
Pushing data into CP models using
Graphical Model Learning and Solving

Céline Brouard, Simon de Givry, and Thomas Schiex

Université Fédérale de Toulouse, ANITI, INRAE, UR 875, Toulouse, France
{firstname.name@inrae.fr}

Abstract. Integrating machine learning with automated reasoning is
one of the major goals of modern AI systems. In this paper, we pro-
pose a non-fully-differentiable architecture that is able to extract prefer-
ences from data and push it into (weighted) Constraint Networks (aka
Cost Function Networks or CFN) by learning cost functions. Our ap-
proach combines a (scalable) convex optimization approach with empir-
ical hyper-parameter tuning to learn cost functions from a list of high-
quality solutions. The proposed architecture has the ability to learn from
noisy solutions and its output is just a CFN model. This model can be
analyzed, empirically hardened, completed with side-constraints and di-
rectly fed to a Weighted Constraint Satisfaction Problem solver.
To explore the performances and range of applicability of this architec-
ture, we compare it with two recent neural-net friendly learning systems
designed to “learn to reason” on the Sudoku problem and also show how
it can be used to learn and integrate preferences into an existing CP
model, in the context of Configuration systems.

Keywords: Graphical Models · Cost Function Networks · Learning ·
Constraint Programming.

1 Introduction

Constraint Satisfaction and Constraint Programming define a powerful frame-
work for modeling and solving decision problems. It is often considered as one of
the closest approaches computer science has made to the Holy Grail of program-
ming: “the user states the problem, the computer solves it.” [16]. The problem
may however be difficult to state, not only because of the rich CP language,
but because several of the aspects of the real problem may be inaccessible to
the modeler, leading to approximate formulations, providing only partially sat-
isfactory solutions. In this paper, we show how preferences and constraints can
be extracted from historical solutions so that they can be directly represented
inside a (weighted) constraint satisfaction problem.

0 This is an edited and improved version of the published version of CP2020 without
the “hint as images/solutions as number” situation that is not a realistic situation.
On the visual Sudoku task, SAT-Net (and us now) only present results in the situ-
ation where both hints and solutions are available as images).

2 C. Brouard et al.

In this paper, we are interested in learning a criterion and its domain of
definition as a set of cost functions and constraints, starting from a set of good-
quality solutions that could require a perceptive layer for acquisition. The learned
preferences and constraints are represented as a Cost Function Network (CFN).
This learned CFN can then be completed by user-defined constraints or criteria
before feeding a Weighted Constraint Satisfaction Problem (WCSP) solver. Such
a workflow is very useful when the aim is to produce a new solution that resides
in a large family of known designs [34] (providing data), that must satisfy both
known general requirements and new specific properties.

Our main contribution is to leverage the capacity of CFN solvers to optimize
Graphical Models (GMs), a family of models that covers Constraint Networks,
Clausal Propositional Logic and their weighted variants as well as probabilistic
Markov Random Fields and Bayesian Nets models [10]. Starting from historical
solutions, we use a recent convex optimization approach to estimate a CFN model
of the data that gives a lower cost to the training set. We notice that a maximum
regularized approximate log-likelihood loss [30] does tackle this objective. We use
a scalable algorithm which learns the scopes and cost tables of cost functions.
This CFN can then be optionally enriched by user cost functions or constraints
and solved by a WCSP solver for various inputs. The resulting architecture
combines ML and CP components in an way which, in our knowledge, has never
been tested to learn preferences (and constraints).

Our approach compares with recent differentiable “learning to reason” archi-
tectures such as Recurrent Relational Nets (RRN [29]) or SAT-Net [37] in terms
of input, output and prior information (assumptions). These approaches define
fully differentiable layers that can learn pairwise “message passing” functions
(RRN) or a low-rank convex relaxation of Max-SAT, using continuous descent
algorithms as their optimization component. Such layers are easy to inter-operate
with Deep learning differentiable architectures. These two approaches have been
benchmarked on Sudoku resolution. We therefore compare our approach to the
RRN and SAT-net approaches, including in situations where Sudoku grids are
only available as hand-written grid images. We observe that our ML+CP ap-
proach offers a better accuracy and requires less samples. These results show
that neither differentiability nor even continuity are needed to work on a model
combined with a deep learning perceptual front-end [29].

Finally, we show this approach can be used to learn preferences on an ex-
isting car configuration benchmark [13,14] where past configurations are avail-
able together with known manufacturing constraints. In this case, we observe
that the learned preferences help to predict satisfactory configurations. The
corresponding code will be made accessible from the toulbar2 distribution
(https://github.com/toulbar2/toulbar2, under an MIT licence).

2 Background

Our approach is based on Graphical Models [10], a family of mathematical mod-
els that has been used in several areas of computer science, artificial intelligence,

https://github.com/toulbar2/toulbar2

Pushing data into CP models 3

physics and statistics. The main idea of Graphical Models is to describe a func-
tion of many variables as the combination of several simple functions. “Simple”
here means that there is a concise description of the function in a chosen language
of functions. Graphical Models have been used to describe Boolean or numeri-
cal functions depending on continuous (as in Gaussian Graphical Models [8]) or
discrete variables (as in Constraint Networks [32] or propositional logic).

– On the logical side, Constraint networks define a global truth value function
as the logical conjunction of small functions described by tables (Boolean
tensors), possibly extended with so-called global constraints in Constraint
Programming [32].

– Similarly, discrete Markov Random Fields describe a probability distribution
as the normalization of the product of small non negative functions described
as tables (non negative real tensors), possibly extended with higher-order
functions (similar to global cost functions [1]).

In the rest of the paper we use capitals X,Y, Z, . . . to denote variables. The do-
main of a variable will be denoted as DX for variable X. The actual elements
of these domains, values, will be denoted as a, b, c, g, r, t, 1 . . . and an unknown
value as u, v, w, x, y, z . . . Sequence of variables or unknown values will be de-
noted in bold, respectively as X,Y ,Z, . . . and u,v,w,x,y, z The Cartesian
product of the domains of a sequence of variables X will be denoted as ΠX .
An element of ΠX is a tuple or assignment uX of the variables in X. Finally,
the projection of the tuple uX on Y ⊆X is the sequence of values of Y in uX

and is denoted as uX [Y]. For a given sequence of numbers x = (x1, . . . , xn),
its soft-max is log(

∑
xi∈x exp(xi)) and its soft-min − log(

∑
xi∈x exp(−xi)). Soft-

max provides a usual smooth approximation to the maximum function (as does
soft-min for the minimum).

We rely on two closely related types of Graphical Models. Cost Function
Networks are an extension of Constraint Networks where constraints (Boolean
functions that can be satisfied or not), are replaced by bounded integer functions
that are summed together to describe a joint bounded numerical function.

Definition 1 (Cost Function Networks (CFN)). A CFN C = 〈V ,C, k〉 is
defined by:

– a sequence of n variables V , each with a domain of cardinality at most d.
– a set C of e cost functions.
– each cost function cS ∈ C is a function from DS → Z̄k, the set of all integers

less than or equal to a given k ∈ Z̄ = Z ∪ {∞}.

The CFN 〈V ,C, k〉 defines a joint function CM(v) =

k⊕
cS∈Φ

cS(v[S]) where a ⊕
b = min(a+ b, k), the bounded addition.

Computing the minimum cost assignment of a CFN is the Weighted Constraint
Satisfaction Problem (WCSP). Thanks to the upper bound k, CFNs are very
flexible. For k = 1, CFNs are Constraint Networks. Finite values of k capture

4 C. Brouard et al.

situations in which an upper bound is known (e.g., the maximum cost that can
be spent in a design).

Cost Function Networks are tightly linked to a family of stochastic Graphical
Models known as Markov Random Fields:

Definition 2 (Markov Random Field (MRF)). An MRF M = 〈V , Φ〉 is
defined by:

– a sequence of n variables V , each with a domain of cardinality at most d.

– a set Φ of e functions (or factors).

– each function ϕS ∈ Φ is a function from ΠS → R+. S is called the scope of
the function and |S| its arity.

The MRF 〈V , Φ〉 defines a joint function ΦM(v) =
∏
ϕS∈Φ

ϕS(v[S]) and a proba-
bility distribution defined as PM(V) ∝ ΦM(V).

Computing the probability PM(·) requires to compute a normalization constant,
denoted as ZM, a #-P complete problem. For a given MRF M, finding an
assignment v that maximizes the probability PM(v) can however be directly
solved by optimizing the joint function ΦM(·), without knowing ZM and is
decision NP-complete.

The connection between CFNs and MRF is simple: in a CFN with no upper
bound (k =∞), ⊕ is just the usual addition. In this case, CFNs are isomorphic
to Markov Random Fields through a exp(−x) transform and its inverse − log(x)
transform, up to some adjustable fixed precision. These operations map addition
into product (and vice-versa1). For a given MRF M, we denote by M` its
corresponding CFN, obtained by applying a − log(·) transform to all functions.

In CSPs, CFNs, and MRFs, a usual choice is to represent functions by ta-
bles/tensors. When domains are Boolean, the language of (weighted) clauses can
also be used. We restrict ourselves here to pairwise tensors where each function
is determined by an O(d2) table of costs (or parameters). Then a pairwise graph-

ical model becomes fully defined by the contents of its O(n(n−1)2) cost tables (if
no function exists between a given pair of variables, it can be represented as
a cost function with constant cost). Extensions to larger arities and global cost
functions are not considered here and define non trivial extensions for the future.

3 Learning CFN from data

In many decision problems, a fraction of the description of the real problem is
impossible to model because this information is missing or is too complex to
represent. In the extreme, one may want to directly learn a complete CFN from
data (a special case of which is Max-SAT [23]).

1 This log representation is often using in MRFs and the co-domain of factors is called
“energy”.

Pushing data into CP models 5

Definition 3 (Learning CFN). Given a set of variables X, and examples E
sampled i.i.d. from an unknown joint distribution of high-quality solutions, find
a CFN C that can be solved to produce high-quality solutions.

Thanks to their isomorphism with Markov Random Fields, CFN can actually
be learned in this setting using a probabilistic criterion. Several approaches exist
to estimate the set of functions of an MRF from an i.i.d sample but a good fit
with the definition above is offered by maximum log-likelihood approaches that
learn a modelM that maximizes the probability of the observed sample. Indeed,
the likelihood of a sample E of i.i.d. assignments under a given MRF M is the
product of the probabilities of all v ∈ E. Its logarithm is:

L(M,E) =
∑

v∈E log(P (v))
=

∑
v∈E log(ΦM(v))− log(ZM)

=
∑

v∈E(−CM`(v))− log(
∑

v∈ΠV exp(−CM`(v)))

Maximizing the log-likelihood therefore identifies weights in all possible pair-
wise tensors that simultaneously minimize the average cost of the observed high-
quality solutions and maximize the soft-min of the costs of all possible assign-
ments, a criterion which fits our optimization objective above very well, indepen-
dently of its probabilistic interpretation. For a Graphical Model of n variables
and maximum domain size d, there are O(n2d2) weights to optimize.

3.1 Regularized approximate log-likelihood GM estimation

In practice computing the partition function ZM is #P-hard. Existing algorithms
therefore optimize a simplified form of the likelihood which either relies on lo-
cal normalization constants (pseudo-likelihood [4]) or a concave upper-bound of
the log-partition function [30]. Maximum likelihood estimators benefits from at-
tractive asymptotic properties, being statistically consistent (the model learned
converges to true values as the sample size tends to infinity) [30,17]. On small
samples however, these approaches may overfit and the log-likelihood is regu-
larized by including the norm of the parameters learned as a penalty. Typical
norms include the L2 norm (the Euclidian norm), the L1 norm (or Lasso penalty,
the sum of the absolute values of all parameters learned) or the L1/L2 norm (or
Group Lasso, that evaluates each function using the L2 norm and combines them
using the L1 norm). Given an i.i.d sample E of assignments, the regularized log-
likelihood of an MRF M is defined as:

R(M,E) = L(M,E)− λ · ||Φ||

where ||Φ|| denotes the norm of all the parameters used in the tensors in Φ and λ
is a positive number that needs to be fixed. The Lasso norms (L1 or L1/L2) bias
the criteria to favor functions that take a zero value. This has several positive
effects: a function with a table full of zeros does not contribute to the value
of the joint function and can be removed, allowing to estimate parameters and
scopes simultaneously. Our experiments also show that Lasso regularization can

6 C. Brouard et al.

effectively cancel the unavoidable sampling noise present in the finite learning
set that otherwise leads to the estimation of a Graphical Model that contains a
fraction of random cost functions that are very hard to optimize exactly.

To solve this problem, we rely on a recently proposed scalable (in O(n3d3)
for pairwise tensors) regularized maximum log-likelihood estimation algorithm,
PE MRF [30], that exploits the ADMM (Alternating Direction Multiplier Method)
algorithm for optimization [9]. The algorithm has been designed to learn a GM
from a set of solution samples but is actually immediately capable of learning
using probabilistic input which will prove very useful in the most intense inter-
action with deep learning systems later. This algorithm can also learn mixed
graphical models with both discrete and continuous variables which can be con-
venient if the learning set includes not only decision variables but also contextual
continuous observations that will also be available when solving (even if we don’t
explore this capacity further in this paper). This regularized approximate log-
likelihood approach using the L1/L2 norm has been shown to be “sparsistent”:
as the size of the learning set tends to infinity, the probability of finding the
exact graph structure tends to 1 [30], a reassuring asymptotic result, even if our
target is to learn a solver, not to estimate a graph structure.

Although the ADMM algorithm is a black box optimization algorithm, it
is useful to understand how it works. ADMM is well-suited to optimize convex
functions that are sums of terms. Using a Dual Decomposition principle, every
optimization variable cij(a, b) (the cost of the pair (a, b) in the function ci,j(·, ·) of
the GM to learn) is duplicated into a copy c′ij(a, b) and the two parameters linked
by an equality constraint. At each iteration, the log-likelihood is incrementally
optimized on the c variables while the regularization penalty is incrementally
optimized on the c′ variables. The satisfaction of the equality constraints is
delegated to an Augmented Lagrangian approach that penalizes the violation of
constraints [9]. As the algorithm iterates, it constantly provides two estimates
of the parameters, each defining a CFN. Upon convergence, the two copies are
almost but not strictly identical. In practice, it is preferable to use the c′ copies
which optimize for regularization and contain exact zero. This is crucial for exact
WCSP solvers that otherwise spend a gigantic optimization effort optimizing tiny
costs often reflecting uninformative sampling noise.

3.2 Setting the regularization parameter

The determination of a suitable value of λ is essential for proper prediction. Ex-
isting approaches to tune this parameter in Machine Learning focus in recovering
the unknown graph structure (which cannot be achieved using pseudo-likelihood
in the presence of infinite costs [36]).

However, recovering the true graph is not our target and, similarly to what
has been observed in the “Smart ’Predict and Optimize’” framework [11], we
observed that taking into account the exact prediction objective does help. We
therefore use en empirical risk (or error) minimization (ERM) approach. This
approach is central in the recent HASSLE Partial Weighted Max-SAT algo-
rithm [23] which also proves that Max-p-SAT and CFN models are Probably

Pushing data into CP models 7

Approximately Correct(ly) (PAC [35]) learnable by ERM. Using a solution s ex-
tracted from a validation set of high-quality solutions (ideally distinct from the
training set used for PE MRF), we assign a fraction of all variables in the learned
CFN model with their value in s and ask a WCSP solver to optimize the remain-
ing variables. The solution obtained can be correct (or close to s according to an
application-specific distance that can default to the Hamming distance) or not.
We use a value of λ that minimizes the fraction of non-satisfactory assignments.

Optimizing λ in this way requires the repeated resolution of a decision NP-
complete problem on the validation set. This is a serious issue even on small
problems because the problems learned with very low values of λ usually define
dense CFNs with functions that overfit the learning set and capture the sam-
pling noise in the learned cost functions. These random problems are extremely
hard to solve in practice. While the use of polynomial time approximations de-
fined by (linear or convex) relaxations has been used with success in related
approaches [26], two different approaches can be used to mitigate this complex-
ity. First, we can assign a larger fraction of each solution s in the validation
set before solving. This reduces complexity exponentially. Each solution s in the
validation set can be used with several partial assignments in order to cover
all scopes. Second, we can relax the requirement for an optimal solution using
either a bounded optimization effort (as captured by cpu-time or numbers of
backtracks), or by requiring an approximate guarantee (using e.g. a weighted
criterion [31]), to avoid spending time on the optimization of very noisy over-
fitted problems.

3.3 Cost function hardening

If needed, and if the training set is reliable (with deterministic 0/1 probabilities
on observed values), a similar empirical approach can be used to harden cost
functions into constraints. For every non zero cost in the CFN learned, one can
simply test if the corresponding combination is observed in any of the training
samples. If not, its cost is set to k (the maximum forbidden cost). This may lead
to a learned problem that removes more solutions than it should (assuming the
true problem is known) but will never make the learned problem inconsistent.
In essence, this process is similar to the empirical/experimental method used to
learn the general laws of Physics, which slowly evolve as data accumulates.

3.4 Related approaches

Constraint Acquisition [7] learns Constraint Networks from exact positive or
negative answers to (partial) membership queries [2]. We instead primarily try
to learn a criterion that is not known to be a Boolean feasibility, using a fixed
set of high-quality assignments (mostly because good – working – solutions are
more often conserved than bad ones, as does Nature for proteins). We also allow
these solutions to be only accessible through an imperfect perceptive layer.

Hassle [23] is a recent algorithm for learning Partial Weighted Max-p-SAT
(PWMSAT) problems from contextual positive and negative examples using

8 C. Brouard et al.

empirical risk minimization. The learned Max-p-SAT examples can then be fed
to any PWMSAT solver, possibly with additional hard and soft constraints, as in
our case. The main strength of Hassle is its ERM formulation that can decide,
for every possible p-clause, which one needs to be hard, weighted or removed to
make every sample optimal in the model. This MIP grows however very quickly
with the sample size and p. The MILP approximation proposed is tested on
problems that include at most 20 variables and 91 clauses. A direct encoding
of the Sudoku problems would require 729 propositional variables and several
thousands clauses (with 9-clauses). It relies on a NP-hard formulation of learning
(which is costly, but should be beneficial on small samples).

The “Smart ’Predict then Optimize’”(SPO [11,26]) framework has several
connections with our approach. Like the surrogate loss of SPO, the convex loss
we use (the opposite of penalized log-likelihood and its non probabilistic inter-
pretation), is statistically consistent but is best suited for Graphical Models. The
empirical adjustment of λ using an empirical approach that relies on the final
discrete optimization method instead of a pure ML criteria, such as Akaike infor-
mation content (AIC) or Bayesian Information Content (BIC), similarly adapts
learning to the final target of actually solving the learned problem.

Recurrent Relational Neural Nets have been recently proposed as a “learn-
ing to reason” approach [29]. As in our case, they start from positive examples
to later produce solutions. The RRN approach makes little assumptions on the
pairwise functions to learn but directly exploits the graph structure of the prob-
lem that needs to be solved. On these edges, it learns pairwise “message passing”
functions which are applied recurrently using an LSTM neural net [33]. These
functions are then applied repeatedly in the prediction phase, similarly to what
is done in Loopy Belief Propagation (and Arc Consistency). The resulting Neu-
ral Net is restricted to solving the problem it has been trained on and will not
accept later side-constraints, something which is often desirable in practice.

SAT-net [37] is a Neural-net friendly approach using low-rank convex opti-
mization to both optimize the parameters of a variant of Goemans and Williamson
Max-2-SAT convex relaxation [18] and find good solutions using the associated
randomized rounding approach. There is a likely similarity between the G&W
relaxation (that SAT-net exploits) and the convex relaxations in PE MRF (that
we exploit), but in our case this relaxation is used only for learning, and is
optimized by ADMM instead of coordinate descent. More importantly, we rely
on a non-differentiable exact WCSP solver for prediction instead of the convex
relaxation again. The WCSP solver provides adjustable optimization guarantees
while the convex relaxation power is fixed. Furthermore, it is able to satisfy later
added side-constraints, something which is impossible by solving G&W convex
relaxation (but which would be feasible using a Max-SAT solver, something that
has never been tested in our knowledge2).

2 The weights learned in the convex relaxation are floating point numbers. A precise
integer approximation generates large integer costs which are usually not the sweet
spot of the most efficient, core-based, Max-SAT solvers [28].

Pushing data into CP models 9

Probabilistic Soft Logic [3] is a related ML system which, as SAT-Net, ex-
ploits a convex relaxation for learning parameters and solving Graphical Models
(using ADMM instead of coordinate descent). While it benefits from a high-level
modeling language with first-order-like syntax, it has the same intrinsic limita-
tion as SAT-Net: the convex relaxation has a fixed inference power and cannot
provide guarantees that additional logical constraints will be satisfied.

4 Learning to solve the Sudoku

Neural Nets and differentiable approaches (such as RRN and SAT-Net) are now
able to “learn to reason” from examples, providing the capacity to heuristically
solve decision problems with little assumptions and from various inputs, includ-
ing images. The Sudoku problem has been used as an exemplar of reasoning and
we decided to apply our learning and reason architecture to the Sudoku prob-
lem, in an experimental setting that is comparable to those used by differentiable
approaches in terms of assumptions and biases, also including situations where
examples on which to learn require a perceptive layer.

The n×n Sudoku problem is defined over a
grid of n2×n2 cells that each contain a number
between 1 and n2. This grid is subdivided in n2

sub-grids of size n × n. A solved Sudoku grid
is such that the numbers in every row, column
and n× n sub-grids are all different. Initially, a
fraction of all cells is fixed to known values (or
hints) and the NP-complete problem [38] is to
find a completion of the hints that satisfies the
constraints. The puzzle is usually played with
n = 3. A typical grid, with handwritten hints
from the MNIST dataset [24], is represented on
the right. As all correct Sudoku puzzle grids, it
has only one correct completion (a unique solution). It is known that a minimum
of 17 hints is necessary to restrict the number of completions to just one [27].
Such minimal Sudoku problems define challenging puzzles for human beings. As
the number of hints increases, the instances become easier and can be solved
using simple logical inference rules. Hard or easy for humans, 3×3 instances can
be solved easily by CP solvers, on any standard hardware.

We instead assume that we don’t know much about the Sudoku, not even
that it has logical rules. We instead consider that the completed grids capture
the preferences of users and try to learn a CFN that captures these preferences
and compare this with RRN and SAT-Net. It’s not easy to compare language
biases: RRN is informed with pairwise scopes, SAT-Net uses Max-SAT and we
use pairwise finite costs CFNs. Max-SAT and pairwise numerical functions are
both capable of representing the set of Sudoku solutions as optimal solutions.
SAT-Net has, however, the attractive capacity of using latent variables.

10 C. Brouard et al.

SAT-Net relies on a dataset of 9,000 training + 1,000 test (hint,solution) pairs
extracted from a popular Sudoku web site, with an a average of 36.2 hints per
grid, defining easy problems. RRN relies on 180,000 training + 18,000 validation
and 18,000 test pairs organized each in 18 sets of instances with hardness varying
from 17 to 34 hints. We therefore used a variable fraction of the RRN training
set for training and 1,024 validation samples for hyper-parameters tuning. For
testing, we used all 18 × 1, 000 RRN test samples as well as the SAT-nets test
set for comparison. An Intel XeonE5-2687Wv4 3.00GHz server was used for
all experiments. The absolute and relative convergence of ADMM in PE MRF
were both set to 10−3 and an L1-norm used. We used toulbar2 1.0.1 Python
interface, representing floating point numbers with 6 decimals and with a number
of backtracks limited to 50,000. The Python-implemented PE MRF code used
72 seconds on average for one CFN estimation (with a maximum of 252 seconds
on the largest 180,000 training set).

The empirical approach was used to fix the regularization hyper-parameter λ.
We used toulbar2 to minimize the solution cost (in the backtracks limit) and
kept the value of λ that successively minimizes the fraction of incorrect grids,
incorrect cells and toulbar2 cpu-time. The optimization of λ (in a 10−2 to 102

range explored on a logarithmic scale) took 95 minutes on average on one core
(this could be trivially reduced with more cores). SAT-Net requires 172 minutes
to train on a GTX 1080 Ti GPU on its training set [37]. We retrained RRNs on
their training data on a GTX 2080 Ti GPU (with a batch size of 64): each epoch
required 9 hours to run (hundreds of epochs are used by the authors [29]).

Using 180,000+18,000 training and validation samples, RRNs are able to cor-
rectly solve 96.7% problems of the hardest 17 hints problems using 64 “message
passing” steps (after which it plateaus). Using 9,000 + 1,024 training and vali-
dation samples, our approach solves 100% of the same hard 17 hints problems.

Using just 9,000 samples, SAT-net is able to solve 98.3% of its test set (of easy
problems). To solve 100% of this test set, 7,000 + 1.024 training and validation
samples suffice for our architecture (on these problems, 994/1000 instances are
solved backtrack-free, by preprocessing, the remaining problems requiring a total
of 24 backtracks). Note however that the learned solver is able to solve only
58.2% of the hardest 17 hints problems. Clearly, problem hardness has to be
taken in to account when comparing learned solvers. Figure 1 shows the fraction
of correctly solved grids (left) as the sample size increases (performances beyond
13,000 samples are not shown and remain maximal).

The corresponding prediction cpu-times are given in Figure 1 (right). When
training sets are small, the learned CFN models are dense. With 1,000 training
samples, more than 1,700 functions are used while the original pairwise Sudoku
formulation contains 810 functions. Because of this graph density (and their
noisy contents), optimization is more difficult with small training sample sizes.
As the training set size increases, the number of functions converges to 810 and
resolution becomes easy: an optimal solution can be found and proved in sub-
second time (with 9,000 samples, less than 0.3 seconds are needed on average
for the hardest 17 hints Sudokus, and just 3ms for 34 hints problems). RRN’s

Pushing data into CP models 11

Fig. 1. Fraction of correctly solved problem (left, dotted lines correspond to a 200,000
backtracks limit), number of learned functions and per instance prediction cpu-times
(right) for increasing sample sizes and problem hardness.

prediction time on a GTX 2080 Ti GPU was around 2 seconds for 64 steps. To
see if more WCSP solving power could help improve these results, we moved
the backtrack limit to 200,000 backtracks. This lead to minor improvements in
precision as the dotted lines in Figure 1 show above, with essentially no progress
in terms of accuracy on easy problems: a better loss function and a stronger
learning optimization method would be needed here to make progress.

We observed that when the training set size reaches 13,000 samples, the
learned CFNs become exact (the set of optimal solutions may be exact before
this): they contain 810 cost functions with the exact expected scopes (involving
pairs of variables inside a row, column or sub-grid only, although no grid layout
information is available to PE MRF) and contents (a “soft difference” function).
So, it is guaranteed that, once domains are reduced by observed hints, a preferred
(optimal) solution will be a perfect Sudoku solution. Empirical hardening (§ 3.3)
of such a CFN therefore recovers the original pairwise formulation of the problem.

4.1 Learning and predicting from Sudoku images

One of the advantage of differentiable layers that “learn how to reason” is their
capacity to integrate inside deep learning architectures. As an example, SAT-
net [37] has been trained using hints provided as images with handwritten digits
(an example of which appeared in a previous page). Each cell in this image can be
decoded by LeNet [24], a convolutional neural net trained on the MNIST dataset
with 99.2% precision. The predictions of LeNet are then fed into the SAT-Net
layer for learning and prediction. As the authors of SAT-Net observe, the 99.2%
precision of LeNet gives an upper bound on the maximum prediction precision:
since the SAT-Net data-set has, on average, 36.2 hints per sample, there will be
error(s) in the hints in 25.3% of cases, leading to a maximum accuracy of 74.7%.

We also used LeNet and transformed its confidence scores in a marginal unary
cost function using soft-max, as is usual with neural net outputs. When a digit
appears in a Sudoku image, this unary cost function is added to the learned
model instead of assigning a value. This happens both during validation and

12 C. Brouard et al.

testing. Because solutions are available as images only, it becomes impossible
to directly compare a predicted solution with the true (unknown) solution. We
therefore apply LeNet to each cell of the solution image and use the value of
the soft-max output of LeNet on the predicted digit as a score. A high score
represents an unlikely digit for LeNet and we therefore select a λ that produces
the most likely solutions i.e., which minimizes the sum of all such scores.

With hints and solutions provided as images during training, SAT-Net solves
63.2% of its test set using the same 9,000 samples. Going beyond SAT-Net,
we used a more realistic setting where both hints and solutions are provided
as imagesTo handle this situation, we exploited the fact that PE MRF accepts
as input expectations of sufficient statistics which can be produced from the
marginal unary cost functions above using a exp(−x) transform. These marginal
probabilities are used directly for computing expected numbers of values and
pairs (the product of the two marginal probabilities P (a)× P (b) being used for
pairs (a, b)). Using 8,000 + 1,024 training and validation samples, and a 200,00
backtracks limit, our hybrid architecture is able to solve 76.3% of all SAT-Net
test problems. On the hardest 17 hints instances however, performance decreased
to 61.8%. Obviously, hardening is of no use here.

5 Learning car configuration preferences

In this experiment, we illustrate the versatility of our approach by learning user
preferences combined with logical information on a real configuration problem
provided by Renault, a French car manufacturing company. A car configuration
problem is defined by a set of variables, one for each type of option (engine,
color, etc.). Domain values are possible options for each variable. Constraints
describe manufacturing compatibilities between options.3

There are three datasets available, small, medium, and big, each one given
in two files: a 1-year sales history of car configurations and a set of manu-
facturing constraints. The sales history products may or may not satisfy the
constraints. We consider here only valid products. medium is a small urban
car defining a toy example with 148 variables and 44 decision variables in the
sales history,4 mostly Boolean domains with a maximum size of 20 values, 173
constraints defined as tables with a maximum arity of 10, and 8,252 configu-
rations consistent with the constraints in the history. big is a utility van with
extensive product variability. It has 268 variables (87 decision variables in the
sales history), 324 values at most per domain, 332 constraints with a maxi-
mum arity of 12, and 8,337 consistent configurations. We discarded the small
instance as its sales history contains only 710 valid configurations. We counted
278, 744 (resp. 24, 566, 537, 954, 855, 758, 069, 760 ≈ 274) feasible configurations

3 See https://www.irit.fr/~Helene.Fargier/BR4CP/benches.html.
4 We removed the first variable corresponding to the date of each sale product.

https://www.irit.fr/~Helene.Fargier/BR4CP/benches.html

Pushing data into CP models 13

for medium (resp. big) in 0.1 (resp. 1.8) seconds on a 3.3GHz laptop.5. We used
a 10-fold cross validation. The valid sales history was split into 10 folds so that
all the identical car configurations were contained in the same fold. 9 folds were
used as training set for learning user preferences and the last fold was used as
test set for predicting user choices. This protocol was repeated 10 times.

We learn the user preferences based on the training set using PE MRF with
either L1 or L1/L2 norm and a λ parameter tuned using the StARS [25] algo-
rithm among a logarithmic grid of 100 spaced values between 10−5 and 103. We
used the default value 0.05 for the threshold parameter β in StARS and used
subsamples of size 10

√
n, where n is the size of the training set, as advised in

[25]. Mean λ selected value was 34.6 (resp. 0.21) for medium (resp. big) using L1

norm. The resulting learned CFN on decision variables had 312.9 (resp. 127.2)
binary functions and 44 (resp. 87) unary functions.

Then, we test the learned CFN model combined with the manufacturing con-
straints6 on the test set, using the protocol described in [13]. This protocol simu-
lates an on-line configuration session with a user. For each test configuration C,
we select a random variable ordering. Then, we predict the most-probable value
for the next variable in the sequence, using the choices made by the user before
in the sequence, the learned preferences, and the manufacturing constraints. 10
random variable orderings were considered for each test configuration. Instead of
finding the most-probable value by discrete integration over the remaining vari-
ables (a marginal MAP inference task), we identified the most-probable valid
configuration for all the variables compatible with the previous user choices and
the constraints (a pure optimization Maximum A Posteriori – MAP – approxi-
mation of marginal MAP).7 We compare the predicted value for the next variable
with the one chosen in C in order to compute a precision score.

We compared our method against a naive Bayesian network approach (called
Naive Bayes) and an oracle method, as described in [12,14]. The structure of
Naive Bayes is a tree rooted at the next variable with all the previously cho-
sen variables as its sons. It makes the (unrealistic) assumption that all the leaf
variables are independent knowing the root variable. The most probable value
v for the next variable V given the assigned values u of U is easy to com-
pute, P (v|u) ∝ P (v)

∏
X∈U P (u[X]|v), based on precomputed priors P (V) and

conditional probability tables P (U |V) for all pairs of variables U, V . The ora-
cle method computes the posterior probability distribution of the next variable
knowing the test dataset and the previous user choices. It uses the probability
distribution estimated from this set and recommends, given the assigned values
u, the most probable value in the subset of products, in the test set, that respects
u. More precisely, for any value v in the domain of the next variable to predict,

5 Solution counting was done by Backtracking with Tree Decomposition algorithm [15]
using min-fill heuristic implemented in toulbar2 v1.0.1 with options -ub=1 -a -O=-
3 -B=1 -hbfs: -nopre Reported tree-width was 10 for medium and 12 for big instance.

6 We ensure our CFN and the XCSP2.1 XML file for the constraints use the same
variable domains with the same increasing value ordering.

7 We used toulbar2 v1.0.1 with a limit of 50,000 backtracks and no preprocessing.

14 C. Brouard et al.

it estimates P (v|u) as #(uv)/#(u). So, the oracle method is maximally fitted
to the test set and its success rate is generally not attainable without having
access to the test set (which is, obviously, not the case in practice). Its precision
is not 100% since there is an intrinsic variability in the users [12].

The results for the different methods are given in Fig. 2, showing the average
precision score and standard-deviation for varying number of hints. We report
only results on the L1 (L1/L2 gave the same precision scores). It took less than
1min. for medium (resp. 2min. for big) to learn preferences and collect all the
36,124 (resp. 73,428) precision scores for a single fold of cross-validation.8 The
maximum number of backtracks was less than 1, 000, much less than its limit.

The average precision was 93.41% (resp. 94.41% for big) compared to 92.08%
(resp. 92.31%) for Naive Bayes and 97.10% (resp. 97.35%) for the oracle, showing
the practical interest of our approach on real recommendation datasets, provid-
ing high precision values in a reasonable amount of time. However, when the
number of hints is small, Naive Bayes performed slightly better (for big) than
our approach, possibly due to the MAP approximation.

Moreover, we investigated the impact of removing either the preferences,
partially by just removing learned binary functions and keeping learned unary
terms (L1 without learnt binaries curve in Fig. 2), or removing all learned func-
tions (Only constraints), or removing the manufacturing constraints (L1 without
constraints). All these removals had a negative impact, showing the interest of
combining preferences and logical knowledge. Other approaches have been de-
veloped to take into account constraints in recommendation systems, such as
constraint propagation [5,6] or compilation techniques [19]. However, they re-
main separated from the preference model, whereas our approach exploits two
CFNs (learned and mandatory constraint networks) on the same decision vari-
ables. We leave a full comparison of the MAP approximation with exact or
approximate inference for predicting the next variable value as a future work.

Conclusion

In this paper, we show that an hybrid architecture combining differentiable and
non differentiable technologies from Graphical Model learning (ADMM convex
optimization embodied in the PE MRF algorithm) and solving (using an anytime
Weighted CSP solver with adjustable guarantees) can provide excellent empirical
performances, often outperforming recent neural net friendly approaches, with
comparable biases. Purely differentiable approaches have the nice property to be
directly usable inside more complex deep Learning architectures, often allowing
a streamlined learning and predict architecture. By accepting numerical input
in its learning component and integer costs in its prediction component, our
architecture has the capacity of exploiting neural nets output at the very minor
cost of a less streamlined but perfectly workable learning and solving process.

8 We implemented an incremental version of the toulbar2 solving procedure using
its Python interface in order to load the problem and preprocess it only once.

Pushing data into CP models 15

0 5 10 15 20 25 30 35 40
Number of hints

60

65

70

75

80

85

90

95

100

Pr
ec

isi
on

 (%
)

medium

Oracle
L1
Naive Bayes
Only constraints
L1 without constraints
L1 without learnt binaries

0 10 20 30 40 50 60 70 80
Number of hints

65

70

75

80

85

90

95

100

Pr
ec

isi
on

 (%
)

big

Oracle
L1
Naive Bayes
Only constraints
L1 without constraints
L1 without learnt binaries

Fig. 2. Precision for the next query variable given a number of hints (on previously
randomly-selected query variables).

Instead of relying on a polytime bounded inference power, as those offered
by, e.g., message-passing or convex relaxations, it offers more powerful inference,
associated to higher computational costs that can however be easily controlled
either in terms of maximum computational effort or bounded guarantees. Be-
cause they provide strong polynomial time continuous approximations of discrete
models such as Max-2SAT, convex relaxations have been repeatedly used as an
ideal articulation point between learning and solving discrete/logical models. If
the Unique Game Conjecture [21,22] holds, the most promising path for im-
provement seems to go beyond P and convex relaxations and use NP-complete
formulations for solving and learning. This makes powerful anytime NP-hard nu-
merical MIP, WCSP and PW-MaxSAT solvers of prime interest to make progress
in this quest.

As an amusing yet puzzling coincidence, we observe that our hybrid approach
is consistent with the dichotomy between the Systems 1 and 2 described in
“Thinking Fast and Slow” for human cognitive limitations [20]. Beyond this
coincidence; a more practical advantage of our hybrid approach is that it offers
a decipherable output, that can be scrutinized to extract logical rules if they
empirically reliably predict solutions but also directly used to enhance existing
models that may contain mandatory constraints, as is often the case in design
problems.

Acknowledgements

We thanks the GenoToul (Toulouse, France) Bioinformatics and IFB Core (Evry,
France) platforms for their computational support. We also thanks the reviewers
for their critics: the paper did improve, we think. This work has been supported
by the French ANR through grants ANR-16-CE40-0028 and ANR-19-PI3A-0004.

16 C. Brouard et al.

References

1. Allouche, D., Bessière, C., Boizumault, P., de Givry, S., Gutierrez, P., Lee, J.H.,
Leung, K.L., Loudni, S., Métivier, J.P., Schiex, T., Wu, Y.: Tractability-preserving
transformations of global cost functions. Artificial Intelligence 238, 166–189 (2016)

2. Angluin, D.: Queries and concept learning. Machine learning 2(4), 319–342 (1988)
3. Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss markov random

fields and probabilistic soft logic. The Journal of Machine Learning Research 18(1),
3846–3912 (2017)

4. Besag, J.: Efficiency of pseudolikelihood estimation for simple gaussian fields.
Biometrika pp. 616–618 (1977)

5. Bessiere, C., Fargier, H., Lecoutre, C.: Global inverse consistency for interactive
constraint satisfaction. In: Schulte, C. (ed.) Proc. of CP-13. pp. 159–174. Cork,
Ireland (2013)

6. Bessiere, C., Fargier, H., Lecoutre, C.: Computing and restoring global inverse
consistency in interactive constraint satisfaction. Artificial Intelligence 241, 153 –
169 (2016)

7. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Arti-
ficial Intelligence 244, 315–342 (2017)

8. Bishop, C.M.: Pattern recognition and machine learning, 5th Edition. Information
science and statistics, Springer (2007), http://www.worldcat.org/oclc/71008143

9. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foun-
dations and Trends® in Machine learning 3(1), 1–122 (2011)

10. Cooper, M., de Givry, S., Schiex, T.: Graphical models: Queries, complexity, algo-
rithms. Leibniz International Proceedings in Informatics 154, 4–1 (2020)

11. Elmachtoub, A.N., Grigas, P.: Smart” predict, then optimize”. arXiv preprint
arXiv:1710.08005 (2017)

12. Fargier, H., Gimenez, P., Mengin, J.: Recommendation for product configuration:
an experimental evaluation. In: 18th International Configuration Workshop at CP-
16. p. 8 p. Toulouse, France (2016)

13. Fargier, H., Gimenez, P., Mengin, J.: Learning lexicographic preference trees from
positive examples. In: Proc. of AAAI-18. pp. 2959–2966. New Orleans, Louisiana,
USA (2018)

14. Fargier, H., Gimenez, P.F., Mengin, J.: Experimental evaluation of three value rec-
ommendation methods in interactive configuration. Journal of Universal Computer
Science 26(3), 318–342 (2020)

15. Favier, A., de Givry, S., Jégou, P.: Exploiting problem structure for solution count-
ing. In: Proc. of CP-09. pp. 335–343. Lisbon, Portugal (2009)

16. Freuder, E.C.: Progress towards the holy grail. Constraints 23(2), 158–171 (2018)
17. Geman, S., Graffigne, C.: Markov random field image models and their applica-

tions to computer vision. In: Proceedings of the international congress of mathe-
maticians. vol. 1, p. 2. Berkeley, CA (1986)

18. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of
the ACM (JACM) 42(6), 1115–1145 (1995)

19. Hadžic, T., Wasowski, A., Andersen, H.R.: Techniques for efficient interactive con-
figuration of distribution networks. In: Proc. of IJCAI-07. pp. 100–105. Hyderabad,
India (2007)

20. Kahneman, D.: Thinking, fast and slow. Macmillan (2011)

http://www.worldcat.org/oclc/71008143

Pushing data into CP models 17

21. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing. pp. 767–775 (2002)

22. Klarreich, E.: Approximately hard: The unique games conjecture. Simons founda-
tion (2011)

23. Kumar, M., Kolb, S., Teso, S., De Raedt, L.: Learning MAX-SAT from contex-
tual examples for combinatorial optimisation. In: Proceedings of the Thirty-Fourth
AAAI Conference on Artificial Intelligence. AAAI (2020)

24. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

25. Liu, H., Roeder, K., Wasserman, L.: Stability approach to regularization selection
(StARS) for high dimensional graphical models. In: Proceedings of Advances in
Neural Information Processing Systems (NIPS 2010). vol. 24, pp. 1432–1440 (2010)

26. Mandi, J., Demirović, E., Stuckey, P., Guns, T., et al.: Smart predict-and-optimize
for hard combinatorial optimization problems. In: Proceedings of the Thirty-Fourth
AAAI Conference on Artificial Intelligence. AAAI (2020)

27. McGuire, G., Tugemann, B., Civario, G.: There is no 16-clue sudoku: Solving the
sudoku minimum number of clues problem via hitting set enumeration. Experi-
mental Mathematics 23(2), 190–217 (2014)

28. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534
(2013)

29. Palm, R.B., Paquet, U., Winther, O.: Recurrent relational networks. In: Bengio, S.,
Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada. pp. 3372–3382 (2018)

30. Park, Y., Hallac, D., Boyd, S., Leskovec, J.: Learning the network structure of
heterogeneous data via pairwise exponential Markov random fields. Proceedings of
machine learning research 54, 1302 (2017)

31. Pohl, I.: Heuristic search viewed as path finding in a graph. Artificial intelligence
1(3-4), 193–204 (1970)

32. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier (2006)

33. Schmidhuber, J., Hochreiter, S.: Long short-term memory. Neural Computation
9(8), 1735–1780 (1997)

34. Simoncini, D., Allouche, D., de Givry, S., Delmas, C., Barbe, S., Schiex, T.: Guar-
anteed discrete energy optimization on large protein design problems. Journal of
chemical theory and computation 11(12), 5980–5989 (2015)

35. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11),
1134–1142 (1984)

36. Vuffray, M., Misra, S., Lokhov, A., Chertkov, M.: Interaction screening: Effi-
cient and sample-optimal learning of Ising models. In: Lee, D.D., Sugiyama, M.,
Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems 29, pp. 2595–2603. Curran Associates, Inc. (2016)

37. Wang, P., Donti, P.L., Wilder, B., Kolter, J.Z.: Satnet: Bridging deep learning
and logical reasoning using a differentiable satisfiability solver. In: Chaudhuri, K.,
Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Pro-
ceedings of Machine Learning Research, vol. 97, pp. 6545–6554. PMLR (2019)

18 C. Brouard et al.

38. Yato, T., Seta, T.: Complexity and completeness of finding another solution and
its application to puzzles. IEICE transactions on fundamentals of electronics, com-
munications and computer sciences 86(5), 1052–1060 (2003)

	Pushing data into CP models usingGraphical Model Learning and Solving

