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Abstract. For the last ten years, a significant amount of work in the
constraint community has been devoted to the improvement of complete
methods for solving soft constraints networks. We wanted to see how
recent progress in the weighted CSP (WCSP) field could compete with
other approaches in related fields.
One of these fields is propositional logic and the well-known Max-SAT
problem. In this paper, we show how Max-SAT can be encoded as a
weighted constraint network, either directly or using a dual encoding.
We then solve Max-SAT instances using state-of-the-art algorithms for
weighted Max-CSP, dedicated Max-SAT solvers and the state-of-the-art
MIP solver CPLEX. The results show that, despite a limited adaptation
to CNF structure, WCSP-solver based methods are competitive with ex-
isting methods and can even outperform them, especially on the hardest,
most over-constrained problems.

1 Introduction

Since the eighties, both constraint satisfaction and boolean satisfiability have
been the topic of intense algorithmic research. In both areas, the main problem
is to assign values to variables in such a way that no forbidden combination of
values appears in the solution.

Using closely related techniques such as backtrack search, local consistency
enforcing (aka constraint propagation), and constraint learning, both areas have
produced generic complete solvers which have been applied to a large range of
problems. In the SAT domain, one major area of application is electronic design
automation (EDA) with problems that range from formal validation to routing.

Quite early in the history of constraint satisfaction, the issue of infeasible
problems has been addressed [18, 4, 7]. Most of the recent algorithmic work
has focused on the so-called WCSP (weighted constraint satisfaction problem)
where the aim is to find an assignment that minimizes the sum of weights as-
sociated with the constraints violated by the assignment. Complete algorithms
that address these problems rely on variants of depth-first branch and bound
search using dedicated lower bounds. Since the early algorithms of [6], huge im-
provements have been obtained using increasingly sophisticated lower bounds.



Recently [20, 13, 15], it has been possible to simplify and strengthen the defini-
tion of these lower bounds by expressing them as a result of the enforcing of a
local consistency property.

In the SAT area, the similar issue of infeasible problems has been considered
more recently, leading to increasing interest in the (weighted) Max-SAT problem.
In Max-SAT, the problem is to assign values to boolean variables in order to
maximize the number of satisfied clauses in a CNF formula. Max-SAT has
applications in routing problems [26] and is also closely related to the Max-
CUT problem (other applications are described in [10]). When turned into a
“yes-no” problem by adding a goal k representing the number of clauses to be
satisfied, Max-SAT and even Max-2SAT (where clauses only involve 2 variables)
are NP-complete and more precisely MAX-SNP-complete. Both problems have
been intensively studied on the theoretical side.

The problem hardness has also been studied empirically in [27]. This phase
transition analysis of random Max-3SAT problems shows that using the usual
fixed length random SAT model, the Max-3SAT problem does not show an
easy/hard/easy pattern as the clauses/variables ratio increases but an easy/hard
pattern: the empirical complexity of Max-3SAT increases as this ratio increases.

As usual for solving NP-complete problems, either complete or incomplete
algorithms can be used to tackle the problem. There is a long list of incomplete
algorithms for Max-SAT. In this paper, we only deal with complete algorithms,
that identify provenly optimal solutions in finite time. Two main classes of com-
plete algorithms have been proposed based either on variations on the Davis-
Putnam-Logemann-Loveland (DPLL) approach for satisfiability or on 0/1 linear
programming models. Along the DPLL line, current solvers use pseudo-boolean
formulae to model Max-SAT [2, 25, 5, 1]. A pseudo-boolean (PB) formula is a
linear inequality on boolean variables which can model clauses but also more
complex constraints such as cardinality constraints [24]. One of the first algo-
rithm in this line is OPBDP [2]. More recently, PBS (Pseudo Boolean Solver) [1]
was designed based on the Chaff SAT solver [16].

Also based on the DPLL algorithm, a more theoretical line of research has
tried to define complete algorithms that would provide non naive guaranteed
worst-case upper bounds on time complexity based on the overall length L of
the input formula or the number K of its clauses. While most of this work is
essentially theoretical and never reaches the level of actually implementing the
algorithms presented, one exception is [9] which implemented a Max-2SAT solver
that achieves worst case upper bounds of O(1.0970L) and O(1.2035K)1.

Another natural approach to solve the Max-SAT problem is to model it as
a mixed integer linear program (MIP). This linear program can then be solved
directly by a dedicated MIP solver such as ILOG CPLEX. Note that dedicated
branch and cut algorithms above MINTO have also been defined [3].

In this paper, we model the Max-SAT problem as a weighted CSP. Because
most of the existing work on WCSP has been done on binary WCSP, we consider

1 These theoretical results have been very slightly improved since in [8], but no corre-
sponding implementation is available.



two possible approaches: i) a direct conversion of clauses into constraints, which
produces non-binary problems and requires the solver to be adapted to deal with
them, and ii) a dual (binary) formulation as proposed in [14].

To solve converted Max-SAT instances, we use adapted versions of the WCSP
solvers defined in [15] which are depth-first branch and bound algorithms that
maintain some level of local consistency during search.

For comparison purposes, we also solve the original Max-SAT problems using
two dedicated solvers (OPBDP and PBS), a pure Max-2SAT dedicated solver
(max2sat by J. Gramm) and a general MIP solver (CPLEX). The results of
our experiments show that despite the fact that our generic WCSP code ignores
most clauses properties, uses classical CSP data-structures instead of specialized
clauses data-structures and relies on simple variable ordering, it can outperform
existing pseudo-boolean solvers, commercial MIP solvers and is even competitive
with a code restricted to Max-2SAT. The good performances of our algorithm are
especially obvious on problems with high clauses/variables ratio which is proba-
bly related to the strength of the lower bound induced by (full directional) soft
arc consistency. The results we get are consistent with what has been observed
in classical CSP when comparing arc consistency maintenance to eg. forward-
checking: the overhead for enforcing higher level of consistencies may slow down
the algorithm on relatively simple problems but provides both highly increased
performances and limited variability in the cpu-times on hard problems.

2 Notation and definitions

2.1 Sat and (weighted) Max-SAT

In propositional logic a variable vi may take values 0 (for false) or 1 (for true).
A literal `i is a variable vi or its negation v̄i. A clause Cj is a disjunction of
literals. A logical formula in conjunctive normal form (CNF) is a conjunction of
clauses. Given a logical formula in CNF, the SAT problem considers finding an
assignment of the variables that satisfies the formula, or getting a proof that no
such assignment exists.

When a logical formula is unsatisfiable, the Max-SAT problem tries to find
the assignment that satisfies as many clauses as possible. In the rest of the paper,
we assume that each clause Cj is associated with a positive weight wj . In this
case, the weighted Max-SAT problem looks for the assignment that maximizes
the sum of weights of satisfied clauses.

2.2 Weighted CSP

A constraint satisfaction problem (CSP) is a triple P = (X ,D, C), where X =
{x1, . . . , xn} is a set of variables, D = {D1, . . . , Dn} is a collection of domains
and C = {c1, . . . , ce} is a set of constraints. Each variable i ∈ X takes values in
the finite domain Di. A constraint ci is defined over a subset of variables var(ci),
and rel(ci) ⊂

∏
j∈var(ci)

Dj specifies the value tuples permitted by ci. var(ci) is



called the scope of the constraint and |var(ci)| is its arity. A tuple t is an ordered
set of values assigned to the ordered set of variables Xt ⊆ X . For a subset B of
Xt, the projection of t over B is noted t ↓B . A solution is a tuple involving all
variables that satisfies every constraint.

Following [13], we define Weighted CSP (WCSP) as a specific subclass of val-
ued CSP [21] where constraint costs can take their values in the set {0, 1, . . . , k}
where k ∈ {1, . . . ,∞} and represents a maximum acceptable cost. The combi-
nation of two costs is done using bounded addition denoted ⊕ and defined as
a⊕ b = min{k, a + b}.

A WCSP is then a tuple P = (k,X ,D, C). X andD are variables and domains,
as in standard CSP. C is the set of constraints as cost functions. A constraint ci

assigns costs to assignments to variables var(ci) (namely, ci :
∏

j∈var(ci)
Dj →

{0, . . . , k}). In the rest of the paper, we assume the existence of a unary constraint
for every variable and also a zero-arity constraint c∅ (if no such constraint is
defined, we can always define dummy ones ci(a) = 0,∀a ∈ Di or c∅ = 0).

When a constraint c assigns cost k or above to a tuple t, it means that c
forbids t, otherwise t is permitted by c with the corresponding cost. The cost of
a tuple t, noted V(t), is the bounded sum over all applicable costs,

V(t) =
⊕

ci∈C, var(ci)⊆Xt

ci(t ↓var(ci))

Tuple t is consistent if V(t) < k. The usual task of interest is to find a complete
consistent assignment with minimum cost, which is NP-hard.

3 Modeling and solving the Max-SAT problem

3.1 As a Pseudo-Boolean Problem

A pseudo-boolean (PB) problem is a special case of CSP where all variables
share a bi-valued domain D = {0, 1} and constraints are linear inequalities. A
PB constraint takes the form,

n∑
i=1

cijvi

≤
≥
=

dj , cij , dj ∈ Z

A Max-SAT instance with r clauses and n variables can be translated into a
PB problem as follows. We first introduce r extra variables yj (one per clause)
and replace clause cj by the relaxed formula ¬cj → yj which forces yj to 1 when
cj is violated. This formula can directly be represented by a clause and translated
to a pseudo-boolean formula denoted RPB(cj) by replacing each occurrence of
v̄i by (1− vi) and the ∨ operator by +.

Finally, there is a last constraint
∑r

j=1 wjyj ≤ K where K ∈ [W, . . . , 0] W =∑r
j=1,j 6=k wj such that wk = maxj{wj}, j = 1, . . . , r. This constraint bounds the

maximum violation cost.



As example, the set of clauses {v̄1, v̄2, v1∨v2} (all with the same unit weight)
generates a PB problem with five variables and four constraints,

(1−v1)+y1 ≥ 1 (1−v2)+y2 ≥ 1 v1+v2+y3 ≥ 1 y1+y2+y3 ≤ 2

This translation is the most compact we could think of. In their papers,
the authors of PBS [1] use a less compact encoding where a stronger relaxed
formulation ¬ci ↔ yi is used instead of ¬ci → yi. This encoding was also tested
with PBS but provided similar results and is therefore ignored in the rest of the
paper.

The PB problem is solved combining DPLL and constraint propagation.
DPLL is used on the r constraints RPB(Cj) which have a clausal structure.
When a y variable becomes instantiated by DPLL, this is propagated through
remaining constraints as follows. Assuming that {y1, . . . , yp} is the subset of y
variables instantiated, if

∑p
j=1 wjyj > K then this constraint is violated. Oth-

erwise, all unassigned yi such that wi > K −
∑p

j=1 wjyj must be fixed to 0
(otherwise the constraint would be violated). This propagation may generate
new unary clauses, which are again propagated by DPLL, etc. In this way, for a
given K the problem is solved or it is detected as unsolvable.

To find the minimum weight of unsatisfied clauses K should be minimized.
Initially, K takes value W . Then, either a depth-first branch and bound approach
(OPBDP) or an iterative approach (PBS) can be used. With iterative resolving,
clause learning can naturally speedup the solving process.

3.2 As a Mixed ILP

An integer linear problem (ILP) considers the minimization of a linear function
of integer variables under linear constraints. Mixed ILP involve continuous and
integer variables.

Given a Max-SAT instance with n variables and r clauses, it is translated
into a Mixed ILP as follows. We use r extra continuous variables yj , one per
clause. Each clause Cj can be encoded as the linear constraint RPB(Cj) as in
the previous case. Note that integrality constraints on yi are useless since they
only appear in one constraint, where all other variables are integer, and the
function to minimize is the weighted sum

min
r∑

j=1

wjyj (1)

As example, the set of clauses {v̄1, v̄2, v1 ∨ v2} generates the following ILP,

min y1 + y2 + y3

1− v1 + y1 ≥ 1
1− v2 + y2 ≥ 1

v1 + v2 + y3 ≥ 1



where vi ∈ {0, 1}, i = 1, 2, yj ∈ [0, 1], j = 1, 2, 3.
The MIP is solved by computing its linear relaxation, obtained by replacing

the integrality requirements by simple bounds, 0 ≤ vi ≤ 1, i = 1, . . . , n. If
the solution of the linear relaxation has integer v variables, it is compared with
the best solution found so far. If the solution has fractional v variables, one
vi is chosen for branching, generating two subproblems (one with vi = 0, the
other with vi = 1), which are solved by the same method. A number of other
sophisticated techniques can be involved in this process [3].

3.3 As a WCSP

Primal encoding A weighted Max-SAT instance is directly expressed as a
WCSP as follows. WCSP variables are the logical variables of the Max-SAT
instance, with the domain {0, 1}. Each clause Ci with weight wi generates a
cost function, which assigns cost 0 to those tuples satisfying Ci, and assigns
cost wi to the only tuple violating Ci. When two cost functions involve the same
variables, they can be added together. The WCSP solution, the total assignment
with minimum cost, corresponds to the solution of Max-SAT.

The algorithms used to solve the WCSP are specific depth-first branch and
bound algorithms. Such algorithms rely on an upper bound ub on the cost of the
optimal solution and a lower bound lb on the cost of the optimal extension of
the current assignment. The cost of the currently best known solution provides
ub. An ad-hoc mechanism provides lb. The current branch is pruned as soon as
lb ≥ ub.

Given the current assignment, we have an associated WCSP subproblem
where S(ub) is the valuation structure, c∅ is the current lower bound, and cur-
rent constraints are the constraints inherited from the parent node projected
according with the last assigned variable. To process this subproblem, a given
soft local consistency property is enforced at each node. As in the classical CSP
case, local consistency enforcing performs local computations that preserve the
semantics of the problem, prune infeasible values (whose use would provenly lead
to cost greater than or equal to ub) and may increase c∅ (see [19, 13, 15]).

The different levels of local consistencies we have considered are node con-
sistency (NC), arc consistency (AC), directional arc consistency (DAC) and full
DAC (FDAC), as defined in [15]. These local consistencies can be enforced in
time O(nd) (NC), O(ed3) (AC), O(ed2) (DAC) and O(end3) (FDAC), where e
is the number of constraints, n the number of variables and d the maximum
domain size.

Among these local consistencies, NC is the weakest and FDAC is the strongest.
DAC and AC are incomparable between them, both are stronger than NC but
weaker than FDAC [15].

Each form of local consistency defines a solver which maintains the corre-
sponding property. For instance, MFDAC is the branch and bound algorithm
that maintains FDAC during search. Since the Max-Sat translation produces
non-binary constraints, we straightforwardly extend the previous local consis-
tencies to the non-binary case as follows: a problem is considered as locally



consistent iff it is locally consistent with respect to unary and binary constraints
(other constraints are delayed until their arity is reduced by further assignments).

Dual encoding An alternative modeling is the dual formulation [14]. There is a
variable xi for each clause Ci. The domain of xi is the set of possible assignments
to the logical variables in Ci. When xi takes one of its domain values, it represents
the fact that the logical variables of Ci have been assigned accordingly. There
is a unary constraint on each variable xi. This constraint assigns cost 0 to each
domain value satisfying clause Ci, and assigns cost wi to the only domain value
violating Ci (namely, the assignment which dissatisfies every literal in Ci). There
is a binary constraint between every two variables xi and xj corresponding to
clauses Ci and Cj sharing logical variables. This constraint gives infinite cost to
pairs formed by domain values which assign different logical values to the shared
logical variables, and cost 0 to every other pair. The solution of the dual problem
corresponds to the solution of the primal problem, which produces a solution for
Max-SAT. This formulation produces a binary encoding, so that existing WCSP
algorithm implementations can be directly applied.

Heuristics Each time a variable has to be selected, the algorithm looks for
variables with one feasible value and selects one of them first. If all variables
have two values, a heuristic must be used.

We denote Tj =
∏

j∈var(ci)
Dj the domain of constraint cj and define Wj =∑

t∈Tj
cj(t)/|Tj |, the average cost of constraint cj . The average cost increment

induced by variable i assignment is defined as Zi =
∑

j∈C,i∈var(cj)
Wj/|Di|. A

natural heuristic would be to select the variable i with the highest Zi. However,
unless we can exploit the semantics of the constraint to sum up costs efficiently,
computing this heuristic has cost O(e×dr) where e is the number of constraints,
d is the largest domain size and r is the problem arity2. We found this heuristic
very effective but too expensive to pay off. Thus, we made an approximation.

Let Zk
i be the contribution of k-arity constraints to Zi. The approximate

heuristic selects the variable with highest Z1
i +Z2

i , which has cost O(e1d+ e2d
2)

with e1 and e2 being the number of unary and binary constraints. Only when
all variables have Z1

i + Z2
i equal to zero, we discriminate using Z3

i , which has
cost O(e3d

3) (this is rarely needed, typically at nodes near to the root). This
heuristics is used dynamically (recomputed at each node).

4 Empirical results

In this section we report the results of an empirical evaluation of WCSP tech-
niques compared to state-of-the-art pseudo-boolean and ILP solvers on a set of
benchmarks.
2 Observe that in the SAT domain, this heuristic is equivalent to the two side Jeroslow-

Wang heuristic.



4.1 Benchmarks

The benchmarks are composed of:

unsatisfiable instances of the 2nd DIMACS Implementation Challenge [12]:
random 3-SAT instances (aim and dubois), pigeon hole problem (hole), 2-
coloring problems (pret) and random SAT instances (jnh) with variable
length clauses (2-14 literals per clause).
extended jnh instances weighted using uniformly distributed integer weights
between 1 and 1,000 [17].
random 2-SAT and 3-SAT instances created by Allen van Gelder mkcnf
generator [23]. The generation parameters are the clause length l, the number
of variables n and the number of clauses r. We generated a set of instances
with (l, n, r) ∈ {2, 3} × {40, 80} × {100, 200, · · · , 30003}. For each parameter
configuration, 10 instances were generated. Note that this generator prevents
duplicate or opposite literals in clauses but not duplicate clauses.

We assume unit clause weights for all instances, except for the extended jnh
instances.

We experimented with the 4 types of local consistency (NC, AC, DAC and
FDAC) and 2 problem encodings (primal and dual). Among the 8 alternatives,
maintaining FDAC with the primal encoding was the obvious best choice (it was
typically much better than any of the others, and never much worse). For clarity
in the analysis, we essentially report results on MFDAC. Our implementation of
MFDAC [15] (C code) is compared to four solvers:

Pseudo-boolean optimization solver OPBDP v1.1 [2] (C++ code).
Pseudo-boolean solver PBS v0.2 [1] (Sun binary).
Max-2SAT solver max2sat [9] (Java code), only for 2-SAT problems.
Commercial ILP solver CPLEX v8.1.0 [11] (Sun binary).

We used default configuration parameters for all the solvers, except for PBS
which used VSIDS decision heuristic (as advised by the authors) and for CPLEX
whose default stopping criterion was set to gub− glb ≤ 0.999 in order to ensure
completeness.

In order to reduce the search effort for all algorithms and put ourselves in
a realistic situation, we used walksat [22] with default parameters (10 runs of
100000 flips) to compute a first upper bound. This upper bound was injected in
all algorithms using either available configuration parameters or by modifying
the max2sat code to access an internal parameter. In the case of the DIMACS
instances, walksat always found the optimum, so the complete solvers had just
to prove optimality. In the case of extended jnh instances, we used the optimum
values from [17]. Because of this preprocessing step, CPLEX focused on opti-
mality proof rather than improving integer solutions (set mip emphasis 2). Note
that in general, only few Gomory fractional cuts were added by CPLEX. All the

3 Only 2000 for 80 variables instances.



experiments, except for CPLEX, ran on a Sun Enterprise 250 (UltraSPARC-
II 400MHz, 640 Megabytes at 100 MHz). CPLEX ran on a Sun Blade 1000
(UltraSPARC-III 750MHz, 1 Gigabytes) and a ratio (370/198 from SPEC CPU
2000 results) was applied for time measurements.

4.2 Results

The results for DIMACS benchmarks are shown in Table 1 and 2. For each
instance, the table lists the instance name, the number of variables (|V |), the
number of clauses (|C|), the optimum (minimization of the clause violation), and
the total cpu time in seconds (rounded downwards) for the various solvers. In the
case of Table 2, there are two parts corresponding to the original jnh instances
and the extended jnh. In both tables, the last two lines give the number of
instances completely solved in less than 600 seconds and the average time for
all the instances (if unsolved, 600 is counted). Note that all these problems have
an extremely low optimum value, which means that they are near the transition
peak. As observed by [27], these instances are hard as SAT instances but easy as
Max-SAT instances (the hardest instances have higher clauses to variables ratio
which causes high optimum values)

In Table 1, MFDAC was able to solve almost half of the instances while
PBS solved them all. We do not report larger instances (|V | > 100) where PBS
was the only successful algorithm (except for CPLEX on hole10). PBS contains
several SAT-solver sophistications like conflict diagnosis and clause recording
which make it efficient on instances near the transition phase. In comparison,
OPBDP is much simpler. But its specific design for SAT (dedicated SAT rules
and data structures) makes the difference with MFDAC: OPBDP can visit up to
3 times more nodes per seconds than MFDAC. CPLEX solved the same number
of problems than MFDAC and is the best choice for the structured (highly
symmetric) pigeon-hole problems 4.

The original unsatisfiable jnh instances are best solved using OPBDP and
MFDAC (see table 2, first part) which solved all the instances. MFDAC was 4.6
times slower than OPBDP and explored 6-7 times more nodes than OPBDP.
We conjecture that our naive approach for tackling non-binary constraints is
responsible of this poor pruning behavior (recall that mean clause length in jnh
is equal to 5). PBS is 3 (resp. 14) times slower than MFDAC (resp. OPBDP),
mainly due to its bad performances on unsatisfiable instances with 3 or more
violated clauses at the optimum. CPLEX was slower than PBS but seems more
robust. Adding clause weights boosted all the solvers, except surprisingly for
CPLEX ([17] observed exactly the opposite but they were not using an initial
bound nor the same configuration parameters as us). OPBDP is still the best
choice, but PBS (with equivalences) is now second best and 4.6 times faster than
MFDAC.

4 Pigeon-hole problems have very efficient encoding as pseudo-boolean formulae and
CPLEX may possibly detect this even if a clausal formulation is used.



With randomly-generated Max-kSAT instances and large clauses/variables
ratios, MFDAC was by far the best as it is shown in Figure 1. PBS and OPBDP
were unable to solve problems with more than 400 clauses. CPLEX exceeded the
time limit for Max-2SAT (resp. Max-3SAT) with 40 variables when there are
more than 800 (resp. 600) clauses. MFDAC solved all the 300 instances of Max-
2SAT (40-variables) in less than 156 seconds each. max2sat was second best and
solved 220 instances in less than 600 seconds each. At a clauses/variables ratio
of only 5 (200/40), we got the following numerical results (mean time in seconds
and in parenthesis, mean number of nodes and number of problems completely
solved): MFDAC 0s(429nd,10), CPLEX 0.7s(89nd,10), max2sat 1.1s(257nb,10),
OPBDP 47.7s(691887nd,10), PBS 582s(1139115nd,1). At a clauses/variables ra-
tio of 10 (400/40), results were: MFDAC 0.1s(4013nd), max2sat 15.1s(6002nb),
CPLEX 24.8s(4839nd), OPBDP > 600s(-,0) and PBS > 600s(-,0). For Max-
3SAT (40-variables), instances become more difficults, the gap between MFDAC
and the other solvers was reduced (CPLEX is 8-9 times slower than MFDAC
for a c/v ratio of 10) but the efficiency order between solvers remained the
same. With more variables (Max-2SAT 80-variables), CPLEX was faster than
MFDAC if there are less than 400 clauses. And with Max-3SAT 80 variables,
OPBPD was the winner, and MFDAC second best, for less than 400 clauses.
When clauses/variables ratio decreases and when the clause length increases,
instances are closer to the satisfiability threshold which is beneficial to SAT-
based solvers such as OPDPB. In summary, MFDAC proved its superiority on
large clauses/variables ratios. The speed-up obtained was even more important
on problems with small length clauses.

Conclusion

On the Max-SAT problem, and despite a very limited adaptation of WCSP
code to CNF propositional logic formula, we observe that the use of recent local
consistency maintenance algorithms defined in [15] allows to reach a level of
performance competitive with recent Max-SAT complete solvers and state-of-
the art MIP solvers.This is especially true on the hardest problems, with a high
clause/variable ratio.

The current MFDAC code used is far from being finely optimized code and is
not specifically tuned to Max-SAT problems. For example, it does not specifically
exploit the fundamental properties of CNF in propositional logic: the fact that
domains are always binary and that dedicated data-structures can be used for
CNF representation. The extension of the local consistency to non-binary con-
straints could also be improved by studying subproblems involving more than 2
variables.

These results show that there is a clear opportunity to study if recent lo-
cal consistency notions like full directional arc consistency could be adapted
to propositional logic and injected in existing Max-SAT solvers. More work is
needed to see if these algorithms could be applied to other central combinatorial



Name |V | |C| Opt M
F
D

A
C

O
P

B
D

P

P
B

S

C
P

L
E

X

aim-100-1 6-no-1 100 160 1 - 595 0 71
aim-100-1 6-no-2 100 160 1 - 92 0 23
aim-100-1 6-no-3 100 160 1 - - 0 11
aim-100-1 6-no-4 100 160 1 - - 0 2
aim-100-2 0-no-1 100 200 1 - 0 0 -
aim-100-2 0-no-2 100 200 1 - 54 0 -
aim-100-2 0-no-3 100 200 1 - 60 0 -
aim-100-2 0-no-4 100 200 1 - 33 0 -
aim-50-1 6-no-1 50 80 1 5 0 0 0
aim-50-1 6-no-2 50 80 1 0 0 0 0
aim-50-1 6-no-3 50 80 1 3 0 0 0
aim-50-1 6-no-4 50 80 1 0 0 0 0
aim-50-2 0-no-1 50 100 1 1 0 0 0
aim-50-2 0-no-2 50 100 1 0 0 0 4
aim-50-2 0-no-3 50 100 1 0 0 0 3
aim-50-2 0-no-4 50 100 1 1 0 0 0
dubois20 60 160 1 407 70 0 -
dubois21 63 168 1 - 145 0 -
dubois22 66 176 1 - 298 0 -
dubois23 69 184 1 - 596 0 -
dubois24 72 192 1 - - 0 -
dubois25 75 200 1 - - 0 -
dubois26 78 208 1 - - 0 -
dubois27 81 216 1 - - 0 -
dubois28 84 224 1 - - 0 -
dubois29 87 232 1 - - 0 -
dubois30 90 240 1 - - 0 -
hole06 42 133 1 0 1 0 0
hole07 56 204 1 7 27 1 0
hole08 72 297 1 123 - 10 0
hole09 90 415 1 - - 69 0
pret60 25 60 160 1 532 77 0 -
pret60 40 60 160 1 530 76 0 -
pret60 60 60 160 1 531 77 0 -
pret60 75 60 160 1 530 77 0 -
|solved| 35 35 35 16 24 35 16
Average 72.1 172.8 1.0 402.0 253.9 2.4 329.2

Table 1. DIMACS unsatisfiable instances. Time in seconds. A “-” means the problem
was not solved in less than 600 seconds.



Name |V | |C| Opt M
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D
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Opt M
F
D

A
C

O
P

B
D

P

P
B

S

C
P

L
E

X

jnh04 100 850 1 0 0 0 38 95 2 0 0 112
jnh05 100 850 1 0 0 0 3 183 3 0 0 60
jnh06 100 850 1 0 0 0 39 99 3 0 0 84
jnh08 100 850 2 11 1 13 33 462 11 1 0 157
jnh09 100 850 2 5 1 18 274 333 89 0 2 -
jnh10 100 850 1 0 0 0 5 85 4 1 0 16
jnh11 100 850 1 0 0 0 32 172 26 0 0 439
jnh13 100 850 2 12 1 16 28 109 4 0 0 20
jnh14 100 850 2 10 1 19 170 101 11 0 0 79
jnh15 100 850 2 12 2 20 86 206 9 1 0 89
jnh16 100 850 1 4 8 0 490 6 23 8 0 190
jnh18 100 850 1 0 1 0 31 130 15 2 0 184
jnh19 100 850 2 14 1 40 162 166 12 0 0 97
jnh202 100 800 1 0 0 0 2 68 0 0 0 8
jnh203 100 800 1 0 0 0 13 39 8 0 0 21
jnh208 100 800 1 0 0 0 8 79 7 0 0 35
jnh211 100 800 2 14 0 14 34 259 13 0 0 31
jnh214 100 800 1 0 0 0 7 75 3 0 0 34
jnh215 100 800 1 0 0 0 18 88 15 0 0 46
jnh216 100 800 1 0 1 0 8 12 1 1 0 32
jnh219 100 800 1 0 1 0 34 82 12 1 0 46
jnh302 100 900 4 241 76 - - 395 17 0 1 114
jnh303 100 900 3 247 37 - - 351 35 2 1 326
jnh304 100 900 3 31 7 207 150 321 3 0 0 92
jnh305 100 900 3 59 14 - 183 742 65 16 148 -
jnh306 100 900 1 0 2 0 144 16 7 2 0 96
jnh307 100 900 3 25 11 121 130 540 34 1 3 278
jnh308 100 900 2 124 1 17 82 130 3 0 0 60
jnh309 100 900 2 3 0 15 26 276 3 0 0 75
jnh310 100 900 3 69 7 295 173 463 18 3 14 426
|solved| 30 30 30 30 30 27 28 30 30 30 30 28
Average 100.0 851.7 1.7 29.4 6.3 86.8 120.6 202.8 15.2 1.9 5.9 148.7

Table 2. JNH instances with unit clause weights first and with random clause weights
next. Time in seconds. A “-” means the problem was not solved in less than 600 seconds.
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Fig. 1. Randomly-generated Max-2SAT and Max-3SAT instances with 40 variables.



optimization problems such as Max-CUT or the Maximum Probable Explana-
tion (MPE) problem in Bayesian networks.
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Aug. 1995), pp. 631–637.

[22] Selman, B., Kautz, H., and Cohen, B. Noise strategies for improving local
search. In Proc. of AAAI’94 (Seattle, WA, 1994), pp. 337–343.

[23] van Gelder, A. Cnfgen formula generator. ftp://dimacs.rutgers.edu/
pub/challenge/satisfiability/contributed/UCSC/instances, 1993.

[24] van Hentenryck, P., and Deville, Y. The cardinality operator: A new logical
connective for constraint logic programming. In Proc. of the 8th international
conference on logic programming (Paris, France, June 1991).

[25] Whittemore, J., Kim, J., and Sakallah, K. SATIRE: A new incremental
satisfiability engine. In Proceedings of the 38th conference on Design automation
(Las Vegas, NV, June 2001), ACM, pp. 542–545.

[26] Xu, H., Rutenbar, R. A., and Sakallah, K. sub-SAT: A formulation for
relaxed boolean satisfiability with applications in routing. In Proc. Int. Symp. on
Physical Design (San Diego (CA), Apr. 2002).

[27] Zhang, W. Phase transitions and backbones of 3-SAT and maximum 3-SAT. In
Proc. of the 7th International Conference on Principles and Practice of Constraint
Programming (CP-01) (Paphos, Cyprus, Nov. 2001), vol. 2239 of LNCS, Springer,
pp. 153–167.


