Pushing data into CP models using Graphical Model Learning & Solving

CP 2020

CÉLINE BROUARD¹, S. DE GIVRY² & T. SCHIEX²

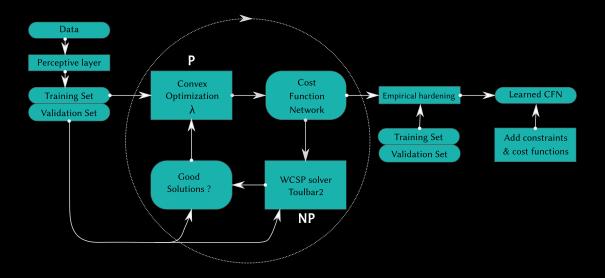
CP AND ML TRACK

SEPTEMBER 2020

¹ Université Fédérale de Toulouse, INRAE MIAT, UR 875, Toulouse, France

² Université Fédérale de Toulouse, ANITI, INRAE MIAT, UR 875, Toulouse, France

LEARNING A COST FUNCTION NETWORK FROM HIGH-QUALITY SOLUTIONS



You'll learn

- how we use graphical models to connect CP with probabilistic Machine Learning
- how the NP-hard regularization loop can be made practical
- how we learn playing the Sudoku from images (without rules)
- how it compares with DL architectures that "learn to reason"
- how we can combine learned user preferences with (car) configuration constraints

You'll learn

- how we use graphical models to connect CP with probabilistic Machine Learning
- how the NP-hard regularization loop can be made practical
- how we learn playing the Sudoku from images (without rules)
- how it compares with DL architectures that "learn to reason"
- how we can combine learned user preferences with (car) configuration constraints

You'll learn

- how we use graphical models to connect CP with probabilistic Machine Learning
- how the NP-hard regularization loop can be made practical
- how we learn playing the Sudoku from images (without rules)
- how it compares with DL architectures that "learn to reason"

				8		7		
4	9	t		8			2	8
6			ო	4		/		
		3		٦	9		1	
1	7					J		
	7 5					٩	6	
	6 ⊰	2	1		7		8 5	
	3				8	2	5	
8					ч			

how we can combine learned user preferences with (car) configuration constraints

You'll learn

- how we use graphical models to connect CP with probabilistic Machine Learning
- how the NP-hard regularization loop can be made practical
- how we learn playing the Sudoku from images (without rules)
- how it compares with DL architectures that "learn to reason"

				8		7		
4	9	t		8			2	8
5			ო	4		/		
		3		7	9		1	
١	7					J		
	ıs)					٩	6	
	7 5 6 3	2	1		7		8	
	3				8	2	8 5	
8					ч			

how we can combine learned user preferences with (car) configuration constraints

Please, stay with us and...

You'll learn

- how we use graphical models to connect CP with probabilistic Machine Learning
- how the NP-hard regularization loop can be made practical
- how we learn playing the Sudoku from images (without rules)

	how it	compares w	th DL	architectures	that '	ʻlearn to	reason"
--	--------	------------	-------	---------------	--------	-----------	---------

				8		7		
4	9	t		8			2	8
6			ო	4		/		
		3		٦	9		1	
1	7					J		
	Ś			,		9	6	
	6 ⊰	2	1		7		8 5	
	3				7	2	5	
8					4			

■ how we can combine learned user preferences with (car) configuration constraints

GRAPHICAL MODELS

What is it?

A description of a multivariate function as the combination of small functions

$$c_S \in C: \prod_{X \in S} D^X \to \bar{\mathbb{Z}}$$

$$C_{\mathcal{M}}(v) = \sum_{c_S \in \mathit{C}} c_S(v[S])$$

GRAPHICAL MODELS

What is it?

A description of a multivariate function as the combination of small functions

Cost Function Network M

(unbounded)

lacksquare a set $oldsymbol{V}$ of variables

n variables

variable $X \in V$ has domain D^X

 \max . size d

a set C of cost functions

$$c_S \in \mathbf{C}: \prod_{X \in \mathcal{X}} D^X \to \bar{\mathbb{Z}}$$

 (∞)

Joint cost function

Weighted Constraint Satisfaction Problem

$$C_{\mathcal{M}}(v) = \sum_{c_S \in C} c_S(v[S])$$

GRAPHICAL MODELS

What is it?

A description of a multivariate function as the combination of small functions

Cost Function Network M

(unbounded)

 \blacksquare a set V of variables

n variables

~ . . .

variable $X \in V$ has domain D^X

 \max . size d

- \blacksquare a set C of cost functions
- $c_{\mathbf{S}} \in \mathbf{C}: \prod_{\mathbf{C}} D^{X} \to \bar{\mathbb{Z}}$

 (∞)

Joint cost function

Weighted Constraint Satisfaction Problem

$$oldsymbol{C}_{\mathcal{M}}(oldsymbol{v}) = \sum_{c_{oldsymbol{S}} \in oldsymbol{C}} c_{oldsymbol{S}}(oldsymbol{v}[oldsymbol{S}])$$

WHAT DO WE WANT TO LEARN?

Definition (Learning a pairwise CFN from high quality solutions)

Given:

- \blacksquare a set of variables V,
- \blacksquare a set of assignments E i.i.d. from an unknown distribution of high-quality solutions

Find a pairwise CFN ${\cal M}$ that can be solved to produce high-quality solutions

Pairwise CFN with cost-tables

- $\frac{n(n-1)}{2}$ tables of d^2 costs + n tables of d costs
- A constant table can be ignored.

WHAT DO WE WANT TO LEARN?

Definition (Learning a pairwise CFN from high quality solutions)

Given:

- \blacksquare a set of variables V,
- \blacksquare a set of assignments E i.i.d. from an unknown distribution of high-quality solutions

Find a pairwise CFN ${\cal M}$ that can be solved to produce high-quality solutions

Pairwise CFN with cost-tables

- \blacksquare $\frac{n(n-1)}{2}$ tables of d^2 costs + n tables of d costs
- A constant table can be ignored.

STOCHASTIC GRAPHICAL MODELS

Markov Random Field \mathcal{M}

- \blacksquare a set V of domain variables
- \blacksquare a set Φ of potential functions
- $\bullet \varphi_{S} \in \Phi : \prod_{X \in S} D^{X} \to \mathbb{R}^{+}$

Joint function and probability distribution

$$\Phi_{\mathcal{M}}(\boldsymbol{v}) = \prod_{\varphi_S \in \Phi} \varphi_S(\boldsymbol{v}[S])$$

$$P_{\mathcal{M}}(\boldsymbol{v}) \propto \Phi_{\mathcal{M}}(\boldsymbol{v})$$

From products to sum and back

(up to some precision)

MRF ${\cal M}$

$$\xrightarrow{-\log(x)}$$
 CFN

MRF
$${\cal N}$$

STOCHASTIC GRAPHICAL MODELS

Markov Random Field M

- \blacksquare a set V of domain variables
- \blacksquare a set Φ of potential functions

Joint function and probability distribution

$$\Phi_{\mathcal{M}}(extbf{ extit{v}}) = \prod_{ec{v} \in \Phi} arphi_{ extbf{ extit{S}}}(extbf{ extit{v}}[extbf{ extit{S}}])$$

$$P_{\mathcal{M}}(\boldsymbol{v}) \propto \Phi_{\mathcal{M}}(\boldsymbol{v})$$

From products to sum and back

(up to some precision)

MRF ${\cal N}$

 $-\frac{}{-\log(x)}$

CFN \mathcal{M}^ℓ

 $\exp(-x)$

MRF ${\cal M}$

STOCHASTIC GRAPHICAL MODELS

Markov Random Field M

- \blacksquare a set V of domain variables
- \blacksquare a set Φ of potential functions

Joint function and probability distribution

$$\Phi_{\mathcal{M}}(\mathbf{v}) = \prod_{\varphi_{\mathbf{S}} \in \Phi} \varphi_{\mathbf{S}}(\mathbf{v}[\mathbf{S}])$$

$$P_{\mathcal{M}}(\boldsymbol{v}) \propto \Phi_{\mathcal{M}}(\boldsymbol{v})$$

(up to some precision)

 $\mathsf{MRF}\,\mathcal{M}$

CFN \mathcal{M}^ℓ

$$\xrightarrow{\exp(-x)}$$

MRF ${\cal M}$

MAXIMUM LOGLIKELIHOOD FOR CFN LEARNING

Maximum likelihood estimation from i.i.d. sample $oldsymbol{E}$

- Likelihood of \mathcal{M} : probability of E under \mathcal{M}
- Maximum likelihood \mathcal{M} : a MRF \mathcal{M} that gives maximum probability to E.

Maximum loglikelihood \mathcal{M} on \mathcal{M}_{ℓ}

$$\mathcal{L}(\mathcal{M}, \boldsymbol{E}) = \log(\prod_{\boldsymbol{v} \in \boldsymbol{E}} P_{\mathcal{M}}(\boldsymbol{v})) = \sum_{\boldsymbol{v} \in \boldsymbol{E}} \log(P_{\mathcal{M}}(\boldsymbol{v}))$$

$$= \sum_{\boldsymbol{v} \in \boldsymbol{E}} \log(\Phi_{\mathcal{M}}(\boldsymbol{v})) - \log(Z_{\mathcal{M}})$$

$$= \sum_{\boldsymbol{v} \in \boldsymbol{E}} (-C_{\mathcal{M}^{\ell}}(\boldsymbol{v})) - \log(\sum_{\boldsymbol{t} \in \prod \boldsymbol{x} \in \boldsymbol{V}D^{X}} \exp(-C_{\mathcal{M}^{\ell}}(\boldsymbol{t})))$$

MAXIMUM LOGLIKELIHOOD FOR CFN LEARNING

Maximum likelihood estimation from i.i.d. sample $oldsymbol{E}$

- Likelihood of \mathcal{M} : probability of E under \mathcal{M}
- \blacksquare Maximum likelihood \mathcal{M} : a MRF \mathcal{M} that gives maximum probability to E.

Maximum loglikelihood \mathcal{M} on \mathcal{M}_{ℓ}

$$\mathcal{L}(\mathcal{M}, \boldsymbol{E}) = \log(\prod_{\boldsymbol{v} \in \boldsymbol{E}} P_{\mathcal{M}}(\boldsymbol{v})) = \sum_{\boldsymbol{v} \in \boldsymbol{E}} \log(P_{\mathcal{M}}(\boldsymbol{v}))$$

$$= \sum_{\boldsymbol{v} \in \boldsymbol{E}} \log(\Phi_{\mathcal{M}}(\boldsymbol{v})) - \log(Z_{\mathcal{M}})$$

$$= \sum_{\boldsymbol{v} \in \boldsymbol{E}} (-C_{\mathcal{M}^{\ell}}(\boldsymbol{v})) - \log(\sum_{\boldsymbol{t} \in \prod \boldsymbol{x} \in \boldsymbol{V}D^{X}} \exp(-C_{\mathcal{M}^{\ell}}(\boldsymbol{t})))$$
-costs of \boldsymbol{E} samples

Soft-Min of all assignment costs

REGULARIZED APPROXIMATE MAX-LOG-LIKELIHOOD ESTIMATION

Regularized Log-Likelihood estimation

- lacktriangle penalizes log-likelihood proportionally to the L_1 norm of the costs learned (λ)
- avoids over-fitting by pushing non essential costs to zero: learns scopes.

PE MRF: ADMM optimized convex approximation of regularized loglikelihood¹

- \blacksquare avoids #P-completeness using a concave approximation of $Z_{\mathcal{M}}$
- statistically sparsistent
- provides a CFN as output

¹Youngsuk Park et al. "Learning the network structure of heterogeneous data via pairwise exponential Markov random fields". In: *Proceedings of machine learning research* 54 (2017), p. 1302.

REGULARIZED APPROXIMATE MAX-LOG-LIKELIHOOD ESTIMATION

Regularized Log-Likelihood estimation

- lacktriangle penalizes log-likelihood proportionally to the L_1 norm of the costs learned (λ)
- avoids over-fitting by pushing non essential costs to zero: learns scopes.

PE MRF: ADMM optimized convex approximation of regularized loglikelihood¹

- \blacksquare avoids #P-completeness using a concave approximation of $Z_{\mathcal{M}}$
- statistically sparsistent
- provides a CFN as output

¹Youngsuk Park et al. "Learning the network structure of heterogeneous data via pairwise exponential Markov random fields". In: *Proceedings of machine learning research* 54 (2017), p. 1302.

Selecting a suitable value of λ

Using empirical risk minimization

- \blacksquare for each sample v in the validation set
- \blacksquare assign a fraction of v and solve with a WCSP solver
- lacktriangle prefer λ that gives solutions close to $oldsymbol{v}$

Controlling PyToulbar2 NP-hard optimization effort

- bounded optimization effort (backtrack, time, gap. Here: 50,000 backtracks)
- \blacksquare controllable fraction of v assigned

Empirical hardening

Set positive costs that are never violated in the training/validation sets to ∞ .

Selecting a suitable value of λ

Using empirical risk minimization

- \blacksquare for each sample v in the validation set
- \blacksquare assign a fraction of v and solve with a WCSP solver
- lacktriangle prefer λ that gives solutions close to $oldsymbol{v}$

Controlling PyToulbar2 NP-hard optimization effort

- bounded optimization effort (backtrack, time, gap. Here: 50,000 backtracks)
- \blacksquare controllable fraction of v assigned

Empirical hardening

Set positive costs that are never violated in the training/validation sets to ∞ .

Selecting a suitable value of λ

Using empirical risk minimization

- lacktriangleq for each sample <math>v in the validation set
- \blacksquare assign a fraction of v and solve with a WCSP solver
- lacksquare prefer λ that gives solutions close to $oldsymbol{v}$

Controlling PyToulbar2 NP-hard optimization effort

- bounded optimization effort (backtrack, time, gap. Here: 50,000 backtracks)
- \blacksquare controllable fraction of v assigned

Empirical hardening

Set positive costs that are never violated in the training/validation sets to ∞ .

LEARNING TO PLAY THE SODOKU

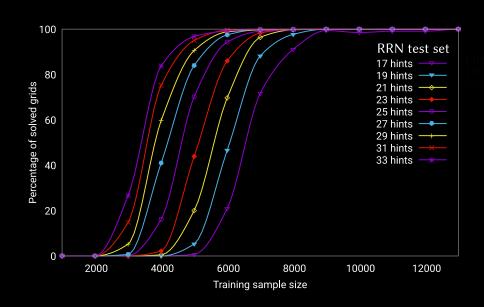
An exemplar of reasoning for benchmarking

- Recurrent Relational Neural Net²: $18 \times (10,000 + 1,000 + 1,000)$ training, validation and test samples of variable difficulty (17 to 34 hints).
- SAT-Net³ (DL friendly convex Max-SAT relaxation): (9,000 + 1,000) easy training and test samples (36.2 hints average).

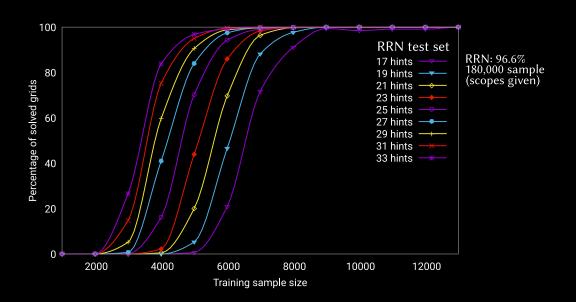
²Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. "Recurrent Relational Networks". In: *Advances in Neural Information Processing Systems, Montréal, Canada.* 2018, pp. 3372–3382.

³Po-Wei Wang et al. "SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver". In: *Proc. of ICML-19, Long Beach, California, USA*. vol. 97. PMLR, 2019, pp. 6545–6554.

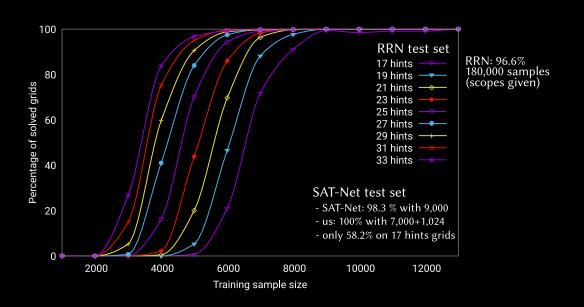
BETTER WITH LESS DATA AND COMPARABLE BIASES



BETTER WITH LESS DATA AND COMPARABLE BIASES



BETTER WITH LESS DATA AND COMPARABLE BIASES



Sudoku digits can be LeNet decoded and fed to PE MRF/Toulbar2

- LeNet has 99.2% accuracy on handwritten digits
- SAT-Net test set, hints as images (36.2 avg): · · · · · · · · · · · · 74.7% max. accuracy
- Hints + solutions as images: · · · · · · · · · · · · · · · · · · 52% max. accuracy

Performances on SAT-Net test set

- BE MRE-Toulbar 3 8 (00) + 1 (03) samples
- FEWIKE HOUDARY, 8,000 FIGURE SAITIPLES
- On hard 17 hints test RRN problems
- Hints and solution

Sudoku digits can be LeNet decoded and fed to PE MRF/Toulbar2

- LeNet has 99.2% accuracy on handwritten digits
- SAT-Net test set, hints as images (36.2 avg): · · · · · · · · · · · · 74.7% max. accuracy
- Hints + solutions as images: · · · · · · · · · · · · · · · · · · 52% max. accuracy

Performances on SAT-Net test set

- SAT-Net (hints as images), 9,000 samples · · · · · · · 63.2%
- On hard 17 hints test RRN problems · · · · · · · 81.29
- Empirical hardening · · · · · · > 99%
- Hints and solutions as images · · · · · · · · 76.3%

Sudoku digits can be LeNet decoded and fed to PE MRF/Toulbar2

- LeNet has 99.2% accuracy on handwritten digits
- SAT-Net test set, hints as images (36.2 avg): · · · · · · · · · · · · 74.7% max. accuracy
- Hints + solutions as images: · · · · · · · · · · · · 52% max. accuracy

Performances on SAT-Net test set

- On hard 17 hints test RRN problems · · · · · · · 81.29
- Empirical hardening · · · · · · > 99%
- Hints and solutions as images · · · · · · · · 76.3%

Sudoku digits can be LeNet decoded and fed to PE MRF/Toulbar2

- LeNet has 99.2% accuracy on handwritten digits
- SAT-Net test set, hints as images (36.2 avg): · · · · · · · · · · · · 74.7% max. accuracy

Performances on SAT-Net test set

- SAT-Net (hints as images), 9,000 samples · · · · · · · 63.2%
- PE MRF+Toulbar2, 8,000+1,024 samples · · · · · · · 78.1%
- On hard 17 hints test RRN problems · · · · · · · 81.29
- Empirical hardening · · · · · · · > 99%
- Hints and solutions as images · · · · · · · · 76.3%

Sudoku digits can be LeNet decoded and fed to PE MRF/Toulbar2

- LeNet has 99.2% accuracy on handwritten digits
- SAT-Net test set, hints as images (36.2 avg): · · · · · · · · · · · · 74.7% max. accuracy
- Hints + solutions as images: · · · · · · · · · · · · 52% max. accuracy

Performances on SAT-Net test set

- SAT-Net (hints as images), 9,000 samples · · · · · · · 63.2%
- On hard 17 hints test RRN problems · · · · · · · 81.2%
- Empirical hardening · · · · · · · > 99%
- Hints and solutions as images · · · · · · · · 76.3%

Sudoku digits can be LeNet decoded and fed to PE MRF/Toulbar2

- LeNet has 99.2% accuracy on handwritten digits
- SAT-Net test set, hints as images (36.2 avg): · · · · · · · · · · · · 74.7% max. accuracy
- Hints + solutions as images: · · · · · · · · · · · · 52% max. accuracy

Performances on SAT-Net test set

- SAT-Net (hints as images), 9,000 samples · · · · · · · 63.2%
- On hard 17 hints test RRN problems · · · · · · 81.2%
- Empirical hardening · · · · · · · > 99%
- Hints and solutions as images · · · · · · · · 76.3%

Sudoku digits can be LeNet decoded and fed to PE MRF/Toulbar2

- LeNet has 99.2% accuracy on handwritten digits
- SAT-Net test set, hints as images (36.2 avg): · · · · · · · · · · · · 74.7% max. accuracy
- Hints + solutions as images: · · · · · · · · · · · · 52% max. accuracy

Performances on SAT-Net test set

- SAT-Net (hints as images), 9,000 samples · · · · · · · 63.2%
- On hard 17 hints test RRN problems · · · · · · · 81.2%
- lacktriangle Empirical hardening $\cdots \cdots > 99\%$

Sudoku digits can be LeNet decoded and fed to PE MRF/Toulbar2

- LeNet has 99.2% accuracy on handwritten digits
- SAT-Net test set, hints as images (36.2 avg): · · · · · · · · · · · · 74.7% max. accuracy
- Hints + solutions as images: · · · · · · · · · · · · 52% max. accuracy

Performances on SAT-Net test set

- SAT-Net (hints as images), 9,000 samples · · · · · · · 63.2%
- PE MRF+Toulbar2, 8,000+1,024 samples · · · · · · · · · · · · · · · · · 78.1%
- On hard 17 hints test RRN problems · · · · · · 81.2%
- \blacksquare Empirical hardening $\cdots \cdots > 99\%$

LEARNING PREFERENCES FOR CAR CONFIGURATION

Renault "big" dataset

irit.fr/ Helene.Fargier/BR4CP/benches.html

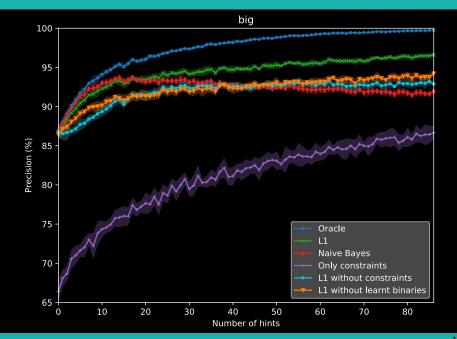
- 268 variables (87 decision variables) with 324 values at most
- 332 constraints (max. arity 12)
- (24,566,537,954,855,758,069,760) possible configurations ($(22,74)^4$)
- sample of 8,337 user configurations

Configuration assistant: complete ongoing user configuration on the next variable

- Learned CFN (unary + binary CFs, 10 fold CV, 2' / fold) + configuration constraints
- Naive Bayes (knowing the partial assignment)
- Oracle (optimal stochastic choice for the test set given the partial assignment)

⁴Counted in 1.8" by Toulbar2 treewidth aware solution counter.

ACCURACY



- Flexible learning framework for CP with understandable and editable output
- Numerical (even integer) weights are enough to interact with DL output
- Anytime NP-hard prediction: more powerful than differentiable convex relaxation
- Convex relaxations may be the best we can do in P (Unique Game Conjecture)
- One should try anytime NP-hard learning too

- Flexible learning framework for CP with understandable and editable output
- Numerical (even integer) weights are enough to interact with DL output
- Anytime NP-hard prediction: more powerful than differentiable convex relaxation
- Convex relaxations may be the best we can do in P (Unique Game Conjecture)
- One should try anytime NP-hard learning too

- Flexible learning framework for CP with understandable and editable output
- Numerical (even integer) weights are enough to interact with DL output
- Anytime NP-hard prediction: more powerful than differentiable convex relaxation
- Convex relaxations may be the best we can do in P (Unique Game Conjecture)
- One should try anytime NP-hard learning too

- Flexible learning framework for CP with understandable and editable output
- Numerical (even integer) weights are enough to interact with DL output
- Anytime NP-hard prediction: more powerful than differentiable convex relaxation
- Convex relaxations may be the best we can do in P (Unique Game Conjecture)
- One should try anytime NP-hard learning too

- Flexible learning framework for CP with understandable and editable output
- Numerical (even integer) weights are enough to interact with DL output
- Anytime NP-hard prediction: more powerful than differentiable convex relaxation
- Convex relaxations may be the best we can do in P (Unique Game Conjecture)
- One should try anytime NP-hard learning too