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PLEASE, STAY WITH US AND...

You'll learn

m how we use graphical models to connect CP with probabilistic Machine Learning

m how the NP-hard regularization loop can be made practical

m how we learn playing the Sudoku from images (without rules)

® how it compares with DL architectures that “learn to reason”

® how we can combine learned user preferences with (car) configuration constraints
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GRAPHICAL MODELS

What is it ?

A description of a multivariate function as the combination of small functions

Cost Function Network M (unbounded)
m aset V of variables n variables
m variable X € V has domain DX max. size d

m aset C of cost functions
lcSEC:HDX%Z 9)
XeSs

Joint cost function Weighted Constraint Satisfaction Problem
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Definition (Learning a pairwise CFN from high quality solutions)

Given:
m a set of variables V,
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WHAT DO WE WANT TO LEARN ?

Definition (Learning a pairwise CFN from high quality solutions)

Given:
m a set of variables V,
m a set of assignments FE i.i.d. from an unknown distribution of high-quality solutions

Find a pairwise CFN M that can be solved to produce high-quality solutions

Pairwise CFN with cost-tables

] @ tables of d? costs + n tables of d costs

m A constant table can be ignored.
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STtocHASTIC GRAPHICAL MODELS

Markov Random Field M

m aset V of domain variables

m a set ® of potential functions

mpsed: [[ DX >RY
XeS

Joint function and probability distribution

opm(v) = [] es(vlS) Pp(v) oc @ pq(v)

(up to some precision)

MRF M l—()> CFN M* ﬁ MRF M
— log(z exp(—z



MAXIMUM LOGLIKELIHOOD FOR CFN LEARNING

Maximum likelihood estimation from i.i.d. sample E

m Likelihood of M: probability of E under M
® Maximum likelihood M: a MRF M that gives maximum probability to E.
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Maximum likelihood estimation from i.i.d. sample E

m Likelihood of M: probability of E under M
® Maximum likelihood M: a MRF M that gives maximum probability to E.

Maximum loglikelihood M on M,

LM, E) =log(Il,eg Pm(v) = > yeplog(Pr(v))
= ver 10g(Pr(v)) —log(Zm)
=) (=Cru(v)) —log( > exp(—Chp(t)))

veE te[[ze VDX

2

—s
-costs of E samples Soft-Min of all assignment costs
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Regularized Log-Likelihood estimation

m penalizes log-likelihood proportionally to the L; norm of the costs learned ()

m avoids over-fitting by pushing non essential costs to zero: learns scopes.
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Regularized Log-Likelihood estimation

m penalizes log-likelihood proportionally to the L; norm of the costs learned ()

m avoids over-fitting by pushing non essential costs to zero: learns scopes.

PE MRF: ADMM optimized convex approximation of regularized loglikelihood'

m avoids #P-completeness using a concave approximation of Z
m statistically sparsistent

m provides a CFN as output

"Youngsuk Park et al. “Learning the network structure of heterogeneous data via pairwise exponential Markov
random fields”. In: Proceedings of machine learning research 54 (2017), p. 1302.
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SELECTING A SUITABLE VALUE OF \

Using empirical risk minimization

m for each sample v in the validation set
m assign a fraction of v and solve with a WCSP solver

m prefer A that gives solutions close to v

Controlling PyToulbar2 NP-hard optimization effort

m bounded optimization effort (backtrack, time, gap. Here: 50,000 backtracks)

m controllable fraction of v assigned

Empirical hardening

Set positive costs that are never violated in the training/validation sets to co.

e



LEARNING TO PLAY THE SODOKU

An exemplar of reasoning for benchmarking

m Recurrent Relational Neural Net?: 18 x (10,000 + 1,000 + 1,000) training, validation
and test samples of variable difficulty (17 to 34 hints).

m SAT-Net?® (DL friendly convex Max-SAT relaxation): (9,000 + 1,000) easy training and
test samples (36.2 hints average).

Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. “Recurrent Relational Networks”. In: Advances in Neural
Information Processing Systems, Montréal, Canada. 2018, pp. 3372-3382.

3Po-Wei Wang et al. “SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability
solver”. In: Proc. of ICML-19, Long Beach, California, USA. vol. 97. PMLR, 2019, pp. 6545-6554.
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BENEFITS FROM NUMERICAL LEARNING AND SOLVING

Sudoku digits can be LeNet decoded and fed to PE MRF/Toulbar2

m LeNet has 99.2% accuracy on handwritten digits

m SAT-Net test set, hints as images (36.2 avg): - ----ccoeveeeennn 74.7% max. accuracy
B Hints + solutions as images: -« -« «««« oo 52% max. accuracy
Performances on SAT-Net test set
] SAT_Net (h|nts as images), 9,000 Samples ................................... 63.2%
] PE MRF+T0u|bar2’ 8’000.'_1,024 Samples ..................................... 78.']%
] On hard ]7 hints test RRN problems ....................................... 812%
] Empirical hardening .................................................... > 99%
u Hints and Solutions as images ............................................. 76.3%




LEARNING PREFERENCES FOR CAR CONFIGURATION

Renault “big” dataset irit.fr/ Helene.Fargier/BR4CP/benches.html

m 268 variables (87 decision variables) with 324 values at most
m 332 constraints (max. arity 12)
m 24,566,537,954,855,758,069,760 possible configurations (= 274)*

m sample of 8,337 user configurations

Configuration assistant: complete ongoing user configuration on the next variable

m Learned CFN (unary + binary CFs, 10 fold CV, 2’ / fold ) + configuration constraints
m Naive Bayes (knowing the partial assignment)

m Oracle (optimal stochastic choice for the test set given the partial assignment)

*Counted in 1.8” by Toulbar2 treewidth aware solution counter.
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Conclusions

m Flexible learning framework for CP with understandable and editable output

m Numerical (even integer) weights are enough to interact with DL output

m Anytime NP-hard prediction: more powerful than differentiable convex relaxation
m Convex relaxations may be the best we can do in P (Unique Game Conjecture)

m One should try anytime NP-hard learning too
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