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What will we see ?

On the Menu

1 Graphical models

Constraint programming
Cost Function Networks (Weighted CSP or WCP)
Stochastic Graphical Models

2 Solving techniques (tree search and local consistency)

Constraint programming
Stochastic Graphical Models
Cost Function Networks (WCSP/WCP)
Arc consistency, LP and duality

3 A quick list of solver techniques in toulbar2

4 A CFN application: Computational Protein Design



What is C(S)P ?

Solving a Constraint Network

1 Set X 3 xi of n variables, with �nite domain D i (|D i | ≤ d)

2 Set C 3 cS : DS → {0, 1} of e constraints

3 cS has scope S ⊂ X (|S | ≤ r)

4 De�nes a factorized joint constraint over X :

∀t ∈ DX ,C (t) = max
cS∈C

cS(t[S ])

Graph coloring/RLFAP-feas

1 A graph G = (V ,E ) and m
colors.

2 Can we color all vertices in such
a way that no edge connects two
vertices of the same color ?

x1 x2

x3
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Constraint networks are graphical models

A CN de�nes...

A factorization (hyper)graph

1 Vertices as variables

2 Scopes/factors as (hyper)edges

Or bipartite incidence graph [KFL01]

x1 x2

x3

Common to all factorization based models

Factorization allows for conciseness

Factorization usually leads to NP-hardness

Factorization allows for �local� processing
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CSP, SAT, CP

Arbitrary concise constraints

Table constraints (bounded scope)

Short list of (non) solutions (arbitrary scopes, SAT clauses)

Global constraints, arbitrary scope S

AllDi�(S) (all di�erent values)

GCC(S , v1, lb1, ub1 . . .). Satis�ed i� the assignment of S
contains between lbi and ubi occurrences of value vi .

Regular(~S ,A): satis�ed i� the tuple of values (word) de�ned
by ~S is accepted by the �nite state automata A.
See the catalog (http://sofdem.github.io/gccat)

not limited to linearity over integers (modeling)

very long list of speci�c constraint types (modeling)

http://sofdem.github.io/gccat
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Many applications to real-world problems

Job-Shop scheduling

1 Set of tasks ti with duration di and ressource (xi starting time)

2 Precedence constraints (ti → tj) (xi + di ≤ xj)

3 Deadline ddi for �nal tasks ti (no successors, xi + di ≤ ddi )

4 non sharable ressources (ti before or after tj)

A variety of solvers: GeCode, Choco, AbsCons, JACOP, Mistral,
MiniCSP, IBM Ilog, Cisco Eclipse. Many more global constraints for
speci�c scheduling problems, cumulative resources and also for
other domains.

See CP and CP/AI/OR application papers for more applications.
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CSP/CP targeted at feasibility

Job-Shop scheduling, min average tardiness

1 One extra �local cost� variable per �nal task: lateness li
2 A constraint to de�ne it li = max(0, xi + di − ddi )

3 A global cost variable xgc
4 A global constraint to de�ne it xgc =

∑
li

introduction of extra (non-decision) 'cost' variables

de�ned by suitable constraints (soft globals, sum, rei�ed)

iterative feasibility problems solving
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Lifting CP to optimization

Cost Function Networks aka Weighted Constraint Networks

Variables and domains as usual

Cost functions W 3 cS : DS → {0, . . . , k} (k �nite or not)

Cost combined by (bounded) addition [SFV95; CS04].

cost(t) = min(
∑
cS∈C

cS(t[S ]), k)

A solution has cost < k . Optimal if it has minimum cost.

Bene�ts

De�nes feasibility and cost homogeneously

A constraint is a cost function with costs in {0, k}
Tables, analytic (x1 · x3 + x2), globals (WeightedRegular,. . . )

No 'non-decision' variables (unless you want them)
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Stochastic Graphical Models

Markov Random Fields

Random variables X with discrete domains

joint non normalized probability distribution p(X ) de�ned as a
product of positive real-valued functions:

p(X = t) ∝
∏
cS∈C

cS(t[S ])

Massively used in 2/3D Image Analysis, Statistical Physics, NLP. . .

For optimization (MAP = Maximum a posteriori), MRF and CFN
are essentially equivalent after a − log transform.
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Stochastic Graphical Models

Bayesian networks

Random variables X and domains

joint normalized probability distribution p(X ) as a product of
conditional probability tables de�ned on a DAG.

p(X = t) =
∏

cx|Pa(x)∈C
cx |Pa(x)(t[x ]|t[Pa(x)])

Massively used in Uncertain reasoning in AI, many applications,
commercial solvers.

For optimization (MPE, maximum probability explanation), BN and
CFN are essentially essentially equivalent after a − log transform.

CFN solvers directly useful for MAP/MRF and MPE/BN (and
vice-versa).
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CFN as ILP/QP



Binary CFN as 01LP (in�nite k , �nite costs)

The MRF/CFN local polytope [Sch76; Kos99; Wer07]

Minimize
∑
i ,a

ci (a) · xia+
∑
cij∈C

a∈Di ,b∈Dj

cij(a, b) · yiajb subject to

∑
a∈D i

xia = 1 ∀i ∈ {1, . . . , n}

∑
b∈D j

yiajb = xia ∀cij ∈ C ,∀a ∈ D i

∑
a∈D i

yiajb = xjb ∀cij ∈ C ,∀b ∈ D j

xia ∈ {0, 1} ∀i ∈ {1, . . . , n}

nd + e.d r variables. n + 2ed contraintes.



Binary CFN as 01QP (in�nite k , �nite costs)

Only nd variables

min
∑
i ,a

ci (a).xia+
∑
cij∈C

a∈Di ,b∈Dj

cij(a, b) · xia · xjb subject to

∑
a

xia =1 (∀i ∈ {1, . . . , n})



01 binary CFN as 01QP (in�nite k , �nite costs)

Quadratic Pseudo Boolean optimization[BH02]

min
∑
i

ci (1).xia + ci (0).(1− xia)+∑
cij∈C

cij(1, 1) · xia · xjb+

cij(0, 1) · (1− xia) · xjb+
cij(1, 0) · xia · (1− xjb)+

cij(0, 0) · (1− xia) · (1− xjb)

Posiform QPBO. Also covers Weighted Max2SAT (or Max-cut).



CFN can concisely express a variety of problems



Graphical Models solvers

Tree Search & Arc Consistency



CP solving technology

Depth First Search + Arc Consistency

1 Do we have a proof of infeasibility (AC) ?

2 If yes backtrack (back to previous state)

3 Else choose a non singleton variable xi (vertical)

4 Split its domain in disjoint subsets (branching)
5 For each subset (horizontal)

1 restrict xi domain to this subset and recurse

Why DFS ?

1 DFS is polynomial space

2 DFS bene�ts from AC incrementality for free

3 BFS would need even more memory for incrementality
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Arc Consistency = local dynamic programming

AC as Dynamic programming

Imagine a CSP with linear graph

Use DP to compute which values
of xi are part of a solution of
x1, . . . xi knowing those for xi−1.

xi-1

xi

a b c d

a b c d

Revise = Equivalence Preserving Transformation (EPT)

a ∈ D i cannot be part of a solution (@u ∈ D j | cij(a, u) = 0).

we can delete it.

the resulting problem is equivalent (same set of solutions)

internal incrementality (support)

Communication between constraints goes (only) through domains.
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Directional AC, AC solve tree structured CN

Rooted tree CN

Revise from leaves to root

Root domain: only values part
of a solution

Tree CN

Revise from leaves and back

All domains: values part of a
solution only

Resulting problem solved
backtrack-free [Fre82; Fre85]
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Can be done on any CN, with arbitrary graph

Arc consistency

1 Linear time (tables)

2 Unique �xpoint (con�uent)

3 Preserves equivalence

4 May detect infeasibility

5 Problem transformation
(incremental)

6 internal incrementality (support)



AC on global constraints

Global decomposable constraints [Bac07; QW06]

Automata/CFG parsers, Knapsack: DP based.

Enforcing AC on the global can be directly done by
decomposing it in small constraints. Intermediary DP tables
must be representable as �extra� variables in a tree CSP.

Decomposable constraints emulate DP algorithms using AC.

A
x1 x2 x3 x4 x5

Si S1 S2 S3 S4 Sf

A A A A

AllDi� (matching [Rég94]) not decomposable [Bes+09]. GCC (max
�ow [Rég96]), AllDi� with Cost variable (min-cost �ow [VPR06])
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Message passing in Markov
Random Fields



MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming [Pea88]

1 Use DP to compute the cost of
an optimal solution that goes
from x1 to a ∈ Di knowing those
for xi−1

2 Use extra functions (messages)
to store DP results

xi-1

xi

a b c d

a b c d

1

4

3

250

2

2

13

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce �good� solutions
(turbo-decoding [RU01])

4 Not an equivalence preserving transformation [Pea88])

Communication between functions goes through messages.
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Solving the WCSP on a Cost
Function Network



From Constraints to Cost Functions

Depth First Branch and Bound + Arc Consistencies

1 Do we have a lower bound on optimum ≥ k (c∅)

2 If yes backtrack (back to previous state)

3 Else choose a non singleton variable xi (vertical)

4 Split its domain in disjoint subsets (branching)
5 For each subset (horizontal)

1 restrict xi domain to this subset and recurse

1 When a solution is found, update k to its cost.

2 DFS vs. BFS: same arguments.
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CFN Arc Consistency: MP with reformulation

AC as Dynamic programming

1 MRF message passing but. . .

2 use c∅ and ci (a) to store
optimum cost from x1 to xi

3 Preserves equivalence by �cost
shifting� [Sch00; Sch76]
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c =1
k=5
∅

Enhanced propagation

Communication between functions goes through functions.
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Equivalence Preserving Transformation

Arc EPT

A cost function cS , here cij .

EPT Project ({ij}, {i}, a, α) shifts cost α between ci (a) and
the cost function cij .

projection (α ≥ 0), extension (α < 0).

Precondition: −ci (a) ≤ α ≤ mint′∈D ij ,t′[i ]=a cij(t
′);

Procedure Project({i , j}, {i}, a, α)
ci (a)← ci (a)⊕ α;
foreach (t ′ ∈ D ij such that t ′[i ] = a) do

cij(t
′)← cij(t

′)	 α;
end



Example

Project({1, 2}, {1}, b, 1) Project({1, 2}, {2}, a, 1)
← →

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1
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Properties

Solves tree structured problems (proper ordering), optimum
available in c∅

is a reformulation so incremental

has internal incrementality (supports)

May loop inde�nitely on cyclic graphs

No unique �xpoint when it exists



Convergent Arc Consistencies

Breaking the loops

1 Arc consistency O(ed3): prevent loops at the arc level [Sch00]

2 Node consistency [Lar02]

3 Directional AC O(ed2): prevent loops at a global level [Coo03;
LS03; LS04]

4 Combine AC and DAC into FDAC [LS03; LS04]

5 Pool costs from all stars to c∅ in EAC [Lar+05]

6 Combine AC+DAC+EAC in EDAC [Lar+05]

All O(ed) space.



Comparison with AC

1 AC, FDAC and EDAC equivalent to classical AC (constraints).

2 DAC equivalent to classical DAC (constraints).

3 AC < FDAC < EDAC in terms of lb strength.

Can be enforced on global cost functions too (by emulating DP, or
using graph algorithms) [LL10; LL12; Boi+12].
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Beyond chaotic application

Finding an optimal order [CS04]

Finding an optimal sequence of integer arc EPTs that maximizes
the lower bound is NP-hard.

Finding an optimal set[CGS07]

Finding an optimal set of rational arc EPTs that maximizes the
lower bound is in P.
This is achieved by solving an LP (OSAC, �nite costs, k =∞).
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Reformulation by OSAC
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Optimal Soft Arc Consistency (�nite costs, k =∞)

01 LP Variables, for a binary CFN

1 ui : amount of cost shifted from ci to c∅
2 pija: amount of cost shifted from cij to a ∈ D i

3 pjib: amount of cost shifted from cij to b ∈ D j

OSAC

Maximize
n∑

i=1

ui subject to

ci (a)− ui +
∑

(cij∈C)

pija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ D i

cij(a, b)− pija − pjib ≥ 0 ∀cij ∈ C ,∀(a, b) ∈ D ij

See [Sch76; Kos99; CGS07; Wer07; Coo+10].
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OSAC and the local polytope

The MRF local polytope [Wer07]

Minimize
∑
i ,a

ci (a) · xia+
∑
cij∈C

a∈Di ,b∈Dj

cij(a, b) · yiajb s.t

∑
a∈D i

xia = 1 ∀i ∈ {1, . . . , n} (1)

∑
b∈D j

yiajb − xia = 0 ∀cij ∈ C , ∀a ∈ D i (2)

∑
a∈D i

yiajb − xjb = 0 ∀cij ∈ C ,∀b ∈ D j (3)

xia ∈ {0, 1} ∀i ∈ {1, . . . , n}

ui multiplier for (1) and pija/pjib for (2) and (3) (as ≥ inequalities).



Duality

We are looking for multipliers ui and pija that

1 de�ne a linear inequality with multiplicative constants lower
than in the primal criteria (dual constraints)

2 such that the rhs of the inequality (lower bound) is maximum

Dual

Maximize
n∑

i=1

ui subject to

ui −
∑

(cij∈C)

pija ≤ ci (a) ∀i ∈ {1, . . . , n}, ∀a ∈ D i

pija + pjib ≤ cij(a, b) ∀cij ∈ C ,∀(a, b) ∈ D ij
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Graphical model polytopes

The local polytope and its dual have been intensely studied,
starting with the �Ukrainian� school [Sch76; KK75; KS76;
Wer07].

A variety of non-smooth convex optimization algorithms have
been tried with the hope of �faster than LP� resolution [SG07;
KPT07; Sav+11; KSS12].

[PW15] showed that any �normal� LP can be reduced to such
a polytope in linear time (constructive proof).
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Better understanding

Have we been doing LP w/o knowing ?

1 Somewhat: AC, DAC, FDAC, EDAC can be seen as
approximate greedy Block Coordinate Descent solvers of this
dual LP.

2 They all �nd feasible (but usually non optimal) solutions of the
dual.

3 But an optimal bound is not necessarily ideal (OSAC).

4 AC variants all directly deal with �nite k or in�nite costs.



Can we organize our EPTs better w/o LP?

Bool(P) [Coo+08]

Given a CFN P = (X ,D,C , k), Bool(P) is the CSP
(X ,D,C − {c∅}, 1).

Bool(P) forbids all positive cost assignments, ignoring c∅.

Virtual AC

A CFN P is Virtual AC i� Bool(P) has a non empty AC closure.

Virtual AC

Same �xpoint as a variety of converging reformulating BP
algorithms in MRF: TRW-S [Kol06], MPLP1[Son+12],
SRMP [Kol15], Max-Sum di�usion [KK75; Coo+10],
Aug-DAG[KS76]. . .
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How do we enforce VAC ?

OSAC does it, but without LP

1 Enforce AC in Bool(P) until a wipe-out occurs (record EPTs)

2 Extract a minimal set of EPTs su�cient for the wipe-out

3 Apply cost EPTs on P using suitable cost moves
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AC: deleting (3,T ): wipe out with 3 EPTs !
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We want to bring λ cost unit to x3, λ unknown.
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we need 2λ on (1,T ) and have only 1 unit of cost: λ = 1
2
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We replay the EPTs using the values of λ
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At the end we are able to project λ to c∅



Complexity

Table cost functions

1 Each iteration is in O(ed r ).

2 May require an in�nite number of iterations.

3 ε-convergence in O(ed r .k/ε)

4 can be much faster than OSAC

5 often accelerates CPLEX on local polytopes



Connection with AC in CSP

Virtual AC

1 solves tree-structured problems,

2 solves CFNs with submodular cost functions (Monge)

3 solves CFNs for which AC is a decision procedure in Bool(P).

1 Any solution of Bool(P) has cost c∅ and is therefore optimal.

2 A problem which is VAC and has only one value a in each
domain such that ci (a) = 0 is solved.

3 There is always at least one such value (or else not VAC).
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Any connection with a famous graph algorithm ?

Boolean binary CFN - QPBO - WMax2SAT

1 Bool(P) is 2-SAT (in P).

2 Minimal propagation DAG made of disjoint paths.

3 Related to Ford-Fulkerson (speci�c graph),

4 Similar to the �roof-dual� lower bound of QPBO (LP or �ow
based [BH02])

5 Similar to `Graph Cut� for binary pairwise supermodular MRF
(�ow based [KR07])

6 naturally incremental, thanks to EPTs.

Anything similar to VAC in OR/Graph algorithms ?
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Implementations



mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDi�, GCC, Regular. . . )

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last con�ict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the �y) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2
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Past successes...

1 First/second in approximate graphical model MRF/MAP
challenges (2010, 2012, 2014).

2 Bioinformatics: pedigree debugging [SGS08], Haplotyping
(QTLMap), structured RNA gene �nding [ZGS08],
Computational Protein Design [Tra+13] (now in OSPREY)

3 RLFAP: closed all CELAR min-interference RLFAP
instances fap.zib.de/problems/CALMA

4 Inductive Logic Programming [AR07], Natural Langage
Processing (in hltdi-l3), Multi-agent and cost-based
planning [KZ10; CRR11], Model Abstraction [SFN11],
diagnostic [MJS11b], Music processing and Markov
Logic [PT12; PT13], Data mining [MLC13], Partially
observable Markov Decision Processes [Dib+13], Probabilistic
counting [Erm+13] and inference [MJS11a], . . .

http://fap.zib.de/problems/CALMA/
https://code.google.com/p/hltdi-l3


Other solvers

Mostly MRF targeted

daoopt (exact, DFBB + Treewidth + minibuckets)a

MPLPb, SRMPc : primal/dual like solvers using BCD-based
approximate LP bounds for dual and heuristic from primal.

OpenGM-2d: an impressive MRF processing library with many
MRF processing algorithms (includes daoopt and many other
published algorithms, exact or not. Toulbar2 soon).

agithub.com/lotten/daoopt
bcs.nyu.edu/ dsontag/code/README_v2.html
cpub.ist.ac.at/ vnk/software.html
dhci.iwr.uni-heidelberg.de/opengm2

https://github.com/lotten/daoopt
http://cs.nyu.edu/~dsontag/code/README_v2.html
http://pub.ist.ac.at/~vnk/software.html
http://hci.iwr.uni-heidelberg.de/opengm2/


Application to Computational
Protein Design

Joint work with D. Allouche, Isabelle André (LISBP-INSA), Sophie
Barbe (LISBP-INSA), Jessica Davies, Simon de Givry, George
Katsirelos, Barry O'Sullivan (Insight Centre, Ireland), Steve
Prestwich (Insight Centre), David Simoncini, Seydou Traoré

(LISBP-INSA).



What is a protein ? (Kudos to wikipedia)

Amino acids, proteins

Proteins are linear chains of amino-acids (20 natural AAs).

All AAs share a common �core� and have a variable side-chain.

Side-chains are
�exible (ARG)



Protein Design

Why ?

Proteins have various functions in the cell: catalysis, signaling,
recognition, regulation. . .

E�cient, biodegrable, 106 to 1020 speedups

Some reactions / ligands miss enzymes / partners.

Medecine, cosmetics, food, bio-energies. . .

Nano-technologies (shape more than function).



Protein Design

Protein function linked to its 3D shape through its amino acid
composition.

Protein design's aim

Identify sequences that have a suitable
function (shape).

Issue

There are 20n proteins of length n.
Impossible to synthesize and test all of
them.
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The CPD problem - stability variant

Preparation

A backbone is chosen/built from a known protein/structure
(or de novo).

Positions are set as mutable, �exible or rigid

The aim is to �nd an AA sequence that folds, stably, in the
backbone.

Issues

CPD is a sort of inverse of folding.

But folding is far from being a solved problem
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Successes of Protein Design



The (basic) CPD problem: search space

Rigid backbone variant

1 Assume a rigid protein backbone.

2 Choose 1 AA among possible ones
at each mutable position.

3 Spatial conformation discretized in
rotamers.

4 Statistically frequent orientations.

5 Several 100's rotamers per position.

Search Space

1 Fully discrete description, de�ned by a choice of rotamer (AA
× conformation) for each position.

2 Search space can be ≈ 250n
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Stable = minimum energy (GMEC, NP-hard [PW02])

Energy: interactions between atoms.

Electrostatic, van der Waals (Amber)

Dihedral torsion angles, Implicit Solvation (EEF1)

�Statistical terms� (Talaris)

Cuto� functions

Pairwise decomposable energy

backbone/backbone (constant)

backbone/rotamer (depends on rotamer)

rotamer/rotamer (depends on pairs of rotamers)

E (c) = E∅ +
n∑

i=1

E (ir ) +
∑
i<j

E (ir , js)
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Dedicated CPD Methods

Dominance / Sustitutability / Dead End Elimination [Des+92]

E (ia) +
n∑
j 6=i

min
c

E (ia, jc) > E (ib) +
n∑
j 6=i

E max
b

E (ib, jc)

Strengthened by [Gol94]

E (ia)− E (ib) +
n∑
j 6=i

min
c

[
E (ia, jc)− E (ib, jc)

]
> 0

Many further enhancements (splitting, pairs...). Polynomial time
pre-processing.

�(Soft) substitutability� [Coo97; LRD12]
Dominating 1-clause rule in MaxSAT [NR00].
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DEE + A∗

polytime DEE, GMEC NP-hard

DEE cannot reduce all domains to singletons

Followed by A∗ best-�rst search using the following lower
bound (admissible heuristics) [GLD08]:

d∑
i=1

E (ir ) +
d∑

j=i+1

E (ir , js)︸ ︷︷ ︸
Assigned

+
∑n

j=d+1

[
min
s
(E (js) +

d∑
i=1

E (ir , js)︸ ︷︷ ︸
Forward checking

+
n∑

k=j+1

min
u

E (js , ku)︸ ︷︷ ︸
DAC counts

)
]

Lower bound

Same as a lower bound introduced in AI (WCSP) in
1994 [Wal95].

Obsoleted by local consistencies.

T. Schiex. �Arc consistency for soft constraints�. In: Principles and Practice of Constraint
Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411�424
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Solving the Fixed Backbone CPD problem

Our targets [All+14]

Identify a most e�cient model/solving technique for the rigid
backbone/rotamer based/pairwise energy CPD problem.

Do one of the �rst large spectrum comparison of NP-complete
optimization techniques (AI: CFN, CP, SAT, MRF and OR:
ILP, QP, QPBO) on one well de�ned, important optimization
problem.

Learn from it.



Partial Weighted maxSAT

PW MaxSAT

Boolean variables, litteral: variable or its negation

Weighted clauses: disjunction (∨) of litterals.
criteria: sum of weight of violated clauses.

B&B - Core solvers: MiniMaxSat [HLO08],akMaxSat [Kue10]
- bincd [HMM11],wpm1/2 [ABL09; ABL10],MaxHS [DB13]

Direct encoding

dia : use ia

∀ir , is , ir 6= is , (¬dir ∨ ¬dis ) (AMO)

∀i , (
∨

r dir ) (ALO)

(¬dir ,E (ir ) and (¬dir ∨ ¬djs ,E (ir , js))
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Tuple encoding

Property [Bac07]

In CSP, Unit Propagation on this encoding enforces AC on the
CSP. Close to the local polytope ILP model.

Direct encoding

dia + AMO + ALO.

pir js : pair ia, js is used.

∀ir , js : (dir ∨ ¬pir js ) and (djs ∨ ¬pir js ).
∀ir , j(¬dir ∨

∨
s pir js )

idem for E (ir ), ∀ir , js(¬pir js ,E (ir , js))



A realistic benchmark: 35+12 designs tested

The designs

1 Extracted from the litterature [Tra+13],

2 Good resolution of the PDB structures,

3 Structure preparation,

4 Domains assigned based on accessibility,

5 Amber + EEF1 + No cuto� (almost complete graphs)

6 Variable search space size, from 1026 to 10249



Results - 9000 seconds



From failures. . .

Analysis

1 QP by Cplex: dense model, but weak and somewhat
expensive lb (very large node �le, large gaps).

2 SDP based QPO: probably tight lower bound, but far too
expensive (few nodes explored after several hours). biqmac
library of MaxCut beasley instances size 100: solved in 1� by
tb2, 1' by biqmac.

3 MaxSAT, direct: branch and bound solvers very fast (36k
nodes/sec, 100 times faster than tb2). found incumbent
solutions but never started the optimality proof. Weak lb (root
= 25% of optimum, tb2 always > 97%).

4 MaxSAT, tuple: b&b,strong lower bound (should be similar
to VAC for core based solvers). Still weaker than tb2 and very
slow (2 nodes before timeout at best for akmaxsat). No
incumbent. Core based better (maxHS, good lb).
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... to Successes

Analysis

1 Daoopt: almost complete graphs. Not ideal for tree
decomposition based methods.

2 DEE/A*: surprisingly good given the lower bound used. Very
strong preprocessing.

3 ILP - Cplex: LP bound similar to OSAC (dual). tb2 has
upper bounding (k). Similar number of nodes but tb2 much
faster (ILP: 1 to 40 nodes / minutes, tb2: 1 to 40 thousand).

4 MPLP: no branching but able to solve few more problems
than CPLEX.

A Lesson for (AI) Optimization

The lower bounding/search e�orts compromise is, AFAIK, not
understood, nor exploited. But may be crucial.
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Final note and Acknowledgments

This is all for a rigid backbone. Modern CPD increasingly uses
��exible� representations (eg. with a backbone ensemble).
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