
Optimization in Graphical Models
A survey with relations with LP

T. Schiex, MIAT, INRA

M. Cooper, S. de Givry, J. Larrosa, G. Verfaillie
Many more co-workers and contributors, see bibliography

September 2015 - JFRO - Paris

What will we see ?

On the Menu

1 Graphical models

Constraint programming
Cost Function Networks (Weighted CSP or WCP)
Stochastic Graphical Models

2 Solving techniques (tree search and local consistency)

Constraint programming
Stochastic Graphical Models
Cost Function Networks (WCSP/WCP)
Arc consistency, LP and duality

3 A quick list of solver techniques in toulbar2

4 A CFN application: Computational Protein Design

What is C(S)P ?

Solving a Constraint Network

1 Set X 3 xi of n variables, with �nite domain D i (|D i | ≤ d)

2 Set C 3 cS : DS → {0, 1} of e constraints

3 cS has scope S ⊂ X (|S | ≤ r)

4 De�nes a factorized joint constraint over X :

∀t ∈ DX ,C (t) = max
cS∈C

cS(t[S])

Graph coloring/RLFAP-feas

1 A graph G = (V ,E) and m
colors.

2 Can we color all vertices in such
a way that no edge connects two
vertices of the same color ?

x1 x2

x3

What is C(S)P ?

Solving a Constraint Network

1 Set X 3 xi of n variables, with �nite domain D i (|D i | ≤ d)

2 Set C 3 cS : DS → {0, 1} of e constraints

3 cS has scope S ⊂ X (|S | ≤ r)

4 De�nes a factorized joint constraint over X :

∀t ∈ DX ,C (t) = max
cS∈C

cS(t[S])

Graph coloring/RLFAP-feas

1 A graph G = (V ,E) and m
colors.

2 Can we color all vertices in such
a way that no edge connects two
vertices of the same color ?

x1 x2

x3

Constraint networks are graphical models

A CN de�nes...

A factorization (hyper)graph

1 Vertices as variables

2 Scopes/factors as (hyper)edges

Or bipartite incidence graph [KFL01]

x1 x2

x3

Common to all factorization based models

Factorization allows for conciseness

Factorization usually leads to NP-hardness

Factorization allows for �local� processing

Constraint networks are graphical models

A CN de�nes...

A factorization (hyper)graph

1 Vertices as variables

2 Scopes/factors as (hyper)edges

Or bipartite incidence graph [KFL01]

x1 x2

x3

Common to all factorization based models

Factorization allows for conciseness

Factorization usually leads to NP-hardness

Factorization allows for �local� processing

CSP, SAT, CP

Arbitrary concise constraints

Table constraints (bounded scope)

Short list of (non) solutions (arbitrary scopes, SAT clauses)

Global constraints, arbitrary scope S

AllDi�(S) (all di�erent values)

GCC(S , v1, lb1, ub1 . . .). Satis�ed i� the assignment of S
contains between lbi and ubi occurrences of value vi .

Regular(~S ,A): satis�ed i� the tuple of values (word) de�ned
by ~S is accepted by the �nite state automata A.
See the catalog (http://sofdem.github.io/gccat)

not limited to linearity over integers (modeling)

very long list of speci�c constraint types (modeling)

http://sofdem.github.io/gccat

CSP, SAT, CP

Arbitrary concise constraints

Table constraints (bounded scope)

Short list of (non) solutions (arbitrary scopes, SAT clauses)

Global constraints, arbitrary scope S

AllDi�(S) (all di�erent values)

GCC(S , v1, lb1, ub1 . . .). Satis�ed i� the assignment of S
contains between lbi and ubi occurrences of value vi .

Regular(~S ,A): satis�ed i� the tuple of values (word) de�ned
by ~S is accepted by the �nite state automata A.
See the catalog (http://sofdem.github.io/gccat)

not limited to linearity over integers (modeling)

very long list of speci�c constraint types (modeling)

http://sofdem.github.io/gccat

CSP, SAT, CP

Arbitrary concise constraints

Table constraints (bounded scope)

Short list of (non) solutions (arbitrary scopes, SAT clauses)

Global constraints, arbitrary scope S

AllDi�(S) (all di�erent values)

GCC(S , v1, lb1, ub1 . . .). Satis�ed i� the assignment of S
contains between lbi and ubi occurrences of value vi .

Regular(~S ,A): satis�ed i� the tuple of values (word) de�ned
by ~S is accepted by the �nite state automata A.
See the catalog (http://sofdem.github.io/gccat)

not limited to linearity over integers (modeling)

very long list of speci�c constraint types (modeling)

http://sofdem.github.io/gccat

Many applications to real-world problems

Job-Shop scheduling

1 Set of tasks ti with duration di and ressource (xi starting time)

2 Precedence constraints (ti → tj) (xi + di ≤ xj)

3 Deadline ddi for �nal tasks ti (no successors, xi + di ≤ ddi)

4 non sharable ressources (ti before or after tj)

A variety of solvers: GeCode, Choco, AbsCons, JACOP, Mistral,
MiniCSP, IBM Ilog, Cisco Eclipse. Many more global constraints for
speci�c scheduling problems, cumulative resources and also for
other domains.

See CP and CP/AI/OR application papers for more applications.

Many applications to real-world problems

Job-Shop scheduling

1 Set of tasks ti with duration di and ressource (xi starting time)

2 Precedence constraints (ti → tj) (xi + di ≤ xj)

3 Deadline ddi for �nal tasks ti (no successors, xi + di ≤ ddi)

4 non sharable ressources (ti before or after tj)

A variety of solvers: GeCode, Choco, AbsCons, JACOP, Mistral,
MiniCSP, IBM Ilog, Cisco Eclipse. Many more global constraints for
speci�c scheduling problems, cumulative resources and also for
other domains.

See CP and CP/AI/OR application papers for more applications.

CSP/CP targeted at feasibility

Job-Shop scheduling, min average tardiness

1 One extra �local cost� variable per �nal task: lateness li
2 A constraint to de�ne it li = max(0, xi + di − ddi)

3 A global cost variable xgc
4 A global constraint to de�ne it xgc =

∑
li

introduction of extra (non-decision) 'cost' variables

de�ned by suitable constraints (soft globals, sum, rei�ed)

iterative feasibility problems solving

CSP/CP targeted at feasibility

Job-Shop scheduling, min average tardiness

1 One extra �local cost� variable per �nal task: lateness li
2 A constraint to de�ne it li = max(0, xi + di − ddi)

3 A global cost variable xgc
4 A global constraint to de�ne it xgc =

∑
li

introduction of extra (non-decision) 'cost' variables

de�ned by suitable constraints (soft globals, sum, rei�ed)

iterative feasibility problems solving

Lifting CP to optimization

Cost Function Networks aka Weighted Constraint Networks

Variables and domains as usual

Cost functions W 3 cS : DS → {0, . . . , k} (k �nite or not)

Cost combined by (bounded) addition [SFV95; CS04].

cost(t) = min(
∑
cS∈C

cS(t[S]), k)

A solution has cost < k . Optimal if it has minimum cost.

Bene�ts

De�nes feasibility and cost homogeneously

A constraint is a cost function with costs in {0, k}
Tables, analytic (x1 · x3 + x2), globals (WeightedRegular,. . .)

No 'non-decision' variables (unless you want them)

Lifting CP to optimization

Cost Function Networks aka Weighted Constraint Networks

Variables and domains as usual

Cost functions W 3 cS : DS → {0, . . . , k} (k �nite or not)

Cost combined by (bounded) addition [SFV95; CS04].

cost(t) = min(
∑
cS∈C

cS(t[S]), k)

A solution has cost < k . Optimal if it has minimum cost.

Bene�ts

De�nes feasibility and cost homogeneously

A constraint is a cost function with costs in {0, k}
Tables, analytic (x1 · x3 + x2), globals (WeightedRegular,. . .)

No 'non-decision' variables (unless you want them)

Stochastic Graphical Models

Markov Random Fields

Random variables X with discrete domains

joint non normalized probability distribution p(X) de�ned as a
product of positive real-valued functions:

p(X = t) ∝
∏
cS∈C

cS(t[S])

Massively used in 2/3D Image Analysis, Statistical Physics, NLP. . .

For optimization (MAP = Maximum a posteriori), MRF and CFN
are essentially equivalent after a − log transform.

Stochastic Graphical Models

Markov Random Fields

Random variables X with discrete domains

joint non normalized probability distribution p(X) de�ned as a
product of positive real-valued functions:

p(X = t) ∝
∏
cS∈C

cS(t[S])

Massively used in 2/3D Image Analysis, Statistical Physics, NLP. . .

For optimization (MAP = Maximum a posteriori), MRF and CFN
are essentially equivalent after a − log transform.

Stochastic Graphical Models

Bayesian networks

Random variables X and domains

joint normalized probability distribution p(X) as a product of
conditional probability tables de�ned on a DAG.

p(X = t) =
∏

cx|Pa(x)∈C
cx |Pa(x)(t[x]|t[Pa(x)])

Massively used in Uncertain reasoning in AI, many applications,
commercial solvers.

For optimization (MPE, maximum probability explanation), BN and
CFN are essentially essentially equivalent after a − log transform.

CFN solvers directly useful for MAP/MRF and MPE/BN (and
vice-versa).

Stochastic Graphical Models

Bayesian networks

Random variables X and domains

joint normalized probability distribution p(X) as a product of
conditional probability tables de�ned on a DAG.

p(X = t) =
∏

cx|Pa(x)∈C
cx |Pa(x)(t[x]|t[Pa(x)])

Massively used in Uncertain reasoning in AI, many applications,
commercial solvers.

For optimization (MPE, maximum probability explanation), BN and
CFN are essentially essentially equivalent after a − log transform.

CFN solvers directly useful for MAP/MRF and MPE/BN (and
vice-versa).

CFN as ILP/QP

Binary CFN as 01LP (in�nite k , �nite costs)

The MRF/CFN local polytope [Sch76; Kos99; Wer07]

Minimize
∑
i ,a

ci (a) · xia+
∑
cij∈C

a∈Di ,b∈Dj

cij(a, b) · yiajb subject to

∑
a∈D i

xia = 1 ∀i ∈ {1, . . . , n}

∑
b∈D j

yiajb = xia ∀cij ∈ C ,∀a ∈ D i

∑
a∈D i

yiajb = xjb ∀cij ∈ C ,∀b ∈ D j

xia ∈ {0, 1} ∀i ∈ {1, . . . , n}

nd + e.d r variables. n + 2ed contraintes.

Binary CFN as 01QP (in�nite k , �nite costs)

Only nd variables

min
∑
i ,a

ci (a).xia+
∑
cij∈C

a∈Di ,b∈Dj

cij(a, b) · xia · xjb subject to

∑
a

xia =1 (∀i ∈ {1, . . . , n})

01 binary CFN as 01QP (in�nite k , �nite costs)

Quadratic Pseudo Boolean optimization[BH02]

min
∑
i

ci (1).xia + ci (0).(1− xia)+∑
cij∈C

cij(1, 1) · xia · xjb+

cij(0, 1) · (1− xia) · xjb+
cij(1, 0) · xia · (1− xjb)+

cij(0, 0) · (1− xia) · (1− xjb)

Posiform QPBO. Also covers Weighted Max2SAT (or Max-cut).

CFN can concisely express a variety of problems

Graphical Models solvers

Tree Search & Arc Consistency

CP solving technology

Depth First Search + Arc Consistency

1 Do we have a proof of infeasibility (AC) ?

2 If yes backtrack (back to previous state)

3 Else choose a non singleton variable xi (vertical)

4 Split its domain in disjoint subsets (branching)
5 For each subset (horizontal)

1 restrict xi domain to this subset and recurse

Why DFS ?

1 DFS is polynomial space

2 DFS bene�ts from AC incrementality for free

3 BFS would need even more memory for incrementality

CP solving technology

Depth First Search + Arc Consistency

1 Do we have a proof of infeasibility (AC) ?

2 If yes backtrack (back to previous state)

3 Else choose a non singleton variable xi (vertical)

4 Split its domain in disjoint subsets (branching)
5 For each subset (horizontal)

1 restrict xi domain to this subset and recurse

Why DFS ?

1 DFS is polynomial space

2 DFS bene�ts from AC incrementality for free

3 BFS would need even more memory for incrementality

Arc Consistency = local dynamic programming

AC as Dynamic programming

Imagine a CSP with linear graph

Use DP to compute which values
of xi are part of a solution of
x1, . . . xi knowing those for xi−1.

xi-1

xi

a b c d

a b c d

Revise = Equivalence Preserving Transformation (EPT)

a ∈ D i cannot be part of a solution (@u ∈ D j | cij(a, u) = 0).

we can delete it.

the resulting problem is equivalent (same set of solutions)

internal incrementality (support)

Communication between constraints goes (only) through domains.

Arc Consistency = local dynamic programming

AC as Dynamic programming

Imagine a CSP with linear graph

Use DP to compute which values
of xi are part of a solution of
x1, . . . xi knowing those for xi−1.

xi-1

xi

a b c d

a b c d

Revise = Equivalence Preserving Transformation (EPT)

a ∈ D i cannot be part of a solution (@u ∈ D j | cij(a, u) = 0).

we can delete it.

the resulting problem is equivalent (same set of solutions)

internal incrementality (support)

Communication between constraints goes (only) through domains.

Arc Consistency = local dynamic programming

AC as Dynamic programming

Imagine a CSP with linear graph

Use DP to compute which values
of xi are part of a solution of
x1, . . . xi knowing those for xi−1.

xi-1

xi

a b c d

a b c d

Revise = Equivalence Preserving Transformation (EPT)

a ∈ D i cannot be part of a solution (@u ∈ D j | cij(a, u) = 0).

we can delete it.

the resulting problem is equivalent (same set of solutions)

internal incrementality (support)

Communication between constraints goes (only) through domains.

Arc Consistency = local dynamic programming

AC as Dynamic programming

Imagine a CSP with linear graph

Use DP to compute which values
of xi are part of a solution of
x1, . . . xi knowing those for xi−1.

xi-1

xi

a b c d

a b c d

Revise = Equivalence Preserving Transformation (EPT)

a ∈ D i cannot be part of a solution (@u ∈ D j | cij(a, u) = 0).

we can delete it.

the resulting problem is equivalent (same set of solutions)

internal incrementality (support)

Communication between constraints goes (only) through domains.

Directional AC, AC solve tree structured CN

Rooted tree CN

Revise from leaves to root

Root domain: only values part
of a solution

Tree CN

Revise from leaves and back

All domains: values part of a
solution only

Resulting problem solved
backtrack-free [Fre82; Fre85]

Directional AC, AC solve tree structured CN

Rooted tree CN

Revise from leaves to root

Root domain: only values part
of a solution

Tree CN

Revise from leaves and back

All domains: values part of a
solution only

Resulting problem solved
backtrack-free [Fre82; Fre85]

Can be done on any CN, with arbitrary graph

Arc consistency

1 Linear time (tables)

2 Unique �xpoint (con�uent)

3 Preserves equivalence

4 May detect infeasibility

5 Problem transformation
(incremental)

6 internal incrementality (support)

AC on global constraints

Global decomposable constraints [Bac07; QW06]

Automata/CFG parsers, Knapsack: DP based.

Enforcing AC on the global can be directly done by
decomposing it in small constraints. Intermediary DP tables
must be representable as �extra� variables in a tree CSP.

Decomposable constraints emulate DP algorithms using AC.

A
x1 x2 x3 x4 x5

Si S1 S2 S3 S4 Sf

A A A A

AllDi� (matching [Rég94]) not decomposable [Bes+09]. GCC (max
�ow [Rég96]), AllDi� with Cost variable (min-cost �ow [VPR06])

AC on global constraints

Global decomposable constraints [Bac07; QW06]

Automata/CFG parsers, Knapsack: DP based.

Enforcing AC on the global can be directly done by
decomposing it in small constraints. Intermediary DP tables
must be representable as �extra� variables in a tree CSP.

Decomposable constraints emulate DP algorithms using AC.

A
x1 x2 x3 x4 x5

Si S1 S2 S3 S4 Sf

A A A A

AllDi� (matching [Rég94]) not decomposable [Bes+09]. GCC (max
�ow [Rég96]), AllDi� with Cost variable (min-cost �ow [VPR06])

AC on global constraints

Global decomposable constraints [Bac07; QW06]

Automata/CFG parsers, Knapsack: DP based.

Enforcing AC on the global can be directly done by
decomposing it in small constraints. Intermediary DP tables
must be representable as �extra� variables in a tree CSP.

Decomposable constraints emulate DP algorithms using AC.

A
x1 x2 x3 x4 x5

Si S1 S2 S3 S4 Sf

A A A A

AllDi� (matching [Rég94]) not decomposable [Bes+09]. GCC (max
�ow [Rég96]), AllDi� with Cost variable (min-cost �ow [VPR06])

Message passing in Markov
Random Fields

MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming [Pea88]

1 Use DP to compute the cost of
an optimal solution that goes
from x1 to a ∈ Di knowing those
for xi−1

2 Use extra functions (messages)
to store DP results

xi-1

xi

a b c d

a b c d

1

4

3

250

2

2

13

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce �good� solutions
(turbo-decoding [RU01])

4 Not an equivalence preserving transformation [Pea88])

Communication between functions goes through messages.

MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming [Pea88]

1 Use DP to compute the cost of
an optimal solution that goes
from x1 to a ∈ Di knowing those
for xi−1

2 Use extra functions (messages)
to store DP results

xi-1

xi

a b c d

a b c d

1

4

3

250

2

2

13

0 003

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce �good� solutions
(turbo-decoding [RU01])

4 Not an equivalence preserving transformation [Pea88])

Communication between functions goes through messages.

MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming [Pea88]

1 Use DP to compute the cost of
an optimal solution that goes
from x1 to a ∈ Di knowing those
for xi−1

2 Use extra functions (messages)
to store DP results

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce �good� solutions
(turbo-decoding [RU01])

4 Not an equivalence preserving transformation [Pea88])

Communication between functions goes through messages.

MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming [Pea88]

1 Use DP to compute the cost of
an optimal solution that goes
from x1 to a ∈ Di knowing those
for xi−1

2 Use extra functions (messages)
to store DP results

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce �good� solutions
(turbo-decoding [RU01])

4 Not an equivalence preserving transformation [Pea88])

Communication between functions goes through messages.

MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming [Pea88]

1 Use DP to compute the cost of
an optimal solution that goes
from x1 to a ∈ Di knowing those
for xi−1

2 Use extra functions (messages)
to store DP results

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce �good� solutions
(turbo-decoding [RU01])

4 Not an equivalence preserving transformation [Pea88])

Communication between functions goes through messages.

MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming [Pea88]

1 Use DP to compute the cost of
an optimal solution that goes
from x1 to a ∈ Di knowing those
for xi−1

2 Use extra functions (messages)
to store DP results

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce �good� solutions
(turbo-decoding [RU01])

4 Not an equivalence preserving transformation [Pea88])

Communication between functions goes through messages.

MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming [Pea88]

1 Use DP to compute the cost of
an optimal solution that goes
from x1 to a ∈ Di knowing those
for xi−1

2 Use extra functions (messages)
to store DP results

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce �good� solutions
(turbo-decoding [RU01])

4 Not an equivalence preserving transformation [Pea88])

Communication between functions goes through messages.

Solving the WCSP on a Cost
Function Network

From Constraints to Cost Functions

Depth First Branch and Bound + Arc Consistencies

1 Do we have a lower bound on optimum ≥ k (c∅)

2 If yes backtrack (back to previous state)

3 Else choose a non singleton variable xi (vertical)

4 Split its domain in disjoint subsets (branching)
5 For each subset (horizontal)

1 restrict xi domain to this subset and recurse

1 When a solution is found, update k to its cost.

2 DFS vs. BFS: same arguments.

From Constraints to Cost Functions

Depth First Branch and Bound + Arc Consistencies

1 Do we have a lower bound on optimum ≥ k (c∅)

2 If yes backtrack (back to previous state)

3 Else choose a non singleton variable xi (vertical)

4 Split its domain in disjoint subsets (branching)
5 For each subset (horizontal)

1 restrict xi domain to this subset and recurse

1 When a solution is found, update k to its cost.

2 DFS vs. BFS: same arguments.

CFN Arc Consistency: MP with reformulation

AC as Dynamic programming

1 MRF message passing but. . .

2 use c∅ and ci (a) to store
optimum cost from x1 to xi

3 Preserves equivalence by �cost
shifting� [Sch00; Sch76]

xi-1

xi

a b c d

a b c d

1

4

3

240

2

4

13
c =1
k=5
∅

Enhanced propagation

Communication between functions goes through functions.

CFN Arc Consistency: MP with reformulation

AC as Dynamic programming

1 MRF message passing but. . .

2 use c∅ and ci (a) to store
optimum cost from x1 to xi

3 Preserves equivalence by �cost
shifting� [Sch00; Sch76]

xi-1

xi

a b c d

a b c d

1

4

3

240

2

4

13
c =1
k=5
∅

Enhanced propagation

Communication between functions goes through functions.

CFN Arc Consistency: MP with reformulation

AC as Dynamic programming

1 MRF message passing but. . .

2 use c∅ and ci (a) to store
optimum cost from x1 to xi

3 Preserves equivalence by �cost
shifting� [Sch00; Sch76]

xi-1

xi

a b c d

a b c d

1

4

5

040

4

4

33
c =1
k=5
∅

2

Enhanced propagation

Communication between functions goes through functions.

CFN Arc Consistency: MP with reformulation

AC as Dynamic programming

1 MRF message passing but. . .

2 use c∅ and ci (a) to store
optimum cost from x1 to xi

3 Preserves equivalence by �cost
shifting� [Sch00; Sch76]

xi-1

xi

a b c d

a b c d

1

4

5

040

4

1 c =1
k=5
∅

2

3

Enhanced propagation

Communication between functions goes through functions.

CFN Arc Consistency: MP with reformulation

AC as Dynamic programming

1 MRF message passing but. . .

2 use c∅ and ci (a) to store
optimum cost from x1 to xi

3 Preserves equivalence by �cost
shifting� [Sch00; Sch76]

xi-1

xi

a b c d

a b c d

1

4

5

040

4

1 c =1
k=5
∅

2

3 0 0 0

Enhanced propagation

Communication between functions goes through functions.

CFN Arc Consistency: MP with reformulation

AC as Dynamic programming

1 MRF message passing but. . .

2 use c∅ and ci (a) to store
optimum cost from x1 to xi

3 Preserves equivalence by �cost
shifting� [Sch00; Sch76]

Enhanced propagation

Communication between functions goes through functions.

Equivalence Preserving Transformation

Arc EPT

A cost function cS , here cij .

EPT Project ({ij}, {i}, a, α) shifts cost α between ci (a) and
the cost function cij .

projection (α ≥ 0), extension (α < 0).

Precondition: −ci (a) ≤ α ≤ mint′∈D ij ,t′[i]=a cij(t
′);

Procedure Project({i , j}, {i}, a, α)
ci (a)← ci (a)⊕ α;
foreach (t ′ ∈ D ij such that t ′[i] = a) do

cij(t
′)← cij(t

′)	 α;
end

Example

Project({1, 2}, {1}, b, 1) Project({1, 2}, {2}, a, 1)
← →

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→

←

Project({1, 2}, {1}, b,−1)

Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→

←

Project({1, 2}, {1}, b,−1)

Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Properties

Solves tree structured problems (proper ordering), optimum
available in c∅

is a reformulation so incremental

has internal incrementality (supports)

May loop inde�nitely on cyclic graphs

No unique �xpoint when it exists

Convergent Arc Consistencies

Breaking the loops

1 Arc consistency O(ed3): prevent loops at the arc level [Sch00]

2 Node consistency [Lar02]

3 Directional AC O(ed2): prevent loops at a global level [Coo03;
LS03; LS04]

4 Combine AC and DAC into FDAC [LS03; LS04]

5 Pool costs from all stars to c∅ in EAC [Lar+05]

6 Combine AC+DAC+EAC in EDAC [Lar+05]

All O(ed) space.

Comparison with AC

1 AC, FDAC and EDAC equivalent to classical AC (constraints).

2 DAC equivalent to classical DAC (constraints).

3 AC < FDAC < EDAC in terms of lb strength.

Can be enforced on global cost functions too (by emulating DP, or
using graph algorithms) [LL10; LL12; Boi+12].

Comparison with AC

1 AC, FDAC and EDAC equivalent to classical AC (constraints).

2 DAC equivalent to classical DAC (constraints).

3 AC < FDAC < EDAC in terms of lb strength.

Can be enforced on global cost functions too (by emulating DP, or
using graph algorithms) [LL10; LL12; Boi+12].

Beyond chaotic application

Finding an optimal order [CS04]

Finding an optimal sequence of integer arc EPTs that maximizes
the lower bound is NP-hard.

Finding an optimal set[CGS07]

Finding an optimal set of rational arc EPTs that maximizes the
lower bound is in P.
This is achieved by solving an LP (OSAC, �nite costs, k =∞).

Beyond chaotic application

Finding an optimal order [CS04]

Finding an optimal sequence of integer arc EPTs that maximizes
the lower bound is NP-hard.

Finding an optimal set[CGS07]

Finding an optimal set of rational arc EPTs that maximizes the
lower bound is in P.
This is achieved by solving an LP (OSAC, �nite costs, k =∞).

Reformulation by OSAC

c

b

a

c

b

a c

b

a

c a

1

a c a c

1

c a

c

b

a

2

3

4 4

2

3

c∅ = 1

Optimal Soft Arc Consistency (�nite costs, k =∞)

01 LP Variables, for a binary CFN

1 ui : amount of cost shifted from ci to c∅
2 pija: amount of cost shifted from cij to a ∈ D i

3 pjib: amount of cost shifted from cij to b ∈ D j

OSAC

Maximize
n∑

i=1

ui subject to

ci (a)− ui +
∑

(cij∈C)

pija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ D i

cij(a, b)− pija − pjib ≥ 0 ∀cij ∈ C ,∀(a, b) ∈ D ij

See [Sch76; Kos99; CGS07; Wer07; Coo+10].

Optimal Soft Arc Consistency (�nite costs, k =∞)

01 LP Variables, for a binary CFN

1 ui : amount of cost shifted from ci to c∅
2 pija: amount of cost shifted from cij to a ∈ D i

3 pjib: amount of cost shifted from cij to b ∈ D j

OSAC

Maximize
n∑

i=1

ui subject to

ci (a)− ui +
∑

(cij∈C)

pija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ D i

cij(a, b)− pija − pjib ≥ 0 ∀cij ∈ C , ∀(a, b) ∈ D ij

See [Sch76; Kos99; CGS07; Wer07; Coo+10].

OSAC and the local polytope

The MRF local polytope [Wer07]

Minimize
∑
i ,a

ci (a) · xia+
∑
cij∈C

a∈Di ,b∈Dj

cij(a, b) · yiajb s.t

∑
a∈D i

xia = 1 ∀i ∈ {1, . . . , n} (1)

∑
b∈D j

yiajb − xia = 0 ∀cij ∈ C , ∀a ∈ D i (2)

∑
a∈D i

yiajb − xjb = 0 ∀cij ∈ C ,∀b ∈ D j (3)

xia ∈ {0, 1} ∀i ∈ {1, . . . , n}

ui multiplier for (1) and pija/pjib for (2) and (3) (as ≥ inequalities).

Duality

We are looking for multipliers ui and pija that

1 de�ne a linear inequality with multiplicative constants lower
than in the primal criteria (dual constraints)

2 such that the rhs of the inequality (lower bound) is maximum

Dual

Maximize
n∑

i=1

ui subject to

ui −
∑

(cij∈C)

pija ≤ ci (a) ∀i ∈ {1, . . . , n}, ∀a ∈ D i

pija + pjib ≤ cij(a, b) ∀cij ∈ C ,∀(a, b) ∈ D ij

Duality

We are looking for multipliers ui and pija that

1 de�ne a linear inequality with multiplicative constants lower
than in the primal criteria (dual constraints)

2 such that the rhs of the inequality (lower bound) is maximum

Dual

Maximize
n∑

i=1

ui subject to

ui −
∑

(cij∈C)

pija ≤ ci (a) ∀i ∈ {1, . . . , n}, ∀a ∈ D i

pija + pjib ≤ cij(a, b) ∀cij ∈ C ,∀(a, b) ∈ D ij

Graphical model polytopes

The local polytope and its dual have been intensely studied,
starting with the �Ukrainian� school [Sch76; KK75; KS76;
Wer07].

A variety of non-smooth convex optimization algorithms have
been tried with the hope of �faster than LP� resolution [SG07;
KPT07; Sav+11; KSS12].

[PW15] showed that any �normal� LP can be reduced to such
a polytope in linear time (constructive proof).

Graphical model polytopes

The local polytope and its dual have been intensely studied,
starting with the �Ukrainian� school [Sch76; KK75; KS76;
Wer07].

A variety of non-smooth convex optimization algorithms have
been tried with the hope of �faster than LP� resolution [SG07;
KPT07; Sav+11; KSS12].

[PW15] showed that any �normal� LP can be reduced to such
a polytope in linear time (constructive proof).

Graphical model polytopes

The local polytope and its dual have been intensely studied,
starting with the �Ukrainian� school [Sch76; KK75; KS76;
Wer07].

A variety of non-smooth convex optimization algorithms have
been tried with the hope of �faster than LP� resolution [SG07;
KPT07; Sav+11; KSS12].

[PW15] showed that any �normal� LP can be reduced to such
a polytope in linear time (constructive proof).

Better understanding

Have we been doing LP w/o knowing ?

1 Somewhat: AC, DAC, FDAC, EDAC can be seen as
approximate greedy Block Coordinate Descent solvers of this
dual LP.

2 They all �nd feasible (but usually non optimal) solutions of the
dual.

3 But an optimal bound is not necessarily ideal (OSAC).

4 AC variants all directly deal with �nite k or in�nite costs.

Can we organize our EPTs better w/o LP?

Bool(P) [Coo+08]

Given a CFN P = (X ,D,C , k), Bool(P) is the CSP
(X ,D,C − {c∅}, 1).

Bool(P) forbids all positive cost assignments, ignoring c∅.

Virtual AC

A CFN P is Virtual AC i� Bool(P) has a non empty AC closure.

Virtual AC

Same �xpoint as a variety of converging reformulating BP
algorithms in MRF: TRW-S [Kol06], MPLP1[Son+12],
SRMP [Kol15], Max-Sum di�usion [KK75; Coo+10],
Aug-DAG[KS76]. . .

Can we organize our EPTs better w/o LP?

Bool(P) [Coo+08]

Given a CFN P = (X ,D,C , k), Bool(P) is the CSP
(X ,D,C − {c∅}, 1).

Bool(P) forbids all positive cost assignments, ignoring c∅.

Virtual AC

A CFN P is Virtual AC i� Bool(P) has a non empty AC closure.

Virtual AC

Same �xpoint as a variety of converging reformulating BP
algorithms in MRF: TRW-S [Kol06], MPLP1[Son+12],
SRMP [Kol15], Max-Sum di�usion [KK75; Coo+10],
Aug-DAG[KS76]. . .

Can we organize our EPTs better w/o LP?

Bool(P) [Coo+08]

Given a CFN P = (X ,D,C , k), Bool(P) is the CSP
(X ,D,C − {c∅}, 1).

Bool(P) forbids all positive cost assignments, ignoring c∅.

Virtual AC

A CFN P is Virtual AC i� Bool(P) has a non empty AC closure.

Virtual AC

Same �xpoint as a variety of converging reformulating BP
algorithms in MRF: TRW-S [Kol06], MPLP1[Son+12],
SRMP [Kol15], Max-Sum di�usion [KK75; Coo+10],
Aug-DAG[KS76]. . .

How do we enforce VAC ?

OSAC does it, but without LP

1 Enforce AC in Bool(P) until a wipe-out occurs (record EPTs)

2 Extract a minimal set of EPTs su�cient for the wipe-out

3 Apply cost EPTs on P using suitable cost moves

How do we enforce VAC ?

OSAC does it, but without LP

1 Enforce AC in Bool(P) until a wipe-out occurs (record EPTs)

2 Extract a minimal set of EPTs su�cient for the wipe-out

3 Apply cost EPTs on P using suitable cost moves

A �simple� example

•

•

•

•

•

•

1

1

2

3

F F

F

T T

T

Original problem

A �simple� example

•

•

•

•

•

•

1

1

2

3

F F

F

T T

T

•

•

•

•

•

•

AC: deleting (3,F) and (2,T)

A �simple� example

•

•

•

•

•

•

1

1

2

3

F F

F

T T

T

•

•

•

•

•

•

1

1

1

1

1

2

3

AC: deleting (3,T): wipe out with 3 EPTs !

A �simple� example

•

•

•

•

•

•

1

1

2

3

F F

F

T T

T

•

•

•

•

•

•

λ

λ

1

2

3

We want to bring λ cost unit to x3, λ unknown.

A �simple� example

•

•

•

•

•

•

1

1

2

3

F F

F

T T

T

•

•

•

•

•

•

λ λλ

λ1

2

3

This requires λ virtual cost that needs to be paid by concrete
costs. . .

A �simple� example

•

•

•

•

•

•

1

1

2

3

F F

F

T T

T

•

•

•

•

•

•

λ

λ

λ

λ1

2

3

This requires λ virtual cost that needs to be paid by concrete
costs. . . or propagated through EPTs

A �simple� example

•

•

•

•

•

•

1

1

2

3

F F

F

T T

T

•

•

•

•

•

•

λ

λ

λ
λ

λ1

2

3

This requires λ virtual cost that needs to be paid by concrete
costs. . . or propagated through EPTs back to concrete costs

A �simple� example

•

•

•

•

•

•

1

1

2

3

F F

F

T T

T

•

•

•

•

•

•

λ

λ

λ+ λ

λ1

2

3

we need 2λ on (1,T) and have only 1 unit of cost: λ = 1
2

A �simple� example

•

•

•

•

•

•

1

1

2

3

F F

F

T T

T

•

•

•

•

•

•

1
2

1
2

1
2

1
2

1
2 1
2

11

2

3

We replay the EPTs using the values of λ

A �simple� example

•

•

•

•

•

•

1

1

2

3

F F

F

T T

T

•

•

•

•

•

•

1
2

1
2

1
2 1
2

1
2

1
2

c∅ =
1
2

1

2

3

At the end we are able to project λ to c∅

Complexity

Table cost functions

1 Each iteration is in O(ed r).

2 May require an in�nite number of iterations.

3 ε-convergence in O(ed r .k/ε)

4 can be much faster than OSAC

5 often accelerates CPLEX on local polytopes

Connection with AC in CSP

Virtual AC

1 solves tree-structured problems,

2 solves CFNs with submodular cost functions (Monge)

3 solves CFNs for which AC is a decision procedure in Bool(P).

1 Any solution of Bool(P) has cost c∅ and is therefore optimal.

2 A problem which is VAC and has only one value a in each
domain such that ci (a) = 0 is solved.

3 There is always at least one such value (or else not VAC).

Connection with AC in CSP

Virtual AC

1 solves tree-structured problems,

2 solves CFNs with submodular cost functions (Monge)

3 solves CFNs for which AC is a decision procedure in Bool(P).

1 Any solution of Bool(P) has cost c∅ and is therefore optimal.

2 A problem which is VAC and has only one value a in each
domain such that ci (a) = 0 is solved.

3 There is always at least one such value (or else not VAC).

Any connection with a famous graph algorithm ?

Boolean binary CFN - QPBO - WMax2SAT

1 Bool(P) is 2-SAT (in P).

2 Minimal propagation DAG made of disjoint paths.

3 Related to Ford-Fulkerson (speci�c graph),

4 Similar to the �roof-dual� lower bound of QPBO (LP or �ow
based [BH02])

5 Similar to `Graph Cut� for binary pairwise supermodular MRF
(�ow based [KR07])

6 naturally incremental, thanks to EPTs.

Anything similar to VAC in OR/Graph algorithms ?

Any connection with a famous graph algorithm ?

Boolean binary CFN - QPBO - WMax2SAT

1 Bool(P) is 2-SAT (in P).

2 Minimal propagation DAG made of disjoint paths.

3 Related to Ford-Fulkerson (speci�c graph),

4 Similar to the �roof-dual� lower bound of QPBO (LP or �ow
based [BH02])

5 Similar to `Graph Cut� for binary pairwise supermodular MRF
(�ow based [KR07])

6 naturally incremental, thanks to EPTs.

Anything similar to VAC in OR/Graph algorithms ?

Implementations

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

Past successes...

1 First/second in approximate graphical model MRF/MAP
challenges (2010, 2012, 2014).

2 Bioinformatics: pedigree debugging [SGS08], Haplotyping
(QTLMap), structured RNA gene �nding [ZGS08],
Computational Protein Design [Tra+13] (now in OSPREY)

3 RLFAP: closed all CELAR min-interference RLFAP
instances fap.zib.de/problems/CALMA

4 Inductive Logic Programming [AR07], Natural Langage
Processing (in hltdi-l3), Multi-agent and cost-based
planning [KZ10; CRR11], Model Abstraction [SFN11],
diagnostic [MJS11b], Music processing and Markov
Logic [PT12; PT13], Data mining [MLC13], Partially
observable Markov Decision Processes [Dib+13], Probabilistic
counting [Erm+13] and inference [MJS11a], . . .

http://fap.zib.de/problems/CALMA/
https://code.google.com/p/hltdi-l3

Other solvers

Mostly MRF targeted

daoopt (exact, DFBB + Treewidth + minibuckets)a

MPLPb, SRMPc : primal/dual like solvers using BCD-based
approximate LP bounds for dual and heuristic from primal.

OpenGM-2d: an impressive MRF processing library with many
MRF processing algorithms (includes daoopt and many other
published algorithms, exact or not. Toulbar2 soon).

agithub.com/lotten/daoopt
bcs.nyu.edu/ dsontag/code/README_v2.html
cpub.ist.ac.at/ vnk/software.html
dhci.iwr.uni-heidelberg.de/opengm2

https://github.com/lotten/daoopt
http://cs.nyu.edu/~dsontag/code/README_v2.html
http://pub.ist.ac.at/~vnk/software.html
http://hci.iwr.uni-heidelberg.de/opengm2/

Application to Computational
Protein Design

Joint work with D. Allouche, Isabelle André (LISBP-INSA), Sophie
Barbe (LISBP-INSA), Jessica Davies, Simon de Givry, George
Katsirelos, Barry O'Sullivan (Insight Centre, Ireland), Steve
Prestwich (Insight Centre), David Simoncini, Seydou Traoré

(LISBP-INSA).

What is a protein ? (Kudos to wikipedia)

Amino acids, proteins

Proteins are linear chains of amino-acids (20 natural AAs).

All AAs share a common �core� and have a variable side-chain.

Side-chains are
�exible (ARG)

Protein Design

Why ?

Proteins have various functions in the cell: catalysis, signaling,
recognition, regulation. . .

E�cient, biodegrable, 106 to 1020 speedups

Some reactions / ligands miss enzymes / partners.

Medecine, cosmetics, food, bio-energies. . .

Nano-technologies (shape more than function).

Protein Design

Protein function linked to its 3D shape through its amino acid
composition.

Protein design's aim

Identify sequences that have a suitable
function (shape).

Issue

There are 20n proteins of length n.
Impossible to synthesize and test all of
them.

Protein Design

Protein function linked to its 3D shape through its amino acid
composition.

Protein design's aim

Identify sequences that have a suitable
function (shape).

Issue

There are 20n proteins of length n.
Impossible to synthesize and test all of
them.

The CPD problem - stability variant

Preparation

A backbone is chosen/built from a known protein/structure
(or de novo).

Positions are set as mutable, �exible or rigid

The aim is to �nd an AA sequence that folds, stably, in the
backbone.

Issues

CPD is a sort of inverse of folding.

But folding is far from being a solved problem

The CPD problem - stability variant

Preparation

A backbone is chosen/built from a known protein/structure
(or de novo).

Positions are set as mutable, �exible or rigid

The aim is to �nd an AA sequence that folds, stably, in the
backbone.

Issues

CPD is a sort of inverse of folding.

But folding is far from being a solved problem

Successes of Protein Design

The (basic) CPD problem: search space

Rigid backbone variant

1 Assume a rigid protein backbone.

2 Choose 1 AA among possible ones
at each mutable position.

3 Spatial conformation discretized in
rotamers.

4 Statistically frequent orientations.

5 Several 100's rotamers per position.

Search Space

1 Fully discrete description, de�ned by a choice of rotamer (AA
× conformation) for each position.

2 Search space can be ≈ 250n

The (basic) CPD problem: search space

Rigid backbone variant

1 Assume a rigid protein backbone.

2 Choose 1 AA among possible ones
at each mutable position.

3 Spatial conformation discretized in
rotamers.

4 Statistically frequent orientations.

5 Several 100's rotamers per position.

Search Space

1 Fully discrete description, de�ned by a choice of rotamer (AA
× conformation) for each position.

2 Search space can be ≈ 250n

Stable = minimum energy (GMEC, NP-hard [PW02])

Energy: interactions between atoms.

Electrostatic, van der Waals (Amber)

Dihedral torsion angles, Implicit Solvation (EEF1)

�Statistical terms� (Talaris)

Cuto� functions

Pairwise decomposable energy

backbone/backbone (constant)

backbone/rotamer (depends on rotamer)

rotamer/rotamer (depends on pairs of rotamers)

E (c) = E∅ +
n∑

i=1

E (ir) +
∑
i<j

E (ir , js)

Stable = minimum energy (GMEC, NP-hard [PW02])

Energy: interactions between atoms.

Electrostatic, van der Waals (Amber)

Dihedral torsion angles, Implicit Solvation (EEF1)

�Statistical terms� (Talaris)

Cuto� functions

Pairwise decomposable energy

backbone/backbone (constant)

backbone/rotamer (depends on rotamer)

rotamer/rotamer (depends on pairs of rotamers)

E (c) = E∅ +
n∑

i=1

E (ir) +
∑
i<j

E (ir , js)

Stable = minimum energy (GMEC, NP-hard [PW02])

Energy: interactions between atoms.

Electrostatic, van der Waals (Amber)

Dihedral torsion angles, Implicit Solvation (EEF1)

�Statistical terms� (Talaris)

Cuto� functions

Pairwise decomposable energy

backbone/backbone (constant)

backbone/rotamer (depends on rotamer)

rotamer/rotamer (depends on pairs of rotamers)

E (c) = E∅ +
n∑

i=1

E (ir) +
∑
i<j

E (ir , js)

Dedicated CPD Methods

Dominance / Sustitutability / Dead End Elimination [Des+92]

E (ia) +
n∑
j 6=i

min
c

E (ia, jc) > E (ib) +
n∑
j 6=i

E max
b

E (ib, jc)

Strengthened by [Gol94]

E (ia)− E (ib) +
n∑
j 6=i

min
c

[
E (ia, jc)− E (ib, jc)

]
> 0

Many further enhancements (splitting, pairs...). Polynomial time
pre-processing.

�(Soft) substitutability� [Coo97; LRD12]
Dominating 1-clause rule in MaxSAT [NR00].

Dedicated CPD Methods

Dominance / Sustitutability / Dead End Elimination [Des+92]

E (ia) +
n∑
j 6=i

min
c

E (ia, jc) > E (ib) +
n∑
j 6=i

E max
b

E (ib, jc)

Strengthened by [Gol94]

E (ia)− E (ib) +
n∑
j 6=i

min
c

[
E (ia, jc)− E (ib, jc)

]
> 0

Many further enhancements (splitting, pairs...). Polynomial time
pre-processing.

�(Soft) substitutability� [Coo97; LRD12]
Dominating 1-clause rule in MaxSAT [NR00].

Dedicated CPD Methods

Dominance / Sustitutability / Dead End Elimination [Des+92]

E (ia) +
n∑
j 6=i

min
c

E (ia, jc) > E (ib) +
n∑
j 6=i

E max
b

E (ib, jc)

Strengthened by [Gol94]

E (ia)− E (ib) +
n∑
j 6=i

min
c

[
E (ia, jc)− E (ib, jc)

]
> 0

Many further enhancements (splitting, pairs...). Polynomial time
pre-processing.

�(Soft) substitutability� [Coo97; LRD12]
Dominating 1-clause rule in MaxSAT [NR00].

Dedicated CPD Methods

Dominance / Sustitutability / Dead End Elimination [Des+92]

E (ia) +
n∑
j 6=i

min
c

E (ia, jc) > E (ib) +
n∑
j 6=i

E max
b

E (ib, jc)

Strengthened by [Gol94]

E (ia)− E (ib) +
n∑
j 6=i

min
c

[
E (ia, jc)− E (ib, jc)

]
> 0

Many further enhancements (splitting, pairs...). Polynomial time
pre-processing.

�(Soft) substitutability� [Coo97; LRD12]
Dominating 1-clause rule in MaxSAT [NR00].

DEE + A∗

polytime DEE, GMEC NP-hard

DEE cannot reduce all domains to singletons

Followed by A∗ best-�rst search using the following lower
bound (admissible heuristics) [GLD08]:

d∑
i=1

E (ir) +
d∑

j=i+1

E (ir , js)︸ ︷︷ ︸
Assigned

+
∑n

j=d+1

[
min
s
(E (js) +

d∑
i=1

E (ir , js)︸ ︷︷ ︸
Forward checking

+
n∑

k=j+1

min
u

E (js , ku)︸ ︷︷ ︸
DAC counts

)
]

Lower bound

Same as a lower bound introduced in AI (WCSP) in
1994 [Wal95].

Obsoleted by local consistencies.

T. Schiex. �Arc consistency for soft constraints�. In: Principles and Practice of Constraint
Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411�424

DEE + A∗

polytime DEE, GMEC NP-hard

DEE cannot reduce all domains to singletons

Followed by A∗ best-�rst search using the following lower
bound (admissible heuristics) [GLD08]:

d∑
i=1

E (ir) +
d∑

j=i+1

E (ir , js)︸ ︷︷ ︸
Assigned

+
∑n

j=d+1

[
min
s
(E (js) +

d∑
i=1

E (ir , js)︸ ︷︷ ︸
Forward checking

+
n∑

k=j+1

min
u

E (js , ku)︸ ︷︷ ︸
DAC counts

)
]

Lower bound

Same as a lower bound introduced in AI (WCSP) in
1994 [Wal95].

Obsoleted by local consistencies.

T. Schiex. �Arc consistency for soft constraints�. In: Principles and Practice of Constraint
Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411�424

Solving the Fixed Backbone CPD problem

Our targets [All+14]

Identify a most e�cient model/solving technique for the rigid
backbone/rotamer based/pairwise energy CPD problem.

Do one of the �rst large spectrum comparison of NP-complete
optimization techniques (AI: CFN, CP, SAT, MRF and OR:
ILP, QP, QPBO) on one well de�ned, important optimization
problem.

Learn from it.

Partial Weighted maxSAT

PW MaxSAT

Boolean variables, litteral: variable or its negation

Weighted clauses: disjunction (∨) of litterals.
criteria: sum of weight of violated clauses.

B&B - Core solvers: MiniMaxSat [HLO08],akMaxSat [Kue10]
- bincd [HMM11],wpm1/2 [ABL09; ABL10],MaxHS [DB13]

Direct encoding

dia : use ia

∀ir , is , ir 6= is , (¬dir ∨ ¬dis) (AMO)

∀i , (
∨

r dir) (ALO)

(¬dir ,E (ir) and (¬dir ∨ ¬djs ,E (ir , js))

Partial Weighted maxSAT

PW MaxSAT

Boolean variables, litteral: variable or its negation

Weighted clauses: disjunction (∨) of litterals.
criteria: sum of weight of violated clauses.

B&B - Core solvers: MiniMaxSat [HLO08],akMaxSat [Kue10]
- bincd [HMM11],wpm1/2 [ABL09; ABL10],MaxHS [DB13]

Direct encoding

dia : use ia

∀ir , is , ir 6= is , (¬dir ∨ ¬dis) (AMO)

∀i , (
∨

r dir) (ALO)

(¬dir ,E (ir) and (¬dir ∨ ¬djs ,E (ir , js))

Tuple encoding

Property [Bac07]

In CSP, Unit Propagation on this encoding enforces AC on the
CSP. Close to the local polytope ILP model.

Direct encoding

dia + AMO + ALO.

pir js : pair ia, js is used.

∀ir , js : (dir ∨ ¬pir js) and (djs ∨ ¬pir js).
∀ir , j(¬dir ∨

∨
s pir js)

idem for E (ir), ∀ir , js(¬pir js ,E (ir , js))

A realistic benchmark: 35+12 designs tested

The designs

1 Extracted from the litterature [Tra+13],

2 Good resolution of the PDB structures,

3 Structure preparation,

4 Domains assigned based on accessibility,

5 Amber + EEF1 + No cuto� (almost complete graphs)

6 Variable search space size, from 1026 to 10249

Results - 9000 seconds

From failures. . .

Analysis

1 QP by Cplex: dense model, but weak and somewhat
expensive lb (very large node �le, large gaps).

2 SDP based QPO: probably tight lower bound, but far too
expensive (few nodes explored after several hours). biqmac
library of MaxCut beasley instances size 100: solved in 1� by
tb2, 1' by biqmac.

3 MaxSAT, direct: branch and bound solvers very fast (36k
nodes/sec, 100 times faster than tb2). found incumbent
solutions but never started the optimality proof. Weak lb (root
= 25% of optimum, tb2 always > 97%).

4 MaxSAT, tuple: b&b,strong lower bound (should be similar
to VAC for core based solvers). Still weaker than tb2 and very
slow (2 nodes before timeout at best for akmaxsat). No
incumbent. Core based better (maxHS, good lb).

From failures. . .

Analysis

1 QP by Cplex: dense model, but weak and somewhat
expensive lb (very large node �le, large gaps).

2 SDP based QPO: probably tight lower bound, but far too
expensive (few nodes explored after several hours). biqmac
library of MaxCut beasley instances size 100: solved in 1� by
tb2, 1' by biqmac.

3 MaxSAT, direct: branch and bound solvers very fast (36k
nodes/sec, 100 times faster than tb2). found incumbent
solutions but never started the optimality proof. Weak lb (root
= 25% of optimum, tb2 always > 97%).

4 MaxSAT, tuple: b&b,strong lower bound (should be similar
to VAC for core based solvers). Still weaker than tb2 and very
slow (2 nodes before timeout at best for akmaxsat). No
incumbent. Core based better (maxHS, good lb).

From failures. . .

Analysis

1 QP by Cplex: dense model, but weak and somewhat
expensive lb (very large node �le, large gaps).

2 SDP based QPO: probably tight lower bound, but far too
expensive (few nodes explored after several hours). biqmac
library of MaxCut beasley instances size 100: solved in 1� by
tb2, 1' by biqmac.

3 MaxSAT, direct: branch and bound solvers very fast (36k
nodes/sec, 100 times faster than tb2). found incumbent
solutions but never started the optimality proof. Weak lb (root
= 25% of optimum, tb2 always > 97%).

4 MaxSAT, tuple: b&b,strong lower bound (should be similar
to VAC for core based solvers). Still weaker than tb2 and very
slow (2 nodes before timeout at best for akmaxsat). No
incumbent. Core based better (maxHS, good lb).

From failures. . .

Analysis

1 QP by Cplex: dense model, but weak and somewhat
expensive lb (very large node �le, large gaps).

2 SDP based QPO: probably tight lower bound, but far too
expensive (few nodes explored after several hours). biqmac
library of MaxCut beasley instances size 100: solved in 1� by
tb2, 1' by biqmac.

3 MaxSAT, direct: branch and bound solvers very fast (36k
nodes/sec, 100 times faster than tb2). found incumbent
solutions but never started the optimality proof. Weak lb (root
= 25% of optimum, tb2 always > 97%).

4 MaxSAT, tuple: b&b,strong lower bound (should be similar
to VAC for core based solvers). Still weaker than tb2 and very
slow (2 nodes before timeout at best for akmaxsat). No
incumbent. Core based better (maxHS, good lb).

... to Successes

Analysis

1 Daoopt: almost complete graphs. Not ideal for tree
decomposition based methods.

2 DEE/A*: surprisingly good given the lower bound used. Very
strong preprocessing.

3 ILP - Cplex: LP bound similar to OSAC (dual). tb2 has
upper bounding (k). Similar number of nodes but tb2 much
faster (ILP: 1 to 40 nodes / minutes, tb2: 1 to 40 thousand).

4 MPLP: no branching but able to solve few more problems
than CPLEX.

A Lesson for (AI) Optimization

The lower bounding/search e�orts compromise is, AFAIK, not
understood, nor exploited. But may be crucial.

... to Successes

Analysis

1 Daoopt: almost complete graphs. Not ideal for tree
decomposition based methods.

2 DEE/A*: surprisingly good given the lower bound used. Very
strong preprocessing.

3 ILP - Cplex: LP bound similar to OSAC (dual). tb2 has
upper bounding (k). Similar number of nodes but tb2 much
faster (ILP: 1 to 40 nodes / minutes, tb2: 1 to 40 thousand).

4 MPLP: no branching but able to solve few more problems
than CPLEX.

A Lesson for (AI) Optimization

The lower bounding/search e�orts compromise is, AFAIK, not
understood, nor exploited. But may be crucial.

... to Successes

Analysis

1 Daoopt: almost complete graphs. Not ideal for tree
decomposition based methods.

2 DEE/A*: surprisingly good given the lower bound used. Very
strong preprocessing.

3 ILP - Cplex: LP bound similar to OSAC (dual). tb2 has
upper bounding (k). Similar number of nodes but tb2 much
faster (ILP: 1 to 40 nodes / minutes, tb2: 1 to 40 thousand).

4 MPLP: no branching but able to solve few more problems
than CPLEX.

A Lesson for (AI) Optimization

The lower bounding/search e�orts compromise is, AFAIK, not
understood, nor exploited. But may be crucial.

... to Successes

Analysis

1 Daoopt: almost complete graphs. Not ideal for tree
decomposition based methods.

2 DEE/A*: surprisingly good given the lower bound used. Very
strong preprocessing.

3 ILP - Cplex: LP bound similar to OSAC (dual). tb2 has
upper bounding (k). Similar number of nodes but tb2 much
faster (ILP: 1 to 40 nodes / minutes, tb2: 1 to 40 thousand).

4 MPLP: no branching but able to solve few more problems
than CPLEX.

A Lesson for (AI) Optimization

The lower bounding/search e�orts compromise is, AFAIK, not
understood, nor exploited. But may be crucial.

... to Successes

Analysis

1 Daoopt: almost complete graphs. Not ideal for tree
decomposition based methods.

2 DEE/A*: surprisingly good given the lower bound used. Very
strong preprocessing.

3 ILP - Cplex: LP bound similar to OSAC (dual). tb2 has
upper bounding (k). Similar number of nodes but tb2 much
faster (ILP: 1 to 40 nodes / minutes, tb2: 1 to 40 thousand).

4 MPLP: no branching but able to solve few more problems
than CPLEX.

A Lesson for (AI) Optimization

The lower bounding/search e�orts compromise is, AFAIK, not
understood, nor exploited. But may be crucial.

Final note and Acknowledgments

This is all for a rigid backbone. Modern CPD increasingly uses
��exible� representations (eg. with a backbone ensemble).

Thanks to. . .

Tomas Werner (Center for Machine Perception, Praha, Czech
rep.) for contributing to the WCSP/CFN/MRF/LP
connection.

Bruce Donald and Kyle Roberts (Duke Univ., USA) for the
open source software Osprey and helping us with it.

Questions ?

Final note and Acknowledgments

This is all for a rigid backbone. Modern CPD increasingly uses
��exible� representations (eg. with a backbone ensemble).

Thanks to. . .

Tomas Werner (Center for Machine Perception, Praha, Czech
rep.) for contributing to the WCSP/CFN/MRF/LP
connection.

Bruce Donald and Kyle Roberts (Duke Univ., USA) for the
open source software Osprey and helping us with it.

Questions ?

Final note and Acknowledgments

This is all for a rigid backbone. Modern CPD increasingly uses
��exible� representations (eg. with a backbone ensemble).

Thanks to. . .

Tomas Werner (Center for Machine Perception, Praha, Czech
rep.) for contributing to the WCSP/CFN/MRF/LP
connection.

Bruce Donald and Kyle Roberts (Duke Univ., USA) for the
open source software Osprey and helping us with it.

Questions ?

References I

Carlos Ansótegui, María Luisa Bonet, and Jordi Levy. �Solving
(weighted) partial MaxSAT through satis�ability testing�. In: Theory
and Applications of Satis�ability Testing-SAT 2009. Springer, 2009,
pp. 427�440.

Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. �A New

Algorithm for Weighted Partial MaxSAT.� In: Proceedings of 20th

National Conference on Arti�cial Intelligence (AAAI'10). 2010.

David Allouche et al. �Computational protein design as an optimization
problem�. In: Arti�cial Intelligence 212 (2014), pp. 59�79.

David Allouche et al. �Anytime Hybrid Best-First Search with Tree
Decomposition for Weighted CSP�. In: Principles and Practice of
Constraint Programming. Springer. 2015, pp. 12�29.

Érick Alphonse and Céline Rouveirol. �Extension of the top-down
data-driven strategy to ILP�. In: Inductive Logic Programming.
Springer, 2007, pp. 49�63.

Fahiem Bacchus. �GAC via unit propagation�. In: Principles and
Practice of Constraint Programming�CP 2007. Springer, 2007,
pp. 133�147.

References II

Christian Bessiere et al. �Circuit complexity and decompositions of
global constraints�. In: arXiv preprint arXiv:0905.3757 (2009).

E. Boros and P. Hammer. �Pseudo-Boolean Optimization�. In:
Discrete Appl. Math. 123 (2002), pp. 155�225.

P Boizumault et al. �Filtering Decomposable Global Cost Functions�.
In: Proceedings of the National Conference on Arti�cial Intelligence.
2012.

M C. Cooper, S. de Givry, and T. Schiex. �Optimal soft arc
consistency�. In: Proc. of IJCAI'2007. Hyderabad, India, Jan. 2007,
pp. 68�73.

Martin C Cooper et al. �Virtual Arc Consistency for Weighted CSP.�
In: AAAI. Vol. 8. 2008, pp. 253�258.

M. Cooper et al. �Soft arc consistency revisited�. In: Arti�cial
Intelligence 174 (2010), pp. 449�478.

M C. Cooper. �Reduction operations in fuzzy or valued constraint
satisfaction�. In: Fuzzy Sets and Systems 134.3 (2003), pp. 311�342.

References III

M.C. Cooper. �Fundamental properties of neighbourhood substitution
in constraint satisfaction problems�. In: Arti�cial Intelligence 90.1-2
(1997), pp. 1�24.

Martin C Cooper, Marie de Roquemaurel, and Pierre Régnier. �A
weighted CSP approach to cost-optimal planning�. In: Ai
Communications 24.1 (2011), pp. 1�29.

M C. Cooper and T. Schiex. �Arc consistency for soft constraints�. In:
Arti�cial Intelligence 154.1-2 (2004), pp. 199�227.

Jessica Davies and Fahiem Bacchus. �Exploiting the Power of MIP
Solvers in MaxSAT�. In: Theory and Applications of Satis�ability
Testing�SAT 2013. Springer, 2013, pp. 166�181.

J Desmet et al. �The dead-end elimination theorem and its use in
protein side-chain positioning.� In: Nature 356.6369 (Apr. 1992),
pp. 539�42. ISSN: 0028-0836. URL:
http://www.ncbi.nlm.nih.gov/pubmed/21488406.

Jilles Steeve Dibangoye et al. �Optimally solving Dec-POMDPs as
continuous-state MDPs�. In: Proceedings of the Twenty-Third
international joint conference on Arti�cial Intelligence. AAAI Press.
2013, pp. 90�96.

http://www.ncbi.nlm.nih.gov/pubmed/21488406

References IV

Stefano Ermon et al. �Embed and project: Discrete sampling with
universal hashing�. In: Advances in Neural Information Processing
Systems. 2013, pp. 2085�2093.

Eugene C. Freuder. �A su�cient Condition for Backtrack-free Search�.
In: Journal of the ACM 29.1 (1982), pp. 24�32.

Eugene C. Freuder. �A su�cient Condition for Backtrack-Bounded
Search�. In: Journal of the ACM 32.14 (1985), pp. 755�761.

Ivelin Georgiev, Ryan H Lilien, and Bruce R Donald. �The minimized
dead-end elimination criterion and its application to protein redesign in
a hybrid scoring and search algorithm for computing partition functions
over molecular ensembles.� In: Journal of computational chemistry
29.10 (July 2008), pp. 1527�42. ISSN: 1096-987X. DOI:
10.1002/jcc.20909. URL:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3263346%5C&tool=pmcentrez%5C&rendertype=abstract.

R F Goldstein. �E�cient rotamer elimination applied to protein
side-chains and related spin glasses.� In: Biophysical journal 66.5
(May 1994), pp. 1335�40. ISSN: 0006-3495. DOI:
10.1016/S0006-3495(94)80923-3. URL:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

1275854%5C&tool=pmcentrez%5C&rendertype=abstract.

http://dx.doi.org/10.1002/jcc.20909
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3263346%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3263346%5C&tool=pmcentrez%5C&rendertype=abstract
http://dx.doi.org/10.1016/S0006-3495(94)80923-3
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1275854%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1275854%5C&tool=pmcentrez%5C&rendertype=abstract

References V

Federico Heras, Javier Larrosa, and Albert Oliveras. �MiniMaxSAT: An
E�cient Weighted Max-SAT solver.� In: J. Artif. Intell. Res.(JAIR) 31
(2008), pp. 1�32.

Federico Heras, Antonio Morgado, and Joao Marques-Silva.
�Core-Guided Binary Search Algorithms for Maximum Satis�ability.�
In: Proceedings of 21th National Conference on Arti�cial Intelligence
(AAAI'11). 2011.

Frank R Kschischang, Brendan J Frey, and Hans-Andrea Loeliger.
�Factor graphs and the sum-product algorithm�. In: Information
Theory, IEEE Transactions on 47.2 (2001), pp. 498�519.

VA Kovalevsky and VK Koval. �A di�usion algorithm for decreasing
energy of max-sum labeling problem�. In: Glushkov Institute of
Cybernetics, Kiev, USSR (1975).

Vladimir Kolmogorov. �Convergent tree-reweighted message passing
for energy minimization�. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 28.10 (2006), pp. 1568�1583.

Vladimir Kolmogorov. �A new look at reweighted message passing�.
In: Pattern Analysis and Machine Intelligence, IEEE Transactions on
37.5 (2015), pp. 919�930.

References VI

A M C A. Koster. �Frequency assignment: Models and Algorithms�.
Available at www.zib.de/koster/thesis.html. PhD thesis. The
Netherlands: University of Maastricht, Nov. 1999.

Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. �MRF
optimization via dual decomposition: Message-passing revisited�. In:
Computer Vision, 2007. ICCV 2007. IEEE 11th International
Conference on. IEEE. 2007, pp. 1�8.

Vladimir Kolmogorov and Carsten Rother. �Minimizing nonsubmodular
functions with graph cuts-a review�. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 29.7 (2007), pp. 1274�1279.

VK Koval' and Mykhailo Ivanovich Schlesinger. �Two-dimensional
programming in image analysis problems�. In: Avtomatika i
Telemekhanika 8 (1976), pp. 149�168.

Jörg Hendrik Kappes, Bogdan Savchynskyy, and Christoph Schnörr.
�A bundle approach to e�cient MAP-inference by Lagrangian
relaxation�. In: Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on. IEEE. 2012, pp. 1688�1695.

Adrian Kuegel. �Improved exact solver for the weighted Max-SAT
problem�. In: Workshop Pragmatics of SAT. 2010.

References VII

Akshat Kumar and Shlomo Zilberstein. �Point-based backup for
decentralized POMDPs: Complexity and new algorithms�. In:
Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1-Volume 1. International
Foundation for Autonomous Agents and Multiagent Systems. 2010,
pp. 1315�1322.

J. Larrosa et al. �Existential arc consistency: getting closer to full arc

consistency in weighted CSPs�. In: Proc. of the 19th IJCAI.
Edinburgh, Scotland, Aug. 2005, pp. 84�89.

J. Larrosa. �On Arc and Node Consistency in weighted CSP�. In:
Proc. AAAI'02. Edmondton, (CA), 2002, pp. 48�53.

Jimmy Lee and K. L. Leung. �A Stronger Consistency for Soft Global
Constraints in Weighted Constraint Satisfaction�. In: AAAI. Ed. by
Maria Fox and David Poole. AAAI Press, 2010.

Jimmy Ho-Man Lee and Ka Lun Leung. �Consistency techniques for
�ow-based projection-safe global cost functions in weighted constraint
satisfaction�. In: Journal of Arti�cial Intelligence Research 43.1
(2012), pp. 257�292.

References VIII

Christophe Lecoutre, Olivier Roussel, and Djamel E Dehani. �WCSP
integration of soft neighborhood substitutability�. In: Principles and
Practice of Constraint Programming. Springer. 2012, pp. 406�421.

J. Larrosa and T. Schiex. �In the quest of the best form of local

consistency for Weighted CSP�. In: Proc. of the 18th IJCAI. Acapulco,
Mexico, Aug. 2003, pp. 239�244.

Javier Larrosa and Thomas Schiex. �Solving weighted CSP by
maintaining arc consistency�. In: Artif. Intell. 159.1-2 (2004),
pp. 1�26.

Paul Maier, Dominik Jain, and Martin Sachenbacher. �Compiling AI
engineering models for probabilistic inference�. In: KI 2011: Advances
in Arti�cial Intelligence. Springer, 2011, pp. 191�203.

Paul Maier, Dominik Jain, and Martin Sachenbacher. �Diagnostic
hypothesis enumeration vs. probabilistic inference for hierarchical
automata models�. In: the International Workshop on Principles of
Diagnosis (DX), Murnau, Germany. 2011.

References IX

Jean-Philippe Métivier, Samir Loudni, and Thierry Charnois. �A
constraint programming approach for mining sequential patterns in a
sequence database�. In: Proceedings of the ECML/PKDD Workshop
on Languages for Data Mining and Machine Learning. arXiv preprint
arXiv:1311.6907. Praha, Czech republic, 2013.

Rolf Niedermeier and Peter Rossmanith. �New Upper Bounds for
Maximum Satis�ability�. In: J. Algorithms 36.1 (2000), pp. 63�88.

Bertrand Neveu and Gilles Trombettoni. �Incop: An open library for
incomplete combinatorial optimization�. In: Principles and Practice of
Constraint Programming�CP 2003. Springer. 2003, pp. 909�913.

Abdelkader Ouali et al. �Cooperative parallel decomposition guided
VNS for solving weighted CSP�. In: Hybrid Metaheuristics. Springer,
2014, pp. 100�114.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems, Networks
of Plausible Inference. Palo Alto: Morgan Kaufmann, 1988.

Hélène Papadopoulos and George Tzanetakis. �Modeling Chord and
Key Structure with Markov Logic.� In: Proc. Int. Conf. of the Society
for Music Information Retrieval (ISMIR). 2012, pp. 121�126.

References X

Hélene Papadopoulos and George Tzanetakis. �Exploiting structural
relationships in audio music signals using Markov Logic Networks�. In:
ICASSP 2013-38th International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Canada (2013). 2013, pp. 4493�4497.

Niles A Pierce and Erik Winfree. �Protein design is NP-hard.� In:
Protein engineering 15.10 (Oct. 2002), pp. 779�82. ISSN: 0269-2139.
URL: http://www.ncbi.nlm.nih.gov/pubmed/12468711.

Daniel Prusa and Tomas Werner. �Universality of the local marginal
polytope�. In: Pattern Analysis and Machine Intelligence, IEEE
Transactions on 37.4 (2015), pp. 898�904.

Claude-Guy Quimper and Toby Walsh. �Global grammar constraints�.
In: Principles and Practice of Constraint Programming-CP 2006.
Springer, 2006, pp. 751�755.

J.C. Régin. �A �ltering algorithm for constraints of di�erence in
CSPs�. In: Proc. of AAAI'94. Seattle, WA, 1994, pp. 362�367.

J.C. Régin. �Generalized Arc Consistency for Global Cardinality
Constraints�. In: Proc. of AAAI'96. Portland, OR, 1996, pp. 362�367.

http://www.ncbi.nlm.nih.gov/pubmed/12468711

References XI

Thomas J Richardson and Rüdiger L Urbanke. �The capacity of
low-density parity-check codes under message-passing decoding�. In:
Information Theory, IEEE Transactions on 47.2 (2001), pp. 599�618.

Bogdan Savchynskyy et al. �A study of Nesterov's scheme for
Lagrangian decomposition and MAP labeling�. In: Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE.
2011, pp. 1817�1823.

T. Schiex. �Arc consistency for soft constraints�. In: Principles and
Practice of Constraint Programming - CP 2000. Vol. 1894. LNCS.
Singapore, Sept. 2000, pp. 411�424.

M.I. Schlesinger. �Sintaksicheskiy analiz dvumernykh zritelnikh signalov
v usloviyakh pomekh (Syntactic analysis of two-dimensional visual
signals in noisy conditions)�. In: Kibernetika 4 (1976), pp. 113�130.

Peter Struss, Alessandro Fraracci, and D Nyga. �An Automated Model
Abstraction Operator Implemented in the Multiple Modeling
Environment MOM�. In: 25th International Workshop on Qualitative
Reasoning, Barcelona, Spain. 2011.

References XII

T. Schiex, H. Fargier, and G. Verfaillie. �Valued Constraint

Satisfaction Problems: hard and easy problems�. In: Proc. of the 14th

IJCAI. Montréal, Canada, Aug. 1995, pp. 631�637.

Michail I Schlesinger and VV Giginjak. �Solving (max,+) problems of
structural pattern recognition using equivalent transformations�. In:
Upravlyayushchie Sistemy i Mashiny (Control Systems and Machines),
Kiev, Naukova Dumka 1 (2007).

Martí Sánchez, Simon de Givry, and Thomas Schiex. �Mendelian Error
Detection in Complex Pedigrees Using Weighted Constraint
Satisfaction Techniques�. In: Constraints 13.1-2 (2008), pp. 130�154.

David Sontag et al. �Tightening LP relaxations for MAP using
message passing�. In: arXiv preprint arXiv:1206.3288 (2012).

Seydou Traoré et al. �A new framework for computational protein
design through cost function network optimization�. In: Bioinformatics
29.17 (2013), pp. 2129�2136.

Willem-Jan Van Hoeve, Gilles Pesant, and Louis-Martin Rousseau. �On
global warming: Flow-based soft global constraints�. In: Journal of
Heuristics 12.4-5 (2006), pp. 347�373.

References XIII

R. Wallace. �Directed Arc Consistency Preprocessing�. In: Selected
papers from the ECAI-94 Workshop on Constraint Processing. Ed. by
M. Meyer. LNCS 923. Berlin: Springer, 1995, pp. 121�137.

T. Werner. �A Linear Programming Approach to Max-sum Problem: A
Review.� In: IEEE Trans. on Pattern Recognition and Machine
Intelligence 29.7 (July 2007), pp. 1165�1179. URL:
http://dx.doi.org/10.1109/TPAMI.2007.1036.

Matthias Zytnicki, Christine Gaspin, and Thomas Schiex. �DARN! A
weighted constraint solver for RNA motif localization�. In: Constraints
13.1-2 (2008), pp. 91�109.

http://dx.doi.org/10.1109/TPAMI.2007.1036

