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Outline ?

Day 1: soft constraints models

Day 2: branch and bound algorithms

Day 3: inference

Day 4: local inference and B&B

Day 5: polynomial classes, applications
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Why soft constraints ?

Constraint satisfaction problems usually allow to
represent many decision problems:

identify decision variables with their domains

list all desirable properties (constraints)

find a solution (satisfies all constraints)

Eg: job shop scheduling.
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Job Shop scheduling

a set of tasks T = {t1, . . . , tn}, task ti has duration di

task ti may use some ressource Ri (machine. . . )

ressources cannot be shared

some tasks needs to be done before others (ti → tj)

must have the raw materials delivered

must deliver the finished product in time
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CSP model

Variables: a starting time si for task ti
Constraints:

precedence ti → tj: sj ≥ si + di

raw materials: some si ≥ rawi

delivery time: some si ≤ del

resources:

Ri = Rj ⇒ (sj ≥ si + di) ∨ (si ≥ sj + dj)

Finding a feasible schedule is a NP-hard problem.
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What if no feasible schedule exists ?

For most real problems, constraints may represent:

physical laws: time, space, capacity. . .

desired properties: preferences. . .

uncertain laws: not sure it will apply in practice

Precedence, raw materials, resources: hard constraints

Delivery time: preference.

Machine failure: uncertain.
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Time tabling

number of rooms, courses

size of audience/size of room

available time slots

one teacher can only give one course at a time

Soft: precedences between courses

Soft: different days for different lectures

Soft: teacher’s preferences over days/times
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Why soft constraints are needed

stating everything as a constraint may lead to
unfeasible (inconsistent) problems

stating only physical laws ignoring preferences,
uncertainties may lead either to:

poor decisions
likely inapplicable decisions

Needs to distinguish between these in the modeling
step.

Soft constraints: a natural way to locally express a
complex criteria.
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Notations

A k-tuple: a sequence of k objects (v1, . . . , vk)

The ith component of a tuple t is denoted as t[i].

The cartesian product of sets A1,. . . ,Ak

(A1 × · · · × Ak or
∏k

i=1
Ai) is the set of all the

k-tuples (v1, . . . , vk) such that v1 ∈ A1,. . . ,vk ∈ Ak.
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Notations

A variable represents an unknown element of its
domain, a finite set of values.

given a sequence of variables S = (x1, . . . , xk) and
their domains D1, . . . , Dk, a relation R on S is a
subset of D1 × · · · × Dk (scope S, arity |S|).

Scope emphasis: tS ∈ RS = assignment of S.

S′ ⊆ S, tS [S′] = projection of tS on S′.
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Classical CSP

A constraint network (X,D,C):

a set of variables X = {x1, . . . , xn}

a set of domains D = {D1, . . . , Dn}

a set of e constraints C.

A constraint c ∈ C is a relation on a sequence of
variables S, denoted cS. |S| is the arity of cS.

cS ⊂
∏

xj∈S Dj specifies the allowed assignments for
the variables of S.
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Fuzzy CN

Relies on the notion of fuzzy sets.

Given a set E, a fuzzy set f on E is defined by a
membership degree function µf :

µf : E → [0, 1]

µf (x) = 1 means x belongs to f

µf (x) = 0 means x does not belong to f

Intermediate values allow for intermediate degrees of
membership.

Classical sets: only 0 and 1 are used.
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from fuzzy sets to fuzzy relations

Fuzzy relation R on S: a fuzzy set of tuples on S. µR(t)
is the membership degree of tuple t to R.

Given 2 fuzzy sets f and g, the fuzzy set f ∩ g has a
membership degree function defined by:

µf∩g(x) = min(µf (x), µg(x))

NB: conjunctive interpretation. Other exists (min →
mean. . . ).

Join of 2 fuzzy relations RS, R′

S′: a fuzzy rel. on
S ∪ S′. . .

µRSonR′

S′
(t) = min(µRS

(t[S]), µR′

S′
(t[S′]))
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Fuzzy CSP

A fuzzy CN is a triple (X,D,C):

X is the usual set of variables

D is the usual set of domains (may be fuzzy sets).

C is a set e of fuzzy constraints.

A fuzzy constraint cS ∈ C is a fuzzy relation on S. It
assigns a degree of membership to each tuple on S
(degree of satisfaction of the constraint).

Semantics of a fuzzy network: onc∈C c. Is a fuzzy set of
solutions.
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Fuzzy dinner: drink and meal

fish or meat: f 0.8, m 0.3

water, Barolo or Greco di Tufo w 0.7, b 1.0, g 0.9

w b g

f 0.6 0.7 1.0

m 0.6 1.0 0.5

Fuzzy set Sol of solutions: µSol(t) = mincS∈C(µcS
(t[S]).
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Fuzzy dinner, continued

µS((m,w)) = min(0.3, 0.7, 0.6) = 0.3
µS((m, b)) = min(0.3, 1.0, 1.0) = 0.3
µS((f, b)) = min(0.8, 1.0, 0.7) = 0.7
µS((f, g)) = min(0.8, 1.0, 1.0) = 0.8

What if no fish ? The infamous drowning effect.

Typical problem: find a complete assignment t that
maximizes µSol(t), i.e.

max
t

(min
cS∈C

(µcS
(t[S])))

Max-min problem. Shift from satisfaction to
optimization.
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Possibilistic CSP

We start from a classical CSP.
Each constraint is assigned a priority between 0 and 1.

We want to minimize the priority of the most violated
constraint.

Two differences with fuzzy CSP:

Weights are associated with constraint, not tuples

Min-max-optimization problem (dual to the
max-min)

Ex: translate the previous fuzzy pb. to possibilistic CSP.
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Implied constraints

Given a classical CSP (X,D,C), an implied constraint
is a constraint wich is satisfied by all solutions of the
problem.

It can be added to the CSP without changing the
solution set.

Similar notion in fuzzy/possibilistic CSP.

Eg.: all solutions with w have a membership degree
< 0.6. A unary constraint that lowers the membership
degree of w to 0.6 can be added. Fuzzy set of solutions
unchanged.
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Improving discrimination

Lexicographic CSPs:

we keep fuzzy CSP

evaluation of a complete assignment: the sorted
vector of membership degrees of all assigned
constraints.

goal: to find a complete assignment with maximum
evaluation (lexicographic ordering).

Ex: compare solutions of the fuzzy dinner.
Ex: the optimum lex solutions are optimum fuzzy
solutions.
Ex: implied constraints ?
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Modeling additive costs

Weighted CSPs:

each constraint/tuple has a violation cost (default 1:
MaxCSP)

evaluation of a complete assignment: the sum of all
costs of all violated constraints.

goal: to find a complete assignment with minimum
cost.

Ex: consider the fuzzy dinner as a weighted CSP
Ex: transform a lex. CSP in a weighted CSP and
vice-versa
Ex: Implied constraints ?
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Modelling uncertainty

Probabilistic CSPs:

each constraint c has a certain (independent)
probability p(c) to be part of the real problem (eg.
failure probability).

evaluation of a complete solution: probability that it
will be a solution of the real problem

goal: find a maximum probability assignment.

Ex: what is the evaluation ?
Ex: transform to weighted CSP
Ex: Implied constraints ?
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A puzzling situation (1994)

many frameworks, similar dedicated algorithms.

some frameworks much harder to solve than others
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Generic soft CSP models

Motivations: design a generic model that covers all
existing proposals:

to avoid repeated algorithmic work

to understand what makes some problem harder
than others

Generality: maximizes the number of frameworks
covered

Specificity: stronger properties means more theorems,
properties, algorithms.
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Expected results

to have a unique representation framework with
efficient algorithms;

to take into account in the same framework both
hard constraints and soft constraints;

to represent in the same settings consistent
problems, with preferences on the acceptable
solutions and inconsistent problems, with
preferences on the way they should be relaxed.

Soft constraints vs. optimization: emphasis on a
combination of local criteria. Overconstrained
(unfeasible) problems.
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HCSP (Borning et al. 1989)

a strength level for each constraint (ordered:
required, strong, medium, weak. . . )

an error function for each constraint.

find a solution that satisfies all required and other
as much as possible, successively in each level.

some pre-defined comparators on complete
assignments (locally-better, weighted-sum
better. . . )

Move the endpoint of an horizontal line with a mouse.
required: horizontal line, inside the window
strong: the endpoint follows the mouse position.
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Partial CSP (Freuder 1989)

when a problem is overconstrained, this means a
solution satisfies only some of them (a relaxed
problem).

define a metric between problems and solve the
problem which is

closest to the original
consistent

3 queens: ignore diagonal attack (constraint
relaxation), use a 4x3 chessboard (domain
relaxation). . .

Very general (metrics properties). Not completely
specified. Most results on Weighted CSP (Freuder
Wallace 1992). Padova 2004 - Soft constraints (models) – p. 26



Valued CSP (1995)

with each constraint/tuple: a valuation that reflects
the violation cost : preference, weight, priority,
probability of being violated. . .

the valuation of an assignment is the combination
of the valuations expressed by each constraint
using a binary operator (extra axioms).

assignments can be compared using a total order
on valuations.

the problem is to produce an assignment of
minimum valuation.

Commutative totally ordered semigroup with a
monotonic operator.
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More precisely

S = 〈E,⊕,4v,⊥,>〉.

E = set of valuations, made of numbers or symbols,
used to assess local assignments;

⊥ = minimum element of E, corresponds to
completely consistent assignments;

> = maximum element of E, used to annotate hard
constraints, corresponds to totally inconsistent
assignments;

4v = total order on E, used to compare two
valuations;

⊕ = operator used to combine two valuations;
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Valued CSP

A tuple 〈X,D,C, S〉

X = {x1, . . . , xn} is a set of n variables.

D = {D1, . . . , Dn} is the collection of the domains of
the variables in X.

C is a set of constraints. A constraint c (cS) is a
function defined on a set of variables S ⊆ X that
maps tuples to valuations c :

∏
xi∈S Di → E.

S = 〈E,⊕,4v,⊥,>〉 is a valuation structure.

The valuation of a complete assignment

val(t) =
⊕

cS∈C

cS(t[S])
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Required properties

∀α, β ∈ E, (α ⊕ β) = (β ⊕ α). (commutativity)

∀α, β, γ ∈ E, (α ⊕ (β ⊕ γ)) = ((α ⊕ β) ⊕ γ).
(associativity)

∀α, β, γ ∈ E, (α 4v β) ⇒ ((α ⊕ γ) 4v (β ⊕ γ)).
(monotonicity)

∀α ∈ E, (α ⊕⊥) = α. (neutral element)

∀α ∈ E, (α ⊕>) = >. (annihilator )

Ex: justify these axioms.
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Semiring CSP (1995)

Both significant and insignificant differences with VCSP.

Insignificant: express satisfaction degrees, not
violation degrees. Historically used the structural
variant 1.

Significant: can consider partially ordered
structures
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c-semiring

A set E of satisfaction degrees.

An operator +s defines a partial order 4s on the set
E: a 4s b iff a +s b = b (ACI).

a maximum element 1 and a minimum element 0.
Implies that 1 is an annihilator for +s, 0 a neutral
element.

an AC operator ×s combines sat. degrees. 0 is an
annihilator for ×s.

(a ×s c) +s (b ×s c) = (a +s b) ×s c (distributivity).

Abelian semiring + idempotency of +s.
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Semiring CSP

A semiring constraint network is a tuple 〈X,D,C, S〉
where :

X = {x1, . . . , xn} is a set of variables.

D = {D1, . . . , Dn} is the collection of the associated
domains.

C is a set of constraints. A constraint c ∈ C (cS) is a
function defined on a set of variables S ⊆ X that
maps tuples to semiring values cS :

∏
xi∈S Di → E.

S = 〈E,+s,×s,0,1〉 is a c-semiring.

Problem: finding one/all non dominated solutions.
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Totally ordered SCSP and VCSP

From totally ordered c-semiring S = 〈E,+s,×s,0,1〉 to
valuation structure S′ = 〈E,4v,×s,⊥,>〉 where:

(b 4v a) ⇔ (a +s b = b),> = 0,⊥ = 1

From valuation structure S = 〈E,4v,⊕,⊥,>〉 to
c-semiring S = 〈E,+s,⊕,0,1):

(a +s b = b) ⇔ (b 4v a),0 = >,1 = ⊥

Ex: check axioms. . .
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Describing a binary {V,S}CSP
By a variant of the so-called “microstructural” graph
(multipartite graph):

each value a ∈ Di is represented by a vertex (i, a).

for a ∈ Di, b ∈ Dj s.t. cij ∈ C, an edge connects the
vertex (i, a) and (j, b) with weight cij(a, b) (if not
equal to ⊥). Weights equal to > omitted.

unary constraints (if any) are represented as vertex
labels.
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Example - weighted MaxCSP

a

b

a

b

1 2

a a

b

0 3

b

3

3

∞

1

1

Valuation of 〈a, a, b, b〉 = 0 ⊕ 1 ⊕ 0 ⊕ 3 ⊕> = >.
Valuation of 〈a, a, a, a〉 = 0 ⊕ 1 ⊕ 0 ⊕ 3 ⊕ 0 = 4.
Valuation of 〈b, a, b, a〉 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0.

Incompatible with classical CSP microstructure (edge =
allowed). .
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Instances

CSP E 4v > ⊥ ⊕

classical {t,f} t 4v f f t ∧

additive N ≤ +∞ 0 +

fuzzy [0, 1] ≥ 0 1 min

possibilistic [0, 1] ≤ 1 0 max

lexicographic [0, 1]∗ ≤∗ > ∅ ∪

probabilistic [0, 1] ≤ 1 0 1 − (1 − a)(1 − b)
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Partially ordered SCSP

Set-based SCSP.
semiring values are sets
×s = ∪, +s = ∩ (order = set inclusion)
c-semiring 〈P(A),∪,∩, ∅, A〉. Distributive lattice.

Multicriteria SCSP.
one Si = 〈Ei,+si,×si,0i,1i〉 per criteria
〈E1, . . . , Ek〉,+s,×s, 〈01, . . . ,0n〉, 〈11, . . . ,1n〉〉

×s,+s: pointwise application of each ×si,+si.
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Structural variants

Depending on how we want to define cost functions,
valuations can be associated with:

1: tuples: most general.

2: classical constraints: ci(t) = αi if t /∈ Ri (⊥
otherwise)

3: values: only unary soft constraints.

4: variables: cost of leaving unassigned (MUP).

Historically VCSP used 2.
Ex: Model 1 with 2, 4 with 3.
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Desirable properties of ⊕

avoiding the drowning effect: strict monotonicity.

∀a, b, c ∈ E, a � b ∧ c 6= > ⇒ (a⊕ c) � (b⊕ c)

Ex: show that if one valuation strictly improves, the
assignment valuation improves strictly.

can add implied constraints: idempotency.

∀a ∈ E, a⊕ a = a

VCSP axioms + |E| > 2 make these 2 incompatibles.
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Links with expressive power/complexity

Classical
CSP

Possibilistic
CSP

Lexicographic
CSP

CSP
Weighted Probabilistic

CSP

strictly monotonic

idempotent
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Influence of arity on expressive prower

Classical CSP: binary CSP can express all
problems (dual problem).

Soft CSP: binary hard constraints + soft unary are
enough.

Ex: show how this is possible by transforming a VCSP
into its dual (define this).
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