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Abstract

Motivation: Searching RNA gene occurrences in genomic sequences is
a task whose importance has been renewed by the recent discovery of
numerous functional RNA, often interacting with other ligands. Even
if several programs exist for RNA motif search, no one exists that can
represent and solve the problem of searching for occurrences of RNA
motifs in interaction with other molecules.
Results: We present a constraint network formulation of this problem.
RNA are represented as structured motifs that occur on more than one
sequence and which are related together by possible hybridization. Together
with pattern matching algorithms, constraint satisfaction techniques have
been implemented in a prototype MilPat and applied to search for tRNA
and archaeal H/ACA sRNA genes on genomic sequences. Results show
that these combined techniques allow to efficiently search for interacting
motifs in large genomic sequences and offer a simple and extensible framework
to solve such problems. New and known sRNA are proposed to be H/ACA
candidates in Methanocaldococcus jannaschii.
Availability: http://carlt.toulouse.inra.fr/MilPaT/MilPat.pl
Contact: milpat@toulouse.inra.fr

1 Introduction

Our understanding of the role of RNA has changed in recent years. Firstly
considered as being simply the messenger that converts genetic information from
DNA into proteins, RNA is now seen as a key regulatory factor in many of the
cell’s crucial functions, affecting a large variety of processes including plasmid
replication, phage development, bacterial virulence, chromosome structure, DNA
transcription, RNA processing and modification, development control and others
(for review see [28]). Consequently, the systematic search of non-coding RNA
(ncRNA) genes, which produce functional RNAs instead of proteins, represents
an important challenge.

∗This is a preprint of a forthcoming Bioinformatics paper entitled “Searching RNA motifs
and their intermolecular contacts with constraint networks”.
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Unlike double-stranded DNA, RNA is a single-stranded molecule. This
characteristic allows different regions of the same RNA strand (or of several
RNA strands) to fold together via base pair interactions to build structures
that are essential for the biological function. The level of organization relevant
for biological function corresponds to the spatial organization of the entire
nucleotides chain and is called the tertiary structure. However, due to the
difficulty of determining high-order RNA structures, the RNA secondary structure
is viewed as a simplified model of the RNA tertiary structure. In this paper,
we define the secondary structure of an RNA gene as the set of base-paired
nucleotides which appear in the folded RNA, including possible bindings with
other RNA molecules. This extends the usual definition which is often limited
to planar structures (therefore excluding pseudo-knots and multiple helices) and
is restricted to intra-sequence interactions.

For functional RNA molecules, the secondary structure is generally conserved
among members of a given family. Thus common structural characteristics can
be captured by a signature that represents the structural elements which are
conserved inside a set of related RNA molecules.

We focus here on the problem of searching for new members of a gene family
given their common signature. Solving this problem requires (1) to be able to
formalize what a signature is and what it means for such a signature to occur
in a sequence (2) to design algorithms and data-structures that can efficiently
look for such occurrences in large sequences. For sufficiently general signatures,
this is an NP-complete problem [30] that combines combinatorial optimization
and pattern matching issues.

Traditionally, two types of approaches have been used for this problem:
signatures can be modelled as stochastic context free grammars (excluding
pseudo-knots or complex structures) and then searched using relatively time
consuming dynamic programming based parsers. This is e.g. used in [25, 12]
for RNA genes or in [7] for terminators. Another approach defines a signature
as a set of interrelated motifs. Occurrences of the signature are sought using
simple pattern-matching techniques and exhaustive tree search. Such programs
include RnaMot [15], RnaBob [11]), PatScan [10], Palingol [6] and RnaMotif
[20]. Although these programs allow pseudo-knots to be represented, they have
very variable efficiencies. Both types of approaches are restricted to single RNA
molecule signatures.

In this paper, we clearly separate the combinatorial aspects from the pattern
matching aspects by modelling a signature as a constraint network. This model
captures the combinatorial features of the problem while the constraints use
pattern matching techniques to enhance their efficiency. This combination offers
an elegant and simple way to describe several RNA motifs in interaction and a
general purpose efficient algorithm to search for occurrences of such motifs.
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2 Methods

The constraint network formalism [9] is a powerful and extensively used framework
for describing combinatorial search problems in artificial intelligence and operations
research. Constraint networks allow to represent a problem as a set of inter-
related variables in a very flexible way. Variables may have arbitrary domains
(not limited to numerical problems) and inter-relations are essentially arbitrary.
This is usually well adapted to the definition of mathematical problems raised
by molecular biology [14, 22, 2, 21, 5] and has been used to model the structured
motif search problem in [13, 23].

2.1 Constraints network

A constraint network [9] P is defined as a triple P = (V,D,C) where :

• V = {x1, ...xn} is a set of n variables.

• D = {d1, ..., dn} is a set of n finite domains, each containing the possible
values for xi. We denote d the size of the largest domain.

• C is a set of e constraints. Each constraint cs is a relation over a subset
s ⊂ V of variables (called its scope) which defines the combinations of
values (or tuples) that these variables may take. If the scope involves
one, two or k variables, the constraint is said respectively unary, binary
or k-ary.

A constraint network may be represented by an undirected hyper-graph
whose vertices are variables, and hyper-edges represent constraint scopes. When
the constraint network involves only binary constraints, this hyper-graph becomes
a graph. A solution to a constraint network is an assignment of values from
their domain to every variable, in such a way that every constraint is satisfied
(only authorized combinations of values are used). When such a solution exists,
the constraint network is said to be consistent. Proving consistency is an NP-
complete problem. Most algorithms for solving constraint networks rely on
systematic search through the possible assignments of values to variables and
are guaranteed to find a solution, if one exists. The most common algorithm
for performing systematic search is backtracking. In the backtracking method,
variables are assigned values one after the other. If a forbidden combination
of values is used at some point, backtracking goes back to the most recently
assigned variable which still has alternative values available. It is easily described
as a depth-first search of a tree whose root corresponds to the original network.
The sons of a node are obtained by choosing one unassigned variable in the
father problem and by giving it all possible values (yielding a d branching
factor in the worst case). This naive algorithm runs in O(dn). Because of
its practical inefficiency and of the associated NP-completeness for constraint
network consistency, so-called filtering algorithms have been introduced. A
filtering algorithm transforms a constraint network into an equivalent network
(with the same set of solutions) which satisfies an additional local consistency
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property. Typically, a local consistency property ensures that values which do
not participate in a solution are explicitly deleted. The most preeminent local
consistency property is called arc consistency.

Arc consistency

We introduce the definition of arc consistency for binary constraints, but this
property can easily be generalized to constraints of arbitrary arity. Given
a variable xi and a binary constraint c{xi,xj} involving variables xi and xj

(with domains di and dj respectively), xi is said to be arc consistent wrt.
c{xi,xj} iff any choice of value for xi can be extended to a pair on xj in such
a way that the constraint c{xi,xj} is satisfied. More formally: ∀v ∈ di,∃w ∈
dj such that (v, w) ∈ c{xi,xj}. In this case, we say that w is a support for v
on constraint c{xi,xj}. A variable is arc consistent if it is arc consistent wrt
to all the constraints involving it. A constraint network P is said to be arc-
consistent if all its variables are arc consistent. Obviously, a value v ∈ di with
no support on c{xi,xj} cannot participate in a solution and it can be removed,
yielding a simpler and equivalent problem. If the value v deleted was the only
support for another value u (on another constraint) then this value u can also
be deleted. The process of deletion continues until a unique fix point is reached.
This process is also called constraint propagation. If the domain of any variable
becomes empty during this process, then the problem is known to be inconsistent
(no solution). Otherwise a smaller equivalent problem is obtained.

A tradeoff arises in the choice of the propagation which is used inside the
tree-search: stronger propagation methods are more expensive but may detect
inconsistencies earlier; weaker propagation methods are generally cheaper to
execute but may increase the size of the explored part of the tree.

Based on pragmatical observations, the level of constraint propagation which
is considered as the best compromise is usually arc consistency. This leads to
the so-called MAC algorithm (Maintaining Arc-Consistency) [9] which is one of
the most efficient algorithm for constraint network solving. In this algorithm,
constraints are propagated to achieve arc-consistency at each node of the tree
search. If an empty domain is obtained at some point, backtracking occurs.
Although still worst-case exponential, this algorithm is able to solve larger
problems than the naive backtracking algorithm. Its practical efficiency is
largely influenced by the order of assignment of the variables. To choose the
next variable to assign, the informal “first fail principle” indicates the most
constrained variable (small domain, involved in many, tight constraints) as a
good choice in order to reduce the search tree size.

2.2 Structured motifs as constraint networks

The elements that may characterize an RNA gene family are usually described in
terms of the gene sequence itself (eg. it must contain some possibly degenerated
pattern), the structures the sequence creates (loops, helices, hairpins and possible
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duplexes with other molecules) and by specifying how these various elements
are positioned relatively to each other.

A possible occurrence of such a structured motif on genomic sequences can
be described by the positions of the various elements on the (possibly different)
sequence(s) which are correctly located relatively to each other.

A natural constraint network model emerges from this description: the
variables of the network will represent the positions on the genomic sequence(s)
of the elements of the description. More formally, each variable xi ∈ V (ym ∈ V
is also used for clarity in order to distinguish between two interacting molecules)
will represent a position on an associated sequence. The initial domain of
variable xi (ym), unless otherwise stated, will therefore be equal to the size of
the associated sequence.In order to represent information on required patterns,
structures, and on relative positions of these elements, constraints will be used.
To describe a constraint we separate the variables xi, ..., xj , yl, ..., ym involved in
the constraint and possible extra parameters p1, ..., pk that influence the actual
combination of values that are authorized by the constraint. Such a constraint
will be denoted as name[p1, ..., pk](xi, ..., xj , yl, ..., ym). We now introduce the
basic constraint types which are useful for RNA signature expression:

content[word, error, typeer](xi)

: this unary constraint is satisfied iff some given pattern occurs at position xi

on the associated sequence. The pattern that must occur is specified by the
following constraint parameters: word is a word on the IUPAC alphabet; error
specifies the maximum number of tolerated mismatches between an occurrence
and the specified string; typeer indicates if the error count is interpreted under
the Hamming or Levenshtein distance metric ([27]). An example of possible use
of this constraint is illustrated in Fig. 1(1) where variable x1 is constrained to
a position where the AGGGCUAGG pattern appears precisely. An occurrence is
indicated by the arrow.

distance[lmin, lmax](xi, xj)

: this binary constraint is used to enforce the relative position of elements. It
is satisfied iff lmin ≤ xj − xi ≤ lmax. The positive integer parameters lmin, lmax

specify the bounds for the difference between the two position variables.

helix[rule, error, typeer, lmin, lmax, bmin, bmax](xi, xj , xk, xl)

:
this 4-ary constraint is used to enforce the existence of a generalized palindrome

between the substrings delimited by [xi, xj ] and [xk, xl] assuming that the four
variables are related to the same sequence. Length and distances are also
constrained. The constraint accepts the following parameters: rule is a binary
relation on the RNA alphabet generalizing the usual equality relation that
defines when two characters are considered as “matching” in the palindrome.
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Figure 1: Basic constraints. (1): occurrence of a pattern at one position. The
constraint graph contains one vertex with one unary constraint represented
by an edge. (2): an hairpin loop defined by two related segments separated
by specified lengths. The constraint graph contains four vertices, three
implicitdistance constraints represented by edges and one helix constraint
represented by an hyper-edge connecting all four vertices with a rectangle in
the middle. (3): a duplex composed of two independent substrings (from two
sequences). The constraint graph is similar to the previous one (one distance
constraint is removed). (4): two helix constraints can describe a pseudo-knot
or (5) : a triple helix.
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For an RNA helix one may use Watson-Crick (A-U, G-C) possibly extended with
Wobble (G-U) pairing instead of equality relation. error gives the maximum
number of tolerated mismatches between the two substrings. typeer gives the
Hamming or Levenshtein distance metric for error counts. lmin, lmax represents
the interval specifying possible lengths of the two substrings. bmin, bmax represents
the interval specifying the possible distance between the two substrings (i.e.,
xk − xj). This constraint is illustrated in Fig. 1(2), involving variables x1, x2,
x3 and x4.

duplex[lmin, lmax](xi, xj , yk, yl)

: this 4-ary constraint is used to enforce the existence of a (Watson-Crick based)
duplex between the substrings delimited by [xi, xj ] and [yk, yl] but without
assuming that the two substrings belong to the same sequence. Only Watson-
Crick pairing is considered. This constraint is used to model RNA-RNA interactions
between different molecules with lmin, lmax representing the interval specifying
possible lengths of the two substrings. The constraint is illustrated in Fig. 1(3)
involving x1, x2 (on one sequence) and y3, y4 (on another sequence). An
occurrence is indicated by the arrows.

Note that several such constraints can describe more complex structures like
pseudo-knots (Fig. 1(4)) and triple helices (Fig. 1(5)).

The flexibility of the constraint network representation using simply the four
previous basic constraints can be illustrated on famous RNA gene families. A
tRNA signature is represented in Fig. 2(A). tRNA genes include four helices
corresponding respectively to A-stem (7 base pairs), D-stem (from 3 to 4 base
pairs), C-stem (5 base pairs) and T-stem (5 base pairs), six loops corresponding
respectively to the single strand between A-stem and D-stem (sequence UN with
U invariant), D-loop (4 to 14 bases), the single strand between D-stem and C-
stem (one base), C-loop (6 to 60 bases), the single strand between C-stem and
T-stem (also called V-loop, 2 to 22 bases), T-loop (NUC).

The corresponding constraint network is built from 16 variables Fig. 2(C)).
the variable numbering follows the 5’ → 3’ orientation) with 15 distance
constraints (one constraint between each successive pair of variables), 2 content
constraints and 4 helix constraints .

The same process can be applied to archaeal H/ACA sRNA signature.
H/ACA sRNA are involved in a type of site-specific modification, the pseudouridylation
(conversion of uridine into pseudouridine), within ribosomal RNA (rRNA) targets.
They exhibit complementarity to specific sites within rRNA sequences, thereby
determining the site of modification. Archaeal H/ACA sRNA contain one or
more hairpins connected by single stranded regions, all having similar characteristics.
We have built a signature depicted in Fig. 2(B) of such a consensus hairpin on
the basis of known available H/ACA sRNA secondary structures in Pyrococcus
furiosus, Pyrococcus abyssi, Pyrococcus horikoshii and Archaeoglobus fulgidus
genomes [24]. The signature identifies simultaneously a sequence representing
one sRNA hairpin containing all the characteristics of both the sRNA and the
sequence of the target able to form the interaction. The sRNA is described as

7



Figure 2: (A) Signature of tRNA and (B) H/ACA genes family. Circles represent
bases ; edges represent interactions between two bases. (C) Modelisation by
a constraint network hypergraph of tRNA and (D) H/ACA sRNA. Ellipses
represent variables ; edges represent constraints. Dashed edges represent
content constraints, thick hyperedges represent helix and duplex constraints.
Other edges represent distance constraints.

containing the lower stem of the hairpin, an internal loop from which the two
single stranded regions are able to form a duplex with the target, two single
stranded regions corresponding to an irregular upper stem, a K-turn motif [24],
a single strand corresponding to the loop of the hairpin and, at the 3’ end, an
ACA box element. The target is described as containing two regions separated
by ’UN’ (U being the uridine which will be converted into a pseudouridine) and
able to pair with H/ACA regions.

The corresponding constraint network is built from 16 variables (12 variables
for the sRNA motif, 4 variables for the target motif) one helix constraint, two
duplex constraints, 15 distance constraints and 4 content constraints (see
Fig. 2(D)).

2.3 Algorithms and implementation

The problem is to find all solutions to the network. Compared to usual applications
of the constraint network formalism, this one is characterized by the potential
huge domain size (a genomic sequence is possibly a pseudo-molecule) and its
specific constraint types (except for the distance constraint which is a usual
arithmetic constraint).

The naive backtracking scheme, which successively tries all values of a variable,
would lead to a branching factor equal to the domain size and thereby would
be difficult to manage in practice. Instead, our algorithm explores a binary
tree. The root of the tree corresponds to the initial problem with no variable
assigned. The two sons of a node are obtained by (left) assigning to one variable
the first value of its domain and by (right) removing this value from the domain.
Constraint propagation is done at each node in order to detect inconsistent
problems earlier and limit the size of the tree explored.
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Data structure and propagation algorithms

Traditional constraint propagation such as arc consistency enforcing can delete
any value in any domain and has therefore a nd space complexity just to
remember which values are deleted or not. In our case, this is impractical.
A usual simple choice in this case is to describe domains as intervals [lb, ub]
(for lower bound and upper bound). This reduces the space complexity to a
nice 2n. The side-effect of this representation is that complete arc consistency
cannot be enforced anymore in the general case. Indeed, if a value a ∈]lb, ub[
has no support on a constraint, it cannot be deleted because there is no interval
representation of the domain obtained. Thus only bounds without support can
be deleted. This weakening form of arc consistency is called bound-consistency
([19]).

Bound consistency:

for simplicity, we define bound consistency assuming binary constraints. A
variable xi with domain di = [lbi, ubi] is bound consistent wrt. constraint
c{xi,xj} involving variables xi and xj iff ∃w1, w2 ∈ dj such that (lbi, w1) ∈
c{xi,xj} and (ubi, w2) ∈ c{xi,xj}. In this case, w1, w2 are the supports for the
bounds of xi on constraint c{xi,xj}. A constraint is bound-consistent if it is
bound consistent wrt. all the variables involving it. A constraint network P is
bound-consistent if all its constraints are bound-consistent. For constraints
of larger arities, the bounds must participate in at least one tuple that is
authorized by the constraint and other domains. Using both an interval based
representation for the domains and bound consistency saves space by representing
each domain by only two integers and may also save time since existence of a
support needs only to be enforced on the bounds. The basic operation used
to perform bound consistency propagation consists in directly computing for a
variable xi, involved in a constraint c, the largest interval R(c, xi) = [a, b] such
that a and b have a support on the constraint c. R(c, xi) is called the reduction
operator for the constraint c and variable xi. To enforce bound consistency,
for every variable xi and every constraint c ∈ C involving xi, the domain di is
reduced to di ∩R(c, xi). This is done repeatedly until no modification occurs (a
fix-point is reached). For specific types of constraints, this reduction operator
can be computed more efficiently than by checking for the existence of supports
for successive values. A classical example of this is the arithmetic distance
constraint lmin ≤ xj−xi ≤ lmax where the reduction operator for xi is defined by
[a, b] = [lbj − lmax, ubj − lmin]. In this specific case, it has been shown that bound
consistency propagation is equivalent to arc consistency propagation and that
it can be enforced in time O(ed) [16]. For other types of constraint, dedicated
reduction operators are written.

Dedicated constraint propagation

For each type of constraint, we developed specific reduction operators using
appropriate pattern matching algorithms. Each type of constraint may be
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considered as a black box isolated from the constraint network system itself.
Then it can be simply described by a specific algorithm implementing reduction
operator of the encoded relation. The reduction operator for the distance
constraint has been described before. We now describe the operator for other
constraints:

• content[...](xi): the lower bound of the domain of xi can obviously be
updated to the first occurrence of the pattern after lbi in the associated
text. To find this occurrence, the algorithm of Baeza-Yates and Manber [3,
31] is used. This algorithm is based on a boolean representation of the
search state and exploits the intrinsic parallelism of bitwise logical operations
in modern CPU.

• helix[...](xi, xj , xk, xl): imagine we want to reduce the domain of variable
xi. The problem is to find the first helix (a support) that satisfies the
parameters of the constraint. By first we mean the helix with the smallest
position of the 5’ extremity of the first strand (pointed by xi). The
problem for helices (which can be seen as two related substrings) is more
complex than for content since the two substrings are initially unknown.
This makes it impossible to use string matching algorithms relying on a
preprocessing of the substring searched. A naive approach that successively
tries all possible positions for the first and second substrings is obviously
quadratic. However, in our case, the distance between the regions where
the substrings may appear is constrained by the length parameters bmin

and bmax. Together with parameters lmin and lmax, this makes the complexity
of the naive approach linear in the text length.

• duplex[...](xi, xj , yk, yl): this constraint differs from the previous one by
the precise fact that there is no possible bmin and bmax parameters since
the two words interacting do not necessarily appear on the same sequence.
The previous naive approach is therefore impractical. We decided to use a
specialized version of suffix-trees [29] that captures occurrences of patterns
of bounded length. This data structure, called a k-factor tree [1] allows to
perform string search in time linear in the length of the pattern searched
(independently of the text length). The data structureis built once and for
all at the initialization of the constraint network, in space and time linear
in the length of the text [29]. The associated reduction operator is only
used when one of the two variables xi or xj is assigned. All the occurrences
of the Watson-Crick reverse complement can then be efficiently found in
the k-factor tree and used to update the bounds of the other variables
(taking the position of the first and last possible occurrences as new
bounds).

These constraint propagations are quite expensive compared to the simple
distance constraint. In order to avoid repeated useless applications of the
reduction operator, once a support is found it is memorized and reused until
one of the value in the support is removed. In this case, the support is lost and
a new search for a valid support must be performed.
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3 Results

This approach has been implemented in a general purpose program MilPat
: Motifs and Inter-moLecular motifs searching tool using csP formAlism and
solving Techniques. MilPat is written in C++. The implementation of reduction
operators as constraint propagation makes the architecture of MilPat suitable for
the simple addition of new constraint types. Indeed, since (i) the propagation
of a constraint requires information only on its own variables and has effect
only on them and (ii) all the constraints attached to a variable can be checked
independently, one after the other, in any order, it suffices to just implement a
new constraint type with associated reduction operators to extend MilPat. A
minimal language written in lex and yacc allows to describe motifs. It is possible
to run MilPat by using a web interface at http://carlit.toulouse.inra.fr/MilPaT/MilPat.pl.

We tested our approach on different RNA gene search problems in order to
assess its efficiency and modeling capacities.

3.1 tRNAs

The tRNA structure and sequence profiles are perhaps the best studied among
RNAs; hence, they are very appropriate for a first benchmarking. The signature
of tRNAs used here is deliberately a simple one that can be modeled in all
existing general purpose tools. We have concentrated on finding sequences
that can adopt a cloverleaf-like secondary structure within given ranges of
stem and loop lengths. We searched the Escherichia coli and Saccharomyces
cerevisiae genomes with two different tRNA descriptors. The main differences
between both series of descriptors are the existence of the CCA arm in the
case of prokaryotes and the existence of an intron in the loop of stem3 (for
Saccharomyces cerevisiae).

We compared the time execution of MilPat with three other general purpose
programs. The tRNA signature used in our comparisons is from Gautheret
and al. [15]. It includes four helices constraints, 15 distance constraints and 2
content constraints (see Fig. 2). The results of this comparison are shown in
Table 1. For each genome search test, every program gives the same number of
solutions with a sensitivity close to 100% (in both cases, descriptors miss one
tRNA : (i) the selenocysteine tRNA for E. coli and (ii) an arginine tRNA for S.
cerevisiae).

This general descriptor was not optimized to provide the best correct hits
or lowest false-positive rates across both organisms. In fact, more specific rules
for mispairs, sequence conservation, and lengths of regions could conceivably be
included to provide a better specificity. However, this simple descriptor provides
a straightforward signature of the structural motif we are looking for, and is a
good comparison basis for the tools as the motif can be identically represented
in any language (specific to each software).

On the computing efficiency basis, three groups may be formed from the
slowest to the fastest: (i) RnaMot and RnaMotif, (ii) Patscan and Milpat
with variable order A, and (iii) MilPat with variable order B. It is well known
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Software E. coli (4,6 Mb) S. cerevisiae (12,07 Mb)
PatScan 1 min. 32 1 h 40
RnaMotif 4 s. 8h40
RnaMot 2 min. 92 h

MilPat (order A) 39 s 1 h52
MilPat (order B) 39 s 20 min.

Table 1: Comparison of the time efficiency: 545 solutions are found for the E.
coli genome and 849982 for the S. cerevisiae genome. The huge number is due
to the allowed flexibility of the descriptors (for example, the specification of an
intron for the S. cerevisiae genome). A way to get a better specificity for tRNAs
search, is to observe that : (i) the total number of allowed mismatches (5 for 4
helices) is higher than the number usually found in tRNAs (2 mismatches), (ii)
each helix can contain one (or 2 for one of them) mismatch(es).

that variable assignment order may have a significant influence on efficiency.
The order A used by MilPat consists in ordering variables according to the
topological order of the elements in the structured motif, from 5’ to 3’. Order
B is an optimized order following the first fail principle: most constrained
variables are chosen first by the backtrack algorithm. Without this optimized
order, MilPat already has an execution time close to the most efficient program,
PatScan. Just changing the order leads to an earlier pruning of the search tree
and a considerably improved execution time.

3.2 H/ACA sRNAs

Several studies have recently identified new H/ACA sRNA genes [17, 24, 26, 8,
4]. In order to test the ability of MilPat to model interactions between different
molecules, we performed a computational screen of the archaeal M. Jannashii,
P. abyssi, P. furiosus and P. horikoschii genomes for H/ACA sRNA. Results
are described in Table 2. In Pyrococcus genomes, we have tested the ability of
MilPat to locate known H/ACA sRNA. In M. Jannashii, we have selected only
GC-richest candidate sequences.

H/ACA sRNA in Pyrococcus

In all the Pyrococcus genomes, for each known H/ACA sRNA, we have found
one or more hairpins according to the signature used. Pab91, identified and
annotated as an H/ACA sRNA in [8], appears to be the homologue of Pf4 [17].
Other hairpins of H/ACA known sRNA were not detected because of a strict
description of both the K-turn motif and the duplex. This latter case is to relate
to the suffix tree modelisation of the duplex constraint which, in the current
version of MilPat, is able to build only consecutive Watson-Crick base pairs.
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Name (known as) Nb HP MilPat Identified
/Nb known in

P. furiosus (1.91 Mb)
Pf-H/ACA-1 (Pf1, Pfu-sR9, sR9) 1/1 [1],[3]
Pf-H/ACA-2 (Pf3, hgcE) 1/2 [1],[3]
Pf-H/ACA-3 (Pf4) 1/1 [3]
Pf-H/ACA-4 (Pf6, hgcF) 1/2 [1],[3]
Pf-H/ACA-5 (Pf7, hgcG) 1/3 [1],[3]
Pf-H/ACA-6 (Pf9) 1/1 [3], [4]
P. abyssi (1.77 Mb)
Pa-H/ACA-1 (Pab-sR9) 1/1 [1], [3]
Pa-H/ACA-2 1/2 [1]
Pa-H/ACA-3(Pab-91) 1/1 [3],[5]
Pa-H/ACA-4 1/2 [1], [3]
Pa-H/ACA-5 2/3 [1], [3]
Pa-H/ACA-6 1/1 [3]
P. horikoschii (1.74 Mb)
Ph-H/ACA-1 (Pho-sR9) 1/1 [1], [3]
Ph-H/ACA-2 1/2 [1]
Ph-H/ACA-3 1/1 [3]
Ph-H/ACA-4 1/2 [1], [3]
Ph-H/ACA-5 2/3 [1], [3]
Ph-H/ACA-6 1/1 [3]
M. jannashii (1.74 Mb)
Mj-H/ACA-1 1/unknown no
Mj-H/ACA-2 (Mj2, hgcA, cbr1) 1/unknown [2], [3]
Mj-H/ACA-3 (cnr7) 2/unknown [2]
Mj-H/ACA-4 (Mj4, Mj9, cnr9) 1/unknown [2], [3]
Mj-H/ACA-5 (cnr13) 1/unknown [2]

Table 2: H/ACA sRNA candidates.: H/ACA sRNA identified by using the
signature depicted in Fig. 2(B). Names between parenthesis refers respectively
to the different names found in the litterature (first column). The second column
gives the number of hairpins found by MilPat relatively to the number of hairpins
in known H/ACA sRNA. In the last column, [1], [2], [3], [4] and [5] refer to the
papers of respectively [24, 26, 17, 4, 8]

H/ACA sRNA in M. jannaschi

We identified five potential H/ACA sRNA in M. jannaschi (see Figure 3(a)),
all having several possible targets (see target candidates via the web interface).
Several secondary structures would be possible according to the selected targets.
Only one secondary structure is represented for each candidate.

Mj-H/ACA-1, the homologue sequence of Pf7 was found as a new sRNA.
Remarkably, this sRNA is reported neither in [17] or [26]. After looking at the
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Figure 3: (a) Secondary structures of proposed H/ACA sRNAs for M. jannaschi.
(b) Alignment of Mj-H/ACA-1 with homologue sequences in the Pyrococcus
genomes.

5’ and 3’ ends of the sequence, it appears that Mj-H/ACA-1 contains only one
hairpin, homologue to the HP-III hairpin of Pf7 (see Figure 3(c)).

Other candidates were already identified as sRNA but not annotated as
H/ACA sRNA. Mj-H/ACA-2 was computationnally identified as a sRNA in
[26, 17] and experimentally identified in [17]. It contains all the characteristics
of an H/ACA archaeal sRNA. Mj-H/ACA-3 and Mj-H/ACA-5 also appear to
be new H/ACA genes with respectively two hairpins and one hairpin. They
are identified as sRNA (respectively as cnr7 and cnr13) in [26] but were not
experimentally identified. Mj-H/ACA-4, identified partially in [26], computationnally
and experimentally identified in [17] also presents all the characteristics of an
H/ACA archaeal sRNA. Homologue sequences are found in the three Pyrococcus
(see Figure 3(b)). They correspond to the Pf9 H/ACA sRNA gene identified in
[4].

In our search, the signature was not optimized to provide all the available
hits. More specific rules for a K-turn degenerated motif, mispairs in the helix
and duplex, possible bulges and different lengths of regions could be included
to provide better sensitivity. However, the simple signature we used provides
a good example of a quick and efficient modelisation of interacting molecules.
Processing one of the archaeal genomes and one rRNA target with the H/ACA
signature typically takes less than two minutes on a 700Mhz Athlon.

4 Conclusion

The main aim of our work is to offer a way of describing new generations of
RNA patterns, including the specification of complexes formed by antisense
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interactions between different regions of a genome. The combination of constraint
network methodology together with efficient pattern matching data structures
and algorithms provides 1) an increased efficiency, 2) extended modeling capabilities
for intermolecular interactions and 3) an easily extensible framework.

Beyond this ability to describe inter and intra-molecular interactions with a
great flexibility, a number of evolutions are possible to improve MilPat efficiency
and modeling capabilities, including the ability to describe optional or alternative
motifs. Within the framework of the biological application, these possibilities
are essential to be closer to the structural reality of the molecules.

In its current version, MilPat provides all the true occurrences (satisfying
all constraints). Future developments aim to offer a scoring system based on
mismatches, thermodynamic or probabilistic parameters. Taking the deal of
such information would require the use of more complex weighted constraint
network algorithms [18].
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