
Graphical Models – Queries, complexity,
algorithms and applications

STACS’2020 tutorial

M.C. Cooper1, S. de Givry2 & T. Schiex2

1 Université Fédérale de Toulouse, ANITI, IRIT, Toulouse, France
2 Université Fédérale de Toulouse, ANITI, INRAE MIAT, UR 875, Toulouse, France

Presented by Thomas Schiex

https://doi.org/10.4230/LIPIcs.STACS.2020.4

https://doi.org/10.4230/LIPIcs.STACS.2020.4


Presentation Outline

1 Introduction
Notations, Definitions
Some fundamental properties

2 �eries

3 Algorithms

4 Hybrid algorithms

5 Some extra complexity results

6 Solvers and applications

1 64



What is a graphical model?

Informally

A description of a multivariate function as the combination of a set of simple functions.

Propositional logic (CNF aka Conjunctive Normal Form)

A Boolean function of Boolean variables described as the conjunction of disjunction of literals.

Constraint Networks
A Boolean function of discrete variables described as the conjunction of Boolean tensors.

Cost Function Networks
A non negative function of discrete variables described as the sum of non negative tensors.

Discrete Markov Random Fields
A non negative function of discrete variables described as the product of non negative tensors.
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What for?

Concisely describing complex systems

Concise: we use a set of small functions.

Complex: the joint function results from the interaction of several small functions.

Example

A digital circuit value of the output

A Sudoku grid solution or not

A schedule or a time-table feasibility, acceptability

A pedigree with genotypes Mendel consistency, probability

A frequency assignment interference amount

A 3D molecule energy, stability
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And then?

Ideally, we would like to

Learn them: from a sample [Par+17; PPW18]

Compute their value: given a variable assignment
Compute simple statistics:
I Minimum/Maximum: optimization
I Average: counting
I . . .

Concise and Complex

Plenty of NP-hard problems.
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Notations

Variables: X,Y, Z, . . ., possibly indexed as Xi or just i.

Domains: DX for variable X , or Di for variable Xi.

Values: a, b, c, g, r, t, 1 . . .

Unknown values: u, v, w, x, y, z . . . .

Sequence of variables: X,Y ,Z, . . .

Sequence of values: acgtgcatggagccacgtcaggta

Unknown sequence of values: u,v,w,x,y, z . . ..

Domain of a sequence of variables X : DX (Cartesian product of the domains).

Assignment uX : an element of DX . Defines an assignment for all the variables in X .

uX [Y ] (or uY ): projection of uX on Y ⊆X (the sequence of values of Y in uX ).
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A definition parameterized by B and
⊕

Definition (Graphical Model (GM))

A GMM = 〈V ,Φ〉 with co-domain B and combination operator ⊕ is defined by:

a sequence of n variables V , each with an associated finite domain of size less than d.

a set Φ of e functions (or factors).

Each function ϕS ∈ Φ is a function from DS → B. S is called the scope of the function
and |S| its arity.

Definition (Joint function)

M defines a joint function:
ΦM(v) =

⊕
ϕS∈Φ

ϕS(v[S])
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A bit more on B and
⊕

B

B is assumed to be totally ordered by ≺.

With a minimum element 0 and a maximum element denoted as >.⊕
Associative, commutative, monotonic. (α � β ⇒ (α⊕ γ) � (β ⊕ γ))

0 as an identity. (α⊕ 0 = α)

> as an absorbing element. (α⊕> = >)

Optional

Idempotency. (α⊕ α = α)

Fairness. (∀β 4 α,∃γ s.t. (β ⊕ γ) = α)

Denoted as γ = (α	 β) (β ⊕ (α	 β) = α)
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Valuation structures [SFV95; CS04]

Structure (GM) B a⊕ b ≺ 0 > Idemp. a	 b
Boolean {t, f} a ∧ b t<f t f yes a

Possibilistic [0, 1] max(a, b) < 0 1 yes max(a, b)

Additive N̄ a+ b < 0 +∞ no a− b
Weighted {0,1, . . . , k} min(k, a+b) < 0 k no (a=k ? k : a−b)
Probabilistic [0, 1] a× b > 1 0 no a/b

Fair countable structures exhaustively analyzed [CS04; Coo05]

Stack of additive/weighted structures

Interacting as idempotent structures
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Language matters. . .

How are functions ϕS ∈ Φ represented?

Default: as tensors over B. (multidimensional tables)

Boolean vars: (weighted) clauses. (disjunction of literals: variables or their negation)

Using a specific language, subset of all tensors or clauses or dedicated (All-Different).

This influences complexities

We assume a constant time ⊕ and constant space representation of elements of B.

We mostly use tensors (universal): ϕS represented in space O(d|S|).
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What does this cover?

A variety of well-studied frameworks

Propositional Logic (PL): Boolean domains and co-domain, conjunction of clauses

Constraint Networks (CN): Finite domains, Boolean co-domain, conjunction of tensors

Cost Function Networks (CFN): Finite domains, numerical co-domain, sum of tensors.

Markov Random Fields (MRF): Finite domains, R+ as co-domain, product of tensors.

Bayesian Networks (BN): MRF + normalized functions and scopes following a DAG.

Generalized Additive Independence [BG95], Weighted PL, QPBO [BH02], ILP. . .

Excluded

Gaussian Graphical Models or Linear Programming.

Totally ordered B excludes e.g. Ceteris Paribus networks (CP-nets [Dom+03])
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Equivalence, relaxation

Definition (Equivalence)

Two graphical modelsM = 〈V ,Φ〉 andM′ = 〈V ,Φ′〉, with the same variables and
valuation structure are equivalent i� they define the same joint function:

∀v ∈ DV ,ΦM(v) = ΦM′(v)

Definition (Relaxation)

Given two graphical modelsM = 〈V ,Φ〉 andM′ = 〈V ,Φ′〉, with the same variables and
valuation structure,M is a relaxation ofM′ i�

∀v ∈ DV ,ΦM(v) 4 ΦM′(v)
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The graphs of Graphical Models

Definition ((Hyper)graph ofM = 〈V ,Φ〉)
One vertex per variable, one (hyper)edge per scope S of function ϕS ∈ Φ.

Definition (Factor graph ofM = 〈V ,Φ〉)
The bi-partite incidence graph of the hypergraph above. One vertex per variable or function,
an edge connects the vertex ϕs to all variables in S.

Definition (Primal/Moral graph ofM = 〈V ,Φ〉)
The 2-section of its hypergraph.

Definition (Micro-structure graph ofM = 〈V ,Φ〉)
Weighted n-partite graph with one vertex per value and a weighted hyper-edge on s ∈ DS

for every ϕS ∈ Φ and s such that ϕS(s) 6= 0.
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Focus on “Cost Function Networks”

CFNM = 〈V ,Φ〉, parameterized by k = >
M defines a non negative joint function ΦM = min(

∑
ϕS∈Φ

ϕS , k)

Flexible

k = 1 same as Constraint Networks

k =∞ same as GAI, − log() transform of MRFs

k finite k is a known upper bound

ϕ∅ is a naive lower bound on the minimum cost
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Queries

Optimization queries

SAT/PL: is the minimum of ΦM = t ?

CSP/CN: is the minimum of ΦM = t ?

WCSP/CFN: is the minimum of ΦM ≺ α ?

MAP/MRF: is the minimum of ΦM ≺ α ?

MPE/BN: is the minimum of ΦM ≺ α ?

Counting queries

#-SAT/PL: how many assignments satisfy ΦM = t ?

MAR/MRF: compute Z =
∑

(ΦM) or PM(X = u) where X ∈ V

MAR/BN: compute PM(X = u) where X ∈ V
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A Generic Form of Query

Using
⊗

as a marginalization or elimination operator

⊗
v∈DV

[
⊕

ϕS∈Φ
(ϕS(v[S]))

]
⊗ associative, commutative, distributive α⊕ (β ⊗ γ) = (α⊕ β)⊗ (α⊕ γ)

Axioms for dynamic programming

Proposed in similar forms a number of times [BMR97; AM00; KW08; KMP00; GM08], possibly first by
Shafer and Shenoy [Sha91].
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Examples with Graph G = (V ,E)

WCSP/CFN with one variable Xi per vertex i

Min-Cut: Di = {l, r}, Ds = {l}, Dt = {r} ∀(i, j) ∈ E, ϕij = 1(Xi 6= Xj)

Max-Cut: same ϕij = 1(Xi = Xj)

Vertex Cover: Di = {a, r} ∀i, ϕi = 1(Xi = a),∀(i, j) ∈ E, ϕij = >(Xi = Xj = r)

Max-Clique: Di = {a, r} ∀i, ϕi = 1(Xi = r),∀(i, j) 6∈ E, ϕij = >(Xi = Xj = a)

3-coloring: Di = {r, g, b} ∀(i, j) ∈ E, ϕij = >(Xi = Xj)

Min-Sum 3-coloring: Di = {1, 2, 3} ∀i, ϕi(u) = u,∀(i, j) ∈ E, ϕij = >(Xi = Xj)

. . .
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Example: MinCUT with hard and weighted edges

Graph G = (V,E) with edge weight function w

A boolean variable xi per vertex i ∈ V
A cost function wij = w(i, j)× 1[xi 6= xj ] per edge (i, j) ∈ E
Hard edges: wij = k

vertices {1, 2, 3, 4}
cut weights 1

but edge (1, 2) hard
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toulbar2 input file (github.com/toulbar2/toulbar2)

MinCut on a 3-clique with hard edge

{

problem :{name: MinCut, mustbe: <100.0},

variables:

{x1: [l], x2: [l,r], x3: [l,r], x4: [r]}

functions: {

cut12:

{scope: [x1,x2], costs: [0.0, 100.0, 100.0, 0.0]},

cut13:

{scope: [x1,x3], costs: [0.0,1.0,1.0,0.0]},

cut23:

{scope: [x2,x3], costs: [0.0,1.0,1.0,0.0]}

...

}
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Binary CFN as 01LP (finite costs))

The so called “local polytope” [Sch76; Kos99; Wer07] (w/o last line)

Function
∑
i,a

ϕi(a) · xia+
∑
ϕij∈Φ

a∈Di,b∈Dj

ϕij(a, b) · yiajb such that

∑
a∈Di

xia = 1 ∀i ∈ {1, . . . , n}

∑
b∈Dj

yiajb = xia ∀ϕij ∈ Φ,∀a ∈ Di∑
a∈Di

yiajb = xjb ∀ϕij ∈ Φ,∀b ∈ Dj

xia ∈ {0, 1} ∀i ∈ {1, . . . , n}

nd+ e.d2 variables. n+ 2ed constraints
20 64



Presentation Outline

1 Introduction

2 �eries

3 Algorithms
Tree search
Non Serial Dynamic Programming
Message Passing
Optimization, Local Consistency

4 Hybrid algorithms

5 Some extra complexity results

6 Solvers and applications

21 64



A toolbox with three tools

Conditioning ϕS by X = a (X ∈ S) Assignment

Let T = S − {X}, this gives ϕT (v) = ϕS(v ∪ {X = a}) Negligible complexity

Combination of ϕS and ϕS′ Join

(ϕS ⊕ ϕS′)(v) = ϕS(v[S])⊕ ϕS′(v[S′]) Space/time O(d|S∪S
′|) for tensors

Elimination of X ∈ S from ϕS Marginalization/Projection

ϕS [−X](u) =
⊗

v∈DX
ϕS(u ∪ v) Time O(d|S|), space O(d|S|−1) for tensors

22 64



A conditioning-based approach

Tree exploration Time O(dn), linear space

If all |DX | = 1,ΦM(v),v ∈ DV is the answer
Else choose X ∈ V s.t. |DX | > 1 and u ∈ DX and reduce to

1. one query where we condition on Xi = u
2. one where u is removed from DX

The result of these queries is combined using ⊗

Optimization (⊗ = min) Branch and Bound

If a lower bound on the current query is � a known upper bound on ΦM. . . Prune!

NB: ϕ∅ is always a lower bound.

Variable ordering

Drastic empirical e�ects on e�iciency.
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Non Serial Dynamic Programming [BB69b; BB69a; BB72; Sha91; Dec99; AM00]

Definition (Message sent by variable X)

Let X ∈ V , and ΦX be the set {ϕS ∈ Φ s.t. X ∈ S}, T , the neighbors of X .

The message mΦX
T from ΦX to T is:

mΦX
T = (

⊕
ϕS∈ΦX

ϕS)[−X] (1)

Eliminating a variable Distributivity

⊗
v∈DV

⊕
ϕS∈Φ

(ϕS(v[S]))

 =
⊗

v∈DV −{X}

 ⊕
ϕS∈Φ−ΦX∪{mΦX

T }

(ϕS(v[S]))
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A graphical representation

X X

message
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Complexity of eliminating one variable

Complexity of one elimination for tensors

Computing mX
T is O(d|T+1|) time, O(d|T |) space |T | is the degree of X

The overall complexity is dominated by the largest degree encountered during elimination

Clauses L,L′ clauses

If ΦX = {(X ∨L), (¬X ∨L′)} mΦX
T is (L ∨L′).

The resolution principle [Rob65] is an e�icient variable elimination process [DR94; DP60].
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Complexity of eliminating all variables

Dimension induced/tree-width

Dimension of an elimination order for G Largest set |T | encountered
Dimension of G minimum Dimension over all orders

Introduced in 1969 by Bertelé and Brioschi [BB69b; BB69a] (cited 19 and 31 times on GS)
Proved to be equivalent to tree-width by Bodlaender [Bod98].

The secondary optimization problem Min degree, Minfill, MCS [Ros70]

Finding an optimal order is NP-hard, but useful heuristics exist [BK08].

Tractability

First tractable class for our general query: GMs with bounded tree-width.
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Message passing on trees

Computing marginals Stochastic Graphical Models

We want P (X),∀X ∈ V Counting

One variable Xi

Root in Xi and eliminate all variables but Xi, from leaves.

The elimination of Xi produces a message mi
j involving just Xj .

All variables Variables preserved, time & space O(ed2)

Messages are kept as auxiliary functions.

When a variable Xi has received messages from all its neighbors but one (Xj)

Send message mi
j to Xj

mi
j = ⊗

Xi

(ϕi⊕ϕij ⊕
Xo∈neigh(Xi),o 6=j

mo
i ) (2)
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Figure 1: Message passing on a tree, a possible message schedule
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The cyclic case - Another exact approach

The exact approach

Find a (good) tree decomposition and use the previous
algorithms on the resulting tree.

Properties

Space complexity exponential in the separator size
only θ(ds)

Many variants: block-by-block elimination [BB72],

Cluster/Join tree elimination [LS88; DP89],. . .
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The cyclic case - The heuristic approach

The heuristic approach

Starting from e.g., empty messages, apply the message passing equation (2)

mi
j = ⊗

Xi

(ϕi⊕ϕij ⊕
Xo∈neigh(Xi),o 6=j

mo
i )

on each function until quiescence or maximum number of iterations (synchronous or
asynchronous update schemes exist).

Loopy Belief Propagation [Pea88]

At the core of Turbo-decoding [BGT93], implemented in all cell phones.

Widely studied [YFW01], but known to not always converge.

O�en denoted as the "max-sum/min-sum/sum-prod" algorithm.
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Optimization (⊗ = min) over idempotent-⊕

Assume ⊕ is idempotent

IfM = 〈V ,Φ〉 is a relaxation ofM′ = 〈V ,Φ′〉 thenM′′ = 〈V ,Φ ∪Φ′〉 is equivalent toM′.

Property

If ⊗ = min, any message mX
T computed by elimination is a relaxation of ΦX and hence of

M.

Equivalence preserving messages

min−max messages can be directly added to the processed graphical model

This preserves the joint function (equivalence, so for counting too)

Applies to Boolean, possibilistic and fuzzy structures
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Guaranteed algorithms revisited

Variable elimination/ Resolution based

Using variable elimination messages: David and Putnam algorithm [DP60] aka Directional
Resolution [DR94].

Using all possible messages: saturation by Resolution [Rob65].
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Idempotent-⊕ + Loopy BP = local consistency

Definition (Arc consistency (closure property))

A graphical modelM = 〈V ,Φ〉 with idempotent ⊕ is arc-consistent i� every variable
X ∈ V is arc consistent w.r.t. every function ϕS s.t. X ∈ S.

A variable Xi is arc-consistent w.r.t. a function ϕij i� the message mj
i is a relaxation of ϕi.

Arc consistency (filtering)

A graphical modelM = 〈V ,Φ〉 with idempotent ⊕ can be transformed in polynomial time
in a unique equivalent arc consistent graphical model.
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Local consistency

Local consistency provides an incremental lower bound on consistency

If the equivalent Arc Consistent graphical model has an empty domain (∀a ∈ Di, ϕi(a) = >),
then it is infeasible/inconsistent.

Arc consistency filtering is achieved by Loopy BP

AC-3 [Mac77] is time O(ed3), space O(ed),

AC-4 [MH86] is time O(ed2), space O(ed2),

AC-6 [Bes94] is O(ed2), space O(ed),

AC2001/3.1 [BR01; ZY01], also optimal, empirically faster and far simpler to implement.
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Non idempotent ⊕ case

Obvious issue
Without idempotency, messages can not be included in the graphical model without loosing
equivalence, hence practical significance.

Equivalence Preserving Transformations with 	

Consider a set of functions Ψ ⊂ Φ and the message mΨ
Y

Replace Ψ by ((⊕ϕS∈Ψ ϕS)	mΨ
Y ) and mΨ

Y

Any relaxation of mΨ
Y can be used instead.

Scope preserving EPTs for tensors Not for clauses!

If Ψ contains at most one non unary function and |Y | = 1 (MRFs: reparametrizations).
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A small example that may increase ϕ∅

m2
1 m1

2

← →

X1 X2

→ ←
−m2

1 −m1
2⇓ m1

∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or not guaranteed to exist for some
Ψ/Y configurations).
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Complexity results

Sequence of integer EPTs

Computing a sequence of integer EPTs that maximizes ϕ∅ is decision NP-complete [CS04].

Set of rational EPTs (OSAC [Sch76; Coo07; Wer07])

Computing a set of rational EPTs maximizing ϕ∅ is in P, solvable by Linear Prog. + AC.

Essentially reduces to solving the dual of the local polytope (+ managing constraints with AC).

Universality of the Local Polytope [PW15]

Any (reasonable) LP can be reduced in linear time to a graphical model whose local polytope
has the same optimum as the LP (constructive proof).
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Non idempotent ⊕ case

OSAC: associated polynomial classes Empirically slow

Tree-structured problems

Submodular problems

Definition (Submodular function over ordered domains)

ϕS submodular if ∀u,v ∈ DS , ϕS(min(u,v)) + ϕS(max(u,v)) ≤ ϕS(u) + ϕ(v)
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Connecting non idempotent and idempotent ⊕ GMs

Definition (Bool(ϕS)[Coo+08; Coo+10])

Bool(ϕS)(u) is 0 i� ϕS(u) = 0.

Definition (Bool(M)[Coo+08; Coo+10])

Given a weighted GM (CFN)M = 〈V ,Φ〉, the constraint network

Bool(M) = 〈V , {Bool(ϕS) such that |S| > 0})

Definition (Virtual Arc Consistency (VAC)[Coo+08])

A weighted GMM = 〈V ,Φ〉 is Virtual Arc Consistent i� enforcing AC on Bool(M) does
not prove inconsistency.
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Enforcing VAC

Algorithm loop sketch O(ed2k/ε)

Enforce AC on Bool(M)

If not proved inconsistent, done

Extract a minimal set of messages proving inconsistency

Apply these as EPTs onM (with suitable costs)

This is guaranteed to increase ϕ∅

Related work

Convergent MP in MRFs (same family of fixpoints) [Kol06; Kol15]

Reduces to MaxFlow in the Boolean variable case

Produces the roof-dual lower bound of QPBO [BH02]
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Maintaining LC during Branch and Bound

Combines Time O(exp(n))

Branch and Bound (aka Backtrack in the Boolean case)

Incremental Local Consistency enforcing at each node (lower bound)

Variable (and value) ordering heuristics

Crucial for empirical e�iciency

Are now adaptive (learned while searching) [Mos+01; Bou+04]

Li�le theory if any.
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Maintaining LC During Branch and Bound

Additional ingredients

Search strategies: Best/Depth First [All+15], restarts [GSC97]

Stronger preprocessing at the root node

Dominance analysis [Fre91; DPO13; All+14], . . .

Learning from conflicts (Boolean) [Bie+09]

Extracts an informative relaxation at dead-ends using resolution (non serial DP).
Led to CDCL solvers, obsoleted DPLL (Davis, Putnam, Logemann, Loveland [DLL62]).

The power of learning [AFT11; JP12]

A randomized CDCL solver can decide the consistency of any pairwise CN instance with
treewidth w with O(n2wd2w) restarts.
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Combining tree-search and structure aware algorithms

Pseudo-tree [Fre85; Sch99]

A pseudo-tree arrangement of a graph G is a rooted tree with the same vertices as G and the
property that adjacent vertices in G reside in the same branch of the tree.
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Combining best empirical and best worst-case

Pseudo-tree search [Fre85]

Solve using tree search, assigning variables from the root of the pseudo tree downwards.

Split resolution when several connected components appear

space e�icient, time O(exp(h))

Pseudo-tree height h [Fre85; Sch99] ≡ tree-depth [ND06]

The pseudo-tree height of G is the minimum, over all pseudo-tree arrangements of G of the
height of the pseudo-tree arrangement.

46 64



Combining best empirical and best worst-case

Pruning using lower bounds

AND/OR search uses mini-buckets [MD05]

BTD uses Arc Consistency [JT03] hyper-treewidth for free [JNT08]

Caching subproblem optima (same separator assignment) time O(exp(w))

AND/OR graph search [MD09]

Backtrack with tree decompositions (BTD) [JT03; TJ03]

A di�icult marriage

Tree-decompositions constrain the variable ordering

Variable ordering heuristics crucial for tree search

47 64



Presentation Outline

1 Introduction

2 �eries

3 Algorithms

4 Hybrid algorithms

5 Some extra complexity results

6 Solvers and applications

48 64



More complexity

Languages

Boolean: A P/NP-complete dichotomy for the CSP [Bul17; Zhu17]

Additive: the CSP dichotomy implies dichotomy for the additive case [KKR17].

Submodularity: min and max can be replaced by any commutative, conservative
functions [CCJ08].

Finite costs: tight connection with LP [TZ16].

Hybrid tractable class Joint Winner Property

A binary CFN satisfies the JWP i� for any three variable-value assignment, the multi-set of
pairwise costs has not a unique minimum. Related to M-convex functions [TZ16].
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Solvers and applications areas

No universal exact solver
SAT solvers: verification1, planification, diagnosis, theorem proving,. . .

2017: proving an “alien” theorem? ∞
When one splits N in 2, one part must contain a Pythagorean triple (a2 = b2 + c2)

No known proof, puzzled mathematicians for decades (one o�ered a 100 $ reward)

SAT solver proof[HKM16; Lam16]

200TB proof, compressed to 86GB (stronger proof system)2

1Small neural nets too.
2Oliver Kullmann. “The Science of Brute Force”. In: Communications of the ACM (2017).
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A finitized Gödelian flavor (K. Gödel, 1931)

Whether it’s maths or not. . . Size ma�ers!

Not only there exists true unprovable statements (in
powerful enough consistent sets of axioms[Göd31])

There may be true provable statements we will never
be able to prove because of their extremely long
proofs[Kul17]
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The result of a lot of empirical choices

A lot of free data and free code. . .

International competitions (> 50, 000 benchmarks with
many real problems)

Open source solvers (autocatalytic)
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Similar progresses in other “Graphical Model” solvers

Di�erent application areas

CP solvers: resource management in time and or space (eg. scheduling)

MRFs: image processing (huge problems: heuristics or primal/dual approaches,
OpenGM2 [And+10], graph-cuts)

CFNs: NLP, Computational biology, music composition, resource management
(toulbar2 [Hur+16])

Kind words from OpenGM2 developpers

“ToulBar2 variants were superior to CPLEX variants in all our tests”[HSS18]
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Proteins

Most active molecules of life
Sequence of amino acids, 20 natural ones each defined by a specific flexible side-chain

Folding

→ → Function

Transporter, binder/regulator, motor, catalyst. . .
Hemoglobine, TAL e�ector, ATPase, dehydrogenases. . .
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Protein Design

Most active molecules of life
Sequence of amino acids, 20 natural ones each defined by a specific flexible side-chain

Inverse folding

Function → →

Transporter, binder/regulator, motor, catalyst. . .
Hemoglobine, TAL e�ector, ATPase, dehydrogenases. . .
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Why is it worth designing new proteins?

Eco-friendly chemical/structural nano-agents

Biodegradable (have been mass produced for billions of year)

“Easy” to produce (transformed E. coli)

Useful for health, green chemistry[Röt+08] (biofuels, plastic recycling, food and feed,
cosmetics. . . ), nanotechnologies[Nog+19]. . .

20n sequences! intractable for experimental techniques
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Protein Design as a discrete optimisation problem

Molecular modeling

Full atom model of a protein backbone (assumed to be rigid)

Catalog of all side-chains in di�erent conformations (≈ 400 overall)

Sequence-conformation space: 400n (or more)

Approximate decomposable energy function (intermolecular force field)
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Finding sequences with low energy conformations

Central problem (plenty of tricky/harder variants)

Maximum stability ≡Minimum energy NP-hard[PW02]

As a Cost Function Network[Tra+13; All+14]

One variable per position in the protein sequence

Domain: catalog of a few hundred amino acids conformations

Functions: decomposed energy (pairwise terms)

Treewidth may be less than n (depends on the protein shape)

Empirically, functions are not permutated submodular

58 64



Finding sequences with low energy conformations

Central problem (plenty of tricky/harder variants)

Maximum stability ≡Minimum energy NP-hard[PW02]

As a Cost Function Network[Tra+13; All+14]

One variable per position in the protein sequence

Domain: catalog of a few hundred amino acids conformations

Functions: decomposed energy (pairwise terms)

Treewidth may be less than n (depends on the protein shape)

Empirically, functions are not permutated submodular

58 64



Toulbar2 vs. CPLEX, MaxHS. . . (real instances)

# of instances solved (X) within a per instance cpu-time limit (Y )
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VAC vs. LP on Protein design problems

CPLEX V12.4.0.0

Problem '3e4h.LP' read.

Root relaxation solution time = 811.28 sec.

...

MIP - Integer optimal solution: Objective = 150023297067

Solution time = 864.39 sec.

tb2 and VAC (AC3 based)

loading CFN file: 3e4h.wcsp

Lb after VAC: 150023297067

Preprocessing time: 9.13 seconds.

Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.

Could this be useful for ILP?
Reversing Prusa-Werner construction somehow?
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Comparison with Rosetta’s Simulated annealing [Sim+15]

Optimality gap of the Simulated annealing solution as problems get harder
Asymptotic convergence, close to infinity is arbitrarily far
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DWave, Simulated annealing, Toulbar2

Exact vs. heuristic solvers [Mul+19]

DWave within 1.16 kcal/mol of the optimum 10% of the time, 4.35 kcal/mol 50% of the time,
8.45 kcal/mol 90% of the time.
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From bits to atoms (col. A. Voet, KU Leuven, D. Simoncini, INRA/INSA)

C8 pseudo-symetric 2OVP symmetrized into a nano-component

Tako: (R)evolution + Rose�a/talaris14 8 fold

Ika: toulbar2 + talaris14 4 fold
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Ika more stable than Tako and can self assemble

Compares Tako and Ika structural stability as temperature increases
(circular dichroism)

64 / 64



Thank You!
Questions?



Albert Atserias, Andrei Bulatov, and Victor Dalmau. “On the power of
k-consistency”. In: International Colloquium on Automata, Languages, and
Programming. Springer. 2007, pp. 279–290.

Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. “Clause-learning
algorithms with many restarts and bounded-width resolution”. In: Journal of
Artificial Intelligence Research 40 (2011), pp. 353–373.

David Allouche et al. “Computational protein design as an optimization
problem”. In: Artificial Intelligence 212 (2014), pp. 59–79.

David Allouche et al. “Anytime Hybrid Best-First Search with Tree
Decomposition for Weighted CSP”. In: Principles and Practice of Constraint
Programming. Springer. 2015, pp. 12–29.

Srinivas M Aji and Robert J McEliece. “The generalized distributive law”. In: IEEE
transactions on Information Theory 46.2 (2000), pp. 325–343.

Björn Andres et al. “An empirical comparison of inference algorithms for
graphical models with higher order factors using OpenGM”. In: Joint Pa�ern
Recognition Symposium. Springer. 2010, pp. 353–362.

Umberto Bertele and Francesco Brioschi. “A new algorithm for the solution of
the secondary optimization problem in non-serial dynamic programming”. In:
Journal of Mathematical Analysis and Applications 27.3 (1969), pp. 565–574.

64 / 64



Umberto Bertele and Francesco Brioschi. “Contribution to nonserial dynamic
programming”. In: Journal of Mathematical Analysis and Applications 28.2 (1969),
pp. 313–325.

Umberto Bertelé and Francesco Brioshi. Nonserial Dynamic Programming.
Academic Press, 1972.

Christian Bessière. “Arc-Consistency and Arc-Consistency Again”. In: Artificial
Intelligence 65 (1994), pp. 179–190.

Fahiem Bacchus and Adam Grove. “Graphical models for preference and utility”.
In: Proceedings of the Eleventh conference on Uncertainty in artificial intelligence.
Morgan Kaufmann Publishers Inc. 1995, pp. 3–10.

Claude Berrou, Alain Glavieux, and Punya Thitimajshima. “Near Shannon limit
error-correcting coding and decoding: Turbo-codes. 1”. In: Proceedings of
ICC’93-IEEE International Conference on Communications. Vol. 2. IEEE. 1993,
pp. 1064–1070.

E. Boros and P. Hammer. “Pseudo-Boolean Optimization”. In: Discrete Appl.
Math. 123 (2002), pp. 155–225.

64 / 64



Armin Biere et al. “Conflict-driven clause learning sat solvers”. In: Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Applications (2009),
pp. 131–153.

H L Bodlaender and A M C A Koster. Treewidth Computations I. Upper Bounds.
Tech. rep. UU-CS-2008-032. Utrecht, The Netherlands: Utrecht University,
Department of Information and Computing Sciences, Sept. 2008. url: http:
//www.cs.uu.nl/research/techreps/repo/CS-2008/2008-032.pdf.

Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. “Semiring-based
constraint satisfaction and optimization”. In: Journal of the ACM (JACM) 44.2
(1997), pp. 201–236.

Hans L Bodlaender. “A partial k-arboretum of graphs with bounded treewidth”.
In: Theoretical computer science 209.1-2 (1998), pp. 1–45.

Frédéric Boussemart et al. “Boosting systematic search by weighting
constraints”. In: ECAI. Vol. 16. 2004, p. 146.

C. Bessière and J-C. Régin. “Refining the basic constraint propagation
algorithm”. In: Proc. IJCAI’2001. 2001, pp. 309–315.

64 / 64

http://www.cs.uu.nl/research/techreps/repo/CS-2008/2008-032.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-2008/2008-032.pdf


Andrei A. Bulatov. “A Dichotomy Theorem for Nonuniform CSPs”. In: 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017. Ed. by Chris Umans. IEEE Computer Society, 2017,
pp. 319–330. isbn: 978-1-5386-3464-6. doi: 10.1109/FOCS.2017.37. url:
https://doi.org/10.1109/FOCS.2017.37.

David A. Cohen, Martin C. Cooper, and Peter Jeavons. “Generalising
submodularity and Horn clauses: Tractable optimization problems defined by
tournament pair multimorphisms”. In: Theor. Comput. Sci. 401.1-3 (2008),
pp. 36–51. doi: 10.1016/j.tcs.2008.03.015. url:
https://doi.org/10.1016/j.tcs.2008.03.015.

Martin C Cooper et al. “Virtual Arc Consistency for Weighted CSP”. In: AAAI.
Vol. 8. 2008, pp. 253–258.

M. Cooper et al. “So� arc consistency revisited”. In: Artificial Intelligence 174
(2010), pp. 449–478.

M C. Cooper. “High-Order Consistency in Valued Constraint Satisfaction”. In:
Constraints 10 (2005), pp. 283–305.

M C. Cooper. “On the minimization of locally-defined submodular functions”. In:
Constraints (2007). To appear.

64 / 64

https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1016/j.tcs.2008.03.015
https://doi.org/10.1016/j.tcs.2008.03.015


M C. Cooper. “An Optimal k-Consistency Algorithm”. In: Artificial Intelligence 41
(1989), pp. 89–95.

M C. Cooper and T. Schiex. “Arc consistency for so� constraints”. In: Artificial
Intelligence 154.1-2 (2004), pp. 199–227.

Rina Dechter. “Bucket Elimination: A Unifying Framework for Reasoning”. In:
Artificial Intelligence 113.1–2 (1999), pp. 41–85.

Martin Davis, George Logemann, and Donald Loveland. “A machine program for
theorem-proving”. In: Communications of the ACM 5.7 (1962), pp. 394–397.

C. Domshlak et al. “Reasoning about so� constraints and conditional
preferences: complexity results and approximation techniques”. In: Proc. of the
18th IJCAI. Acapulco, Mexico, 2003, pp. 215–220.

Martin Davis and Hilary Putnam. “A computing procedure for quantification
theory”. In: Journal of the ACM (JACM) 7.3 (1960), pp. 201–215.

Rina Dechter and Judea Pearl. “Tree Clustering for Constraint Networks”. In: AI
38 (1989), pp. 353–366.

Simon De Givry, Steven D Prestwich, and Barry O’Sullivan. “Dead-end
elimination for weighted CSP”. In: Principles and Practice of Constraint
Programming. Springer. 2013, pp. 263–272.

64 / 64



Rina Dechter and Irina Rish. “Directional resolution: The Davis-Putnam
procedure, revisited”. In: KR 94 (1994), pp. 134–145.

Eugene C. Freuder. “A su�icient Condition for Backtrack-Bounded Search”. In:
Journal of the ACM 32.14 (1985), pp. 755–761.

Eugene C. Freuder. “Eliminating Interchangeable Values in Constraint
Satisfaction Problems”. In: Proc. of AAAI’91. Anaheim, CA, 1991, pp. 227–233.

Michel Gondran and Michel Minoux. Graphs, dioids and semirings: new models
and algorithms. Vol. 41. Springer Science & Business Media, 2008.

Kurt Gödel. “Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I”. In: Monatshe�e für mathematik und physik 38.1 (1931),
pp. 173–198.

Carla P Gomes, Bart Selman, and Nuno Crato. “Heavy-tailed distributions in
combinatorial search”. In: International Conference on Principles and Practice of
Constraint Programming. Springer. 1997, pp. 121–135.

Marijn JH Heule, Oliver Kullmann, and Victor W Marek. “Solving and verifying
the boolean pythagorean triples problem via cube-and-conquer”. In:
International Conference on Theory and Applications of Satisfiability Testing.
Springer. 2016, pp. 228–245.

64 / 64



Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. “Exact MAP-Inference
by Confining Combinatorial Search with LP Relaxation”. In: Thirty-Second AAAI
Conference on Artificial Intelligence. 2018.

Barry Hurley et al. “Multi-language evaluation of exact solvers in graphical
model discrete optimization”. In: Constraints (2016), pp. 1–22.

Philippe Jégou, Samba Ndojh Ndiaye, and Cyril Terrioux. “A new Evaluation of
Forward Checking and its Consequences on E�iciency of Tools for
Decomposition of CSPs”. In: 2008 20th IEEE International Conference on Tools
with Artificial Intelligence. Vol. 1. IEEE. 2008, pp. 486–490.

Peter Jeavons and Justyna Petke. “Local consistency and SAT-solvers”. In: Journal
of Artificial Intelligence Research 43 (2012), pp. 329–351.

Philippe Jégou and Cyril Terrioux. “Hybrid backtracking bounded by
tree-decomposition of constraint networks”. In: Artificial Intelligence 146.1 (2003),
pp. 43–75.

Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. “The Complexity
of General-Valued CSPs”. In: SIAM J. Comput. 46.3 (2017), pp. 1087–1110. doi:
10.1137/16M1091836. url: https://doi.org/10.1137/16M1091836.

64 / 64

https://doi.org/10.1137/16M1091836
https://doi.org/10.1137/16M1091836


E.P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Kluwer Academic
Publishers, 2000.

Vladimir Kolmogorov. “Convergent tree-reweighted message passing for energy
minimization”. In: Pa�ern Analysis and Machine Intelligence, IEEE Transactions on
28.10 (2006), pp. 1568–1583.

Vladimir Kolmogorov. “A new look at reweighted message passing”. In: Pa�ern
Analysis and Machine Intelligence, IEEE Transactions on 37.5 (2015), pp. 919–930.

A M C A. Koster. “Frequency assignment: Models and Algorithms”. Available at
www.zib.de/koster/thesis.html. PhD thesis. The Netherlands: University of
Maastricht, Nov. 1999.

Oliver Kullmann. “The Science of Brute Force”. In: Communications of the ACM
(2017).

Juerg Kohlas and Nic Wilson. “Semiring induced valuation algebras: Exact and
approximate local computation algorithms”. In: Artificial Intelligence 172.11
(2008), pp. 1360–1399.

Evelyn Lamb. “Maths proof smashes size record: supercomputer produces a
200-terabyte proof–but is it really mathematics?” In: Nature 534.7605 (2016),
pp. 17–19.

64 / 64



S.L. Lauritzen and D.J. Spiegelhalter. “Local computations with probabilities on
graphical structures and their application to expert systems”. In: Journal of the
Royal Statistical Society – Series B 50 (1988), pp. 157–224.

A. K. Mackworth. “Consistency in networks of relations”. In: Artificial
Intelligence 8 (1977), pp. 99–118.

R. Marinescu and R. Dechter. “AND/OR branch-and-bound for graphical
models”. In: Proc. of the 19th IJCAI. Edinburgh, Scotland, 2005, p. 224.

Radu Marinescu and Rina Dechter. “Memory intensive AND/OR search for
combinatorial optimization in graphical models”. In: Artificial Intelligence
173.16-17 (2009), pp. 1492–1524.

R. Mohr and T.C. Henderson. “Arc and Path Consistency Revisited”. In: Artificial
Intelligence 28.2 (1986), pp. 225–233.

Ma�hew W Moskewicz et al. “Cha�: Engineering an e�icient SAT solver”. In:
Proceedings of the 38th annual Design Automation Conference. ACM. 2001,
pp. 530–535.

Vikram Khipple Mulligan et al. “Designing Peptides on a �antum Computer”.
In: bioRxiv (2019), p. 752485.

64 / 64



Jaroslav Nešetřil and Patrice Ossona De Mendez. “Tree-depth, subgraph coloring
and homomorphism bounds”. In: European Journal of Combinatorics 27.6 (2006),
pp. 1022–1041.

Hiroki Noguchi et al. “Computational design of symmetrical eight-bladed
β-propeller proteins”. In: IUCrJ 6.1 (2019).

Youngsuk Park et al. “Learning the network structure of heterogeneous data via
pairwise exponential Markov random fields”. In: Proceedings of machine learning
research 54 (2017), p. 1302.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems, Networks of Plausible
Inference. Palo Alto: Morgan Kaufmann, 1988.

Rasmus Palm, Ulrich Paquet, and Ole Winther. “Recurrent relational networks”.
In: Advances in Neural Information Processing Systems. 2018, pp. 3368–3378.

Niles A Pierce and Erik Winfree. “Protein design is NP-hard.”. In: Protein Eng.
15.10 (Oct. 2002), pp. 779–82. issn: 0269-2139. url:
http://www.ncbi.nlm.nih.gov/pubmed/12468711.

Daniel Prusa and Tomas Werner. “Universality of the local marginal polytope”.
In: Pa�ern Analysis and Machine Intelligence, IEEE Transactions on 37.4 (2015),
pp. 898–904.

64 / 64

http://www.ncbi.nlm.nih.gov/pubmed/12468711


J. Alan Robinson. “A machine-oriented logic based on the resolution principle”.
In: Journal of the ACM 12 (1965), pp. 23–44.

D.J. Rose. “Tringulated Graphs and the elimination process”. In: Journal of
Mathematical Analysis and its Applications 32 (1970).

Daniela Röthlisberger et al. “Kemp elimination catalysts by computational
enzyme design.”. In: Nature 453.7192 (May 2008), pp. 190–5. issn: 1476-4687. doi:
10.1038/nature06879. url:
http://www.ncbi.nlm.nih.gov/pubmed/18354394.

M.I. Schlesinger. “Sintaksicheskiy analiz dvumernykh zritelnikh signalov v
usloviyakh pomekh (Syntactic analysis of two-dimensional visual signals in
noisy conditions)”. In: Kibernetika 4 (1976), pp. 113–130.

Thomas Schiex. A note on CSP graph parameters. Tech. rep. Citeseer, 1999.

T. Schiex, H. Fargier, and G. Verfaillie. “Valued Constraint Satisfaction Problems:
hard and easy problems”. In: Proc. of the 14th IJCAI. Montréal, Canada, Aug.
1995, pp. 631–637.

G. Shafer. An Axiomatic Study of Computation in Hypertrees. Working paper 232.
Lawrence: University of Kansas, School of Business, 1991.

64 / 64

https://doi.org/10.1038/nature06879
http://www.ncbi.nlm.nih.gov/pubmed/18354394


David Simoncini et al. “Guaranteed Discrete Energy Optimization on Large
Protein Design Problems”. In: Journal of Chemical Theory and Computation 11.12
(2015), pp. 5980–5989. doi: 10.1021/acs.jctc.5b00594.

C. Terrioux and P. Jegou. “Bounded backtracking for the valued constraint
satisfaction problems”. In: Proc. of the Ninth International Conference on
Principles and Practice of Constraint Programming (CP-2003). 2003.

Seydou Traoré et al. “A New Framework for Computational Protein Design
through Cost Function Network Optimization”. In: Bioinformatics 29.17 (2013),
pp. 2129–2136.

Johan Thapper and Stanislav Zivny. “The Complexity of Finite-Valued CSPs”. In:
J. ACM 63.4 (2016), 37:1–37:33. doi: 10.1145/2974019. url:
https://doi.org/10.1145/2974019.

Chris Umans, ed. 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017. IEEE Computer
Society, 2017. isbn: 978-1-5386-3464-6. url:
https://ieeexplore.ieee.org/xpl/conhome/8100284/proceeding.

64 / 64

https://doi.org/10.1021/acs.jctc.5b00594
https://doi.org/10.1145/2974019
https://doi.org/10.1145/2974019
https://ieeexplore.ieee.org/xpl/conhome/8100284/proceeding


T. Werner. “A Linear Programming Approach to Max-sum Problem: A Review.”.
In: IEEE Trans. on Pa�ern Recognition and Machine Intelligence 29.7 (July 2007),
pp. 1165–1179. url: http://dx.doi.org/10.1109/TPAMI.2007.1036.

Jonathan S Yedidia, William T Freeman, and Yair Weiss. “Bethe free energy,
Kikuchi approximations, and belief propagation algorithms”. In: Advances in
neural information processing systems 13 (2001).

Dmitriy Zhuk. “A Proof of CSP Dichotomy Conjecture”. In: 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017. Ed. by Chris Umans. IEEE Computer Society, 2017,
pp. 331–342. isbn: 978-1-5386-3464-6. doi: 10.1109/FOCS.2017.38. url:
https://doi.org/10.1109/FOCS.2017.38.

Yuanlin Zhang and Roland HC Yap. “Making AC-3 an optimal algorithm”. In:
IJCAI. Vol. 1. 2001, pp. 316–321.

64 / 64

http://dx.doi.org/10.1109/TPAMI.2007.1036
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1109/FOCS.2017.38

	Introduction
	Notations, Definitions
	Some fundamental properties

	Queries
	Algorithms
	Tree search
	Non Serial Dynamic Programming
	Message Passing
	Optimization, Local Consistency

	Hybrid algorithms
	Some extra complexity results
	Solvers and applications
	References
	References

