuation of an assignment is the combination
of the valuations expressed by each constraint
using a binary operator (extra axioms).

assignments can be compared using a total order
on valuations.

the problem is to produce an assignment of
minimum valuation.

Commutative totally ordered semigroup with a
monotonic operator.
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More precisely
S = <E7@7 <UaJ—7—|—>'
E = set of valuations, made of numbers or symbols,

used to assess local assignments;

1 = minimum element of E, corresponds to
completely consistent assignments;

T = maximum element of F, used to annotate hard
constraints, corresponds to totally inconsistent
assignments;

<, = lotal order on E, used to compare two
valuations;

@ = operator used to combine two valuations;

° ° ° ° ° ° ° ° °
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Valued CSP

Atuple (X, D,C,S)
X ={x1,...,z,} IS @ set of n variables.

D ={D,...,D,} Is the collection of the domains of
the variables in X.

C'Is a set of constraints. A constraint ¢ (cg) Is a
function defined on a set of variables S C X that
maps tuples to valuations c: [], .¢ Di — E.

S =(E,®,<,L, T) Is avaluation structure.

The valuation of a complete assignment

val(t) = @) es(t[S))
cs€C
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Required properties

Va,B € E, (a®p)= (8 a). (commutativity)

Vo, 8,7y € E, (a® (8®7)) = ((a®B) ®7).
(associativity)

Va, 3,7 € E, (a <y B) = ((a®7) <v (B8 7))
(monotonicity)

Vo e E, (a® 1) = a. (neutral element)
Vaoe E, (adT)=T. (annihilator )

EXx: justify these axioms.
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Semiring CSP (1995)
Both significant and insignificant differences with VCSP.

Insignificant: express satisfaction degrees, not

violation degrees. Historically used the structural
variant 1.

Significant: can consider partially ordered
structures
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c-semiring

A set E of satisfaction degrees.

An operator +; defines a partial order x5 on the set
E:a<sbiff a+50=0 (ACI).

a maximum element 1 and a minimum element 0.
Implies that 1 is an annihilator for +4, 0 a neutral
element.

an AC operator x, combines sat. degrees. 0 is an
annihilator for x.

(a x5c¢)+s (bxsc)=(a+s5b) xsc (distributivity).

Abelian semiring + idempotency of +;.
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Semiring CSP
A semiring constraint network is a tuple (X, D, C, S)
where :

X ={x1,...,x,} 1S a set of

D ={D,...,D,} is the collection of the associated

C'Is a set of . A constraint c € C (cg) Is a
function defined on a set of variables S C X that
maps tuples to semiring values cg : [[, g D; — E.

S = (F,+s, X5,0,1) IS @ c-semiring.
Problem: finding one/all non dominated solutions.
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Totally ordered SCSP and VCSP

From totally ordered c-semiring S = (E, +, x5,0,1) t0
valuation structure S’ = (E, <4, X5, L, T) where:

(b=xpa)e (a+sb=0), T=01L=1

From valuation structure S = (E, <,,®, 1L, T) to
c-semiring S = (E,+4,9,0,1):

(a4+sb=0)< (b<xpa),0=T,1=1

Ex: check axioms...
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Describing a binary {V,S}CSP

By a variant of the so-called “microstructural” graph
(multipartite graph):
each value a € D; Is represented by a vertex (i,a).

fora € D;,b € D; s.t. ¢;; € C, an edge connects the
vertex (i,a) and (j,b) with weight ¢;;(a, b) (if not
equal to 1). Weights equal to T omitted.

unary constraints (if any) are represented as vertex
labels.
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Example - weighted MaxCSP

Valuation of {(a,a,b,0) =05 1606063p T =T.
Valuation of (a,a,a,a) =05 1604360 = 4.
Valuation of (b,a,b,a) =006 04 040 = 0.

Incompatible with classical CSP microstructure (edge =
allowed). .
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Instances

CSP = < T | L a
classical {tf [t f| t |t A
additive N < | 400 |0 +

fuzzy [0, 1] > 0 | 1 min
possibilistic [0, 1] < 1 |0 max
lexicographic | [0,1]* | <* T [0 U
probabilistic | [0, 1] < 1 |0 |1—(1-a)(1l-0)
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Partially ordered SCSP

Set-based SCSP.

- semiring values are sets

- xs = U, +5 = N (order = set inclusion)

- c-semiring (P(A),U,n, o, A). Distributive lattice.
Multicriteria SCSP.

- one S; = (E;, +s;, Xsi, 04, 1;) per criteria

- (B1,...,Ep), +s, X5, (01,...,0,), (11, ...,1,))

- X4, +5- pointwise application of each x;, +;.
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Structural variants

Depending on how we want to define cost functions,
valuations can be associated with:

1: tuples: most general.

2. classical constraints: ¢;(t) = o; If t € R; (L
otherwise)

3: values: only unary soft constraints.
4: variables: cost of leaving unassigned (MUP).

Historically VCSP used 2.
Ex: Model 1 with 2, 4 with 3.
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Desirable properties of ©

avoiding the drowning effect: strict monotonicity.

Va,b,ce E;a=bNc# T = (adc) > (bDc)

Ex: show that if one valuation strictly improves, the
assignment valuation improves strictly.

can add implied constraints: idempotency.
Vae E,ada=a

VCSP axioms + |E| > 2 make these 2 incompatibles.
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Links with expressive power/complexity

[ Weighted }<_____>[Probabilistic}

CSP CSP
Pie ’ 7
o
Lexicographic
CSP

" (Possibilistic | -
CSP

)
y
Classical

CcSsp

\\\idempotent‘,/l

° ° ° ° ° ° ° ° °
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Influence of arity on expressive prower

Classical CSP: binary CSP can express all
problems (dual problem).

Soft CSP: binary hard constraints + soft unary are
enough.

Ex: show how this is possible by transforming a VCSP
into its dual (define this).
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