Soft constraint processing

Thomas Schiex

INRA – Toulouse France

Pedro Meseguer

CSIC – IIIA – Barcelona Spain Special thanks to: Javier Larrosa UPC – Barcelona Spain

Overview

Introduction and definitions

- Why soft constraints and dedicated algorithms?
- Generic and specific models

Solving soft constraint problems

- By search (systematic and local)
- By complete inference... and search
- By incomplete inference... and search

Existing implementations

Why soft constraints?

- CSP framework: for *decision* problems
- Many problems are *optimization* problems
- Economics (combinatorial auctions)
 Given a set G of goods and a set B of bids...
 Bid (B_i, V_i), B_i requested goods, V_i value
 ... find the best subset of compatible bids

Best = maximize revenue (sum)

Why soft constraints?

- Satellite scheduling
 - Spot 5 is an earth observation satellite
 - It has 3 on-board cameras
 - Given a set of requested pictures (of different importance)...
 - Resources, data-bus bandwidth, setup-times, orbiting
 - ...select a subset of compatible pictures with max. importance (sum)

Why soft constraints

- Multiple sequence alignment (DNA,AA)
 - Given *k* homologous sequences...
 - **AATAATGTTATTGGTGGATCGATGA**
 - **ATGTTGTTCGCGAAGGATCGATAA**
 - ind the best alignment (sum)
 -] AATAATGTTATTGGTG---GATCGATGATTA
 - ----ATGTTGTTCGCGAAGGATCGATAA---

Why soft constraints?

- Probabilistic inference (bayesian nets)
 - Given a probability distribution defined by a DAG of conditional probability tables
 - And some evidence
 - ...find the most probable explanation for the evidence (product)

Why soft constraints?

- Ressource allocation (frequency assignment)
 - Given a telecommunication network
 - ...find the best frequency for each communication link

Best can be:

- □ Minimize the maximum frequency (max)
- □ Minimize the global interference (sum)

Why soft constraints

Even in <u>decision problems</u>, the user may have *preferences* among solutions.

It happens in most real problems.

Experiment: give users a few solutions and they will find reasons to prefer some of them.

Overview

Introduction and definitions

- Why soft constraints and dedicated algorithms?
- Generic and specific models

Solving soft constraint problems

- By search (systematic and local)
- By complete inference... and search
- By incomplete inference... and search

Existing implementations

Soft constraints

Two new difficulties:

- How to express preferences in the model?
- How to solve the resulting optimization problem?

Solving soft constraints as a CSP

- Using a global criteria constraint
 - New constraint S_k on all X
 - S_k(X) = criteria value must be less than k

□ Number of variables having value *blue*

Combined local preferences

- Constraints are local cost functions
- Costs combine with a dedicated operator
 - *max*: priorities
 - +: additive costs

Fuzzy/min-max CSP

- Weighted CSP
- *: factorized probabilities... Probabilistic CSP, BN

Goal: find an assignment with the optimal combined cost

Soft constraint network

Specific frameworks

$$\Box$$
 E = { t, f } \oplus = andclassical CSP \Box E = [0,1] \oplus = max \approx fuzzy CSP \Box E = N \cup { ∞ } \oplus = +weighted CSF \Box E = [0,1] \oplus = *bayesian net

Lexicographic CSP, probabilistic CSP...

Weighted CSP example ($\oplus = +$)

Fuzzy constraint network (\oplus =max)

For each vertex

Connected vertices must have different colors

F(X): highest color used (b<g<r<y)

Some insight in unusual items

\Box T = maximum violation.

- Can be set to a bounded max. violation k
- Solution: F(t) < k = Top

□ Empty scope soft constraint c_Ø (a constant)
 ■ Gives an obvious lower bound on the optimum
 ■ If you do not like it: c_Ø = ⊥

Additional expression power

Weighted CSP example ($\oplus = +$)

Basic operations on cost functions

Assignment (conditioning)

II. Combination (join)

III. Projection (elimination)

.

Assignment (conditioning)

Combination (join with \oplus)

X i	X j	c(x _i ,x _j)
b	b	6
		0
g	b	0
g	g	6

				_	
x _i	x _j	x _k	f(x _i ,x _j ,x _k)		
b	b	b	12		
b	b	g	6		
b	g	b	0		
			6	= 0	\oplus
g	b	b	6		
g	b	g	0		
g	g	b	6		
g	g	g	12		

6

Projection (elimination)

Overview

Introduction and definitions

- Why soft constraints and dedicated algorithms?
- Generic and specific models

Solving soft constraint problems

- By search (systematic and local)
- By complete inference... and search
- By incomplete inference... and search

Existing implementations

Depth First Search (DFS)

$$\begin{array}{l} \text{BT}(X,D,\mathcal{C}) \\ \underline{\text{if}} \quad (X=\varnothing) \ \underline{\text{then}} \ \text{Top} := \mathcal{C}_{\varnothing} \\ \underline{\text{else}} \\ x_{j} := \ \underline{\text{selectVar}(X)} \\ \text{forall} \ a \in D_{j} \ \underline{\text{do}} \\ \hline \text{forall} \ a \in D_{j} \ \underline{\text{do}} \\ \forall_{c \in \mathcal{C} \text{ s.t. } xj \in \text{var}(c)} \ \mathcal{C} := \ \underline{\text{Assign}}(\mathcal{C}, \ x_{j}, a) \\ \mathcal{C}_{\varnothing} := \ \sum_{c \in \mathcal{C} \text{ s.t. } \text{var}(c) = \varnothing} \mathcal{C} \\ \underline{\text{if}} \ (\mathcal{LB} < \ \text{Top}) \ \underline{\text{then}} \ \text{BT}(X - \{x_{j}\}, D - \{D_{j}\}, \mathcal{C}) \\ \hline \\ \text{Good UB ASAP} \end{array}$$

Г

Russian Doll Search

- static variable ordering
 solves increasingly large subproblems
 uses previous LB
 - recursively
- May speedup search by several orders of magnitude

Local search

Based on perturbation of solutions in a local neighborhood

- Simulated annealing
- Tabu search
- Variable neighborhood search
- Greedy rand. adapt. search (GRASP)
- Evolutionary computation (GA)
- Ant colony optimization...

See: Blum & Roli, ACM comp. surveys, 35(3), 2003

In all cases, we may improve pruning

Boosting Systematic Search with Local Search

□ Ex: Frequency assignment problem
 ■ Instance: CELAR6-sub4
 □ #var: 22, #val: 44, Optimum: 3230
 ■ Solver: toolbar with default options
 ■ UB initialized to 100000 → 10 hours
 ■ UB initialized to 3230 → 3 hours
 ■ Local search can find the optimum in a few minutes

Overview

Introduction and definitions

- Why soft constraints and dedicated algorithms?
- Generic and specific models

Solving soft constraint problems

- By search (systematic and local)
- By complete inference... and search
- By incomplete inference... and search
- Existing implementations

Variable elimination (aka bucket elimination)

- Solves the problem by a sequence of problem transformations
- Each step yields an equivalent problem with one less variable
- When all variables have been eliminated, the problem is solved
- Optimal solutions of the original problem can be recomputed

Variable elimination

- □ Select a variable X_i
- Compute the set K_i of constraints that involves this variable
- □ Add Elim (⊕ $_{c \in K_i} c, X_1$) □ Remove variable and K_i
- □ Time: Θ(exp(deg_i+1))
 □ Space: Θ(exp(deg_i))

Variable elimination

- <u>Time</u>: exponential in the size of the largest combination performed (1+induced width)
- Space: similar !

□ Infeasible as a general method...

Boosting search with variable elimination: BB-VE(k)

At each node

Select an unassigned variable X_i

- If deg_i ≤ k then eliminate X_i
- Else branch on the values of X_i

Properties BE-VE(-1) is BB BE-VE(w*) is VE BE-VE(1) is like cycle-cutset

Boosting search with variable elimination

□ Ex: still-life (academic problem)
 ■ Instance: n=14
 □#var:196, #val:2
 ■ Ilog Solver → 5 days
 ■ Variable Elimination → 1 day
 ■ BB-VE(18) → 2 seconds

Overview

Introduction and definitions

- Why soft constraints and dedicated algorithms?
- Generic and specific models

Solving soft constraint problems

- By search (systematic and local)
- By complete inference... and search
- By incomplete inference... and search
- Existing implementations

Local consistency

- Local property enforceable in polynomial time yielding an equivalent and more explicit problem
- □ Massive local (incomplete) inference
- Very useful in classical CSP
 - Node consistency
 - Arc consistency...

Classical arc consistency (binary CSP)

□ for any X_i and c_{ij} • $f=Elim(c_{ij} \oplus c_i \oplus c_j, X_j)$ brings no new information on X_i

Arc consistency and soft constraints

□ for any X_i and c_{ij} • $f=Elim(c_{ij} \oplus c_i \oplus c_j, X_j)$ brings no new information on X_i

A parenthesis... Why min-max (fuzzy) CSP is easy

- □ A new operation on soft constraints:
 - The α-cut of a soft constraint c is the hard constraint c_α that forbids t iff c(t) > α

Can be applied to a whole soft CN

Solving a min-max CSP by slicing

- Let S be the set of all optimal solutions of a min-max CN
- Let β be the maximum α s.t. the α-cut is consistent. Then S is the set of solutions of the β-cut.

Binary search

A min-max (or fuzzy) CN can be solved in O(log(# different costs)) CSP.

Can be used to lift polynomial classes

Back to Weighted CSP and Arc consistency

I for any X_i and c_{ij} f=Elim(c_{ij} ⊕ c_i ⊕ c_j,X_j) brings no new information on X_i

A new operation on soft networks

Projection of c_{ii} on X_i with compensation

- Equivalence preserving transformation
- Requires the existence of a pseudo difference (a⊙ b) ⊕ b = a
- Can be reversed

Node Consistency (NC*)

For all variable *i* $\Box \forall a, C_{\emptyset} + C_i(a) < T$ $\Box \exists a, C_i(a) = 0$

Complexity: O(*nd*)

Arc Consistency (AC*)

■ NC^{*} For all C_{ii} $\Box \forall a \exists b$ $C_{ii}(a,b) = 0$ *b* is a *support* **complexity**: $O(n^2 d^3)$ W

Directional AC (DAC*)

■ NC^{*} ■ For all C_{ij} (*i*<*j*) □ $\forall a \exists b$ $C_{ij}(a,b) + C_j(b) = 0$

b is a *full-support* complexity:
 O(*ed*²)

Full DAC (FDAC*)

NC* For all C_{ij} (*i*<*j*) $\forall a \exists b$ $C_{ij}(a,b) + C_j(b) = 0$ (full support)

 For all C_{ij} (i>j)
 □ ∀a∃ b, C_{ij}(a,b) = 0 (support)
 Complexity: O(end³)

Boosting search with LC

$$BT(X, D, C)$$
if $(X = \emptyset)$ then Top $:= C_{\emptyset}$
else

$$X_{j} := selectVar(X)$$
forall $a \in D_{j} \underline{do}$

$$\forall_{c \in C \text{ s.t. } xj \in var(c)} C := Assgn(C, X_{j}, a)$$

$$C_{\emptyset} := \Sigma_{c \in C \text{ s.t. } var(c)} = \emptyset C$$
if (LC) then $BT(X - \{X_{j}\}, D - \{D_{j}\}, C)$

Boosting Systematic Search with Local consistency

Ex: Frequency assignment problem
 Instance: CELAR6-sub4

#var: 22 , #val: 44 , Optimum: 3230

Solver: toolbar
 MNC*→ 1 year (estimated)
 MFDAC* → 1 hour

Overview

Introduction and definitions

- Why soft constraints and dedicated algorithms?
- Generic and specific models

Solving soft constraint problems

- By search (systematic and local)
- By complete inference... and search
 - By incomplete inference... and search

Existing implementations

Known implementations

- Con'Flex: fuzzy CSP system with integer, symbolic and numerical constraints (www.inra.fr/bia/T/conflex).
- clp(FD,S): semi-ring CLP (*pauillac.inria.fr/.georget/clp_fds/clp_fds.html*).
- LVCSP: Common-Lisp library for Valued CSP with an emphasis on strictly monotonic operators (*ftp.cert.fr/pub/lemaitre/LVCSP*).
- □ **Choco**: a claire library for CSP. Existing layers above Choco implements some WCSP algorithms (*www.choco-constraints.net*).
- toolbar: C library for MaxCSP and related problems (carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro).

carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP