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Abstract

In this paper, we describe the basis of EUGENE, a gene finder for eucaryotic
organisms applied to Arabidopsis thaliana. The specificity of EUGENE, com-
pared to existing gene finding software, is that EUGENE has been designed to
combine the output of several information sources, including output of other
software or user information. To achieve this, a weighted directed acyclic graph
(DAG) is built in such a way that a shortest feasible path in this graph repre-
sents the most likely gene structure of the underlying DNA sequence.

The usual simple Bellman linear time shortest path algorithm for DAG has
been replaced by a shortest path with constraints algorithm. The constraints
express minimum length of introns or intergenic regions. The specificity of the
constraints leads to an algorithm which is still linear both in time and space.
EUGENE effectiveness has been assessed on Araset, a recent dataset of Ara-
bidopsis thaliana sequences used to evaluate several existing gene finding soft-
ware. It appears that, despite its simplicity, EUGENE gives results which com-
pare very favorably to existing software. We try to analyze the reasons of these
results.

Motivations

It is standard, in a thorough sequence annotation, to take into account several
sources of evidence in order to try to precisely locate genes (exons/introns) in
eucaryotic sequences. The sources exploited typically include:

— matches against databases (¢cDNA, ES protein databases. .. );

— output of splice sites or translation start prediction software;

— more or less sophisticated ”integrated” gene finding software, eg. Gene-
Mark.hmm [9].

— experimental evidence or human expertise.

None of these sources of evidence is, alone, sufficient to decide gene locations and
the manual integration of all these data is a painful and extremely slow work.
The motivation of our work is, as far as possible, to automate this job using



Arabidopsis thaliana as a first test organism. Several integrated gene finders
exist that integrate protein or cDNA homologies in their prediction [7, 5, 22].
EUGENE is naturally closely related to these tools. It most striking peculiarity
is it’s parasitic behavior: EUGENE has been designed to exploit other tools or
information sources, including human expertise or other integrated gene finding
programs. This allows to easily select the best available ingredients.

1 Methods

To be able to integrate basic information on a genomic sequence, we have used a
simple, general, efficient and yet effective graph-based approach for gene finding
that allows to combine several sources of evidence. Rather than directly com-
bining the output of existing gene finding software (as in [10]) we decided to
combine the information at the lowest level in order to be able to:

1. maintain the consistency of the prediction;
2. globally assess the impact of each local choice w.r.t. all available evidence.

Given a raw DNA sequence, the basic idea is to consider a directed acyclic
graph (DAG) such that all possible consistent gene structures are represented by
a path in the graph. The gene structure currently used in EUGENE is the sim-
plest reasonable structure, the only signals taken into account being translation
initiation sites (ATG), translation termination sites (stops) and splice sites. It can
handle multiple genes which may be partial on the extremities of the sequence
and explores the two strands of the sequence simultaneously as it is now stan-
dard in gene finding. Note that merged stops may occur in a prediction. However
this can be easiliy deat with using additional tracks. This is not presented here
for the sake of clarity.

The DAG used for a simple ad-hoc sequence “CATGAGGTAGTGA” is illustrated
in figure 1. It is a graph with 13 different tracks that correspond respectively to
the 6 forward /reverse coding frames, 6 forward /reverse intronic phases and a so-
called intergenic track that covers both true intergenic regions and transcribed
untranslated regions (UTR). Each signal occurrence, between two successive
nucleotides, generates one or more “switches” between two parallel tracks. Each
source-sink path defines a sequence of consistent genes structures. The size of
the graph is in O(n) where n is the sequence length.

To choose one path among the O(13™) paths in this graph, each edge e
is weighted by a positive number w, in such a way that shortest paths in the
graph correspond to gene structures that ”best respect” the available evidence.
A probabilistic interpretation of this model can be given as follows: each edge
e has a probability of existence P.. Under simple independence assumptions,
the reliability of a source-sink path is simply defined by the product of all the
P, in the path. A most reliable path is then a shortest path in the graph where
we = —log(P.). The approach is comparable (although not equivalent) to HMM
with a non-homogeneous transition matrix between hidden states (our tracks).

Given a directed acyclic graph, the simplest linear time, linear space shortest
path algorithm is Bellman’s algorithm [1]. It can output an optimal possible gene
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Fig. 1. The DAG explored by EUGENE for a simple sequence

structure'. Compared to existing published gene finding algorithms, Bellman’s
algorithm applied to the above DAG is related to several existing gene finding
algorithms. Like all recent gene finding algorithms it does in-frame scoring and
assembly [21]. More specifically, gene finding algorithms can be classified as
segment-based or nucleotide-based:

— Segment-based approaches implicitly or explicitly build an exhaustive list of
potential exons and/or introns which they separately score. This is the case
for the algorithm presented in [21] or the algorithm presented in [15]. Note
that in the worst case, the number of possible signal well-delimited segments
grows quadratically in the length of the sequence. Since each potential seg-
ment must scored, such segment-based approaches [21] are quadratic in the
length of the sequence. The strength of these algorithms is that they allow
essentially arbitrary segment scoring functions. To improve expected time
complexity, one can exploit the property that exon-segments cannot con-
tains in frame stop codons: the assumption that in frame stop codons occurs
following a Poisson process suffices to make the expected number of possible
exons linear in the length of the sequence.The algorithm presented in [15] in
some sense exploits this property by only taking into account exons scores
in the global score: it is worst-case linear in the number of exons and has
therefore an expected linear complexity in the length of the sequence (under
the Poisson assumption). The essential limitation is that it either ignores
any possible intron, UTR or intergenic regions scoring or again becomes
quadratic in the length of the sequence.

! Linear space is needed to recover the shortest paths found.



— to avoid quadratic complexity, so-called nucleotide-based gene finding algo-
rithms, such as HMM-based algorithms (eg. Viterbi algorithm) do not explic-
itly score each segment separately but exploit the property that the score of
a segment is defined as the sum of its elements. This allows to simultaneously
score all segments sharing common sub-segments reducing worst-case time
complexity to linear. This is eg. the case for the basic version of Bellman’s
algorithm: a gene parsing is just a path in the DAG described above and
the score of such a gene parsing is simply defined as the sum of the scores
of all the edges that make the path. The complexity is linear in space and
time but segment scoring must be defined as a combination of the scores of
its elements and cannot, for example, arbitrarily depend on the length of
the exons as in segment-based approaches. However, it has better worst-case
time complexity than segment-based approaches such as [21] and can exploit
intron or intergenic region scoring.

Possible variants of the Viterbi algorithm that take into account arbitrary
explicit probability distributions on state lengths do exist [17] and have ef-
fectively been used in gene finding [3], but they become worst-case time
quadratic. EUGENE’s algorithm is a sophistication of Bellman’s algorithm
that try to optimize the compromise between efficiency and generality: it is
linear both in time and space but allows to take into account constraints
on the minimum length of some gene elements (introns, single exon genes,
intergenic regions). Basically, this means that the score of a segment is ef-
fectively the sum of the score of its elements unless the segment is too short:
in this case the score becomes —oo. The approach is comparable to explicit
state duration HMM with uniform duration densities (see [16], pp. 270).
Maximum length constraints can also probably be taken into account while
keeping linear time and space but we haven’t find any practically significant
use of such constraints in gene finding.

The complete algorithm actually used in EUGENE allows to specify minimum
length constraints for intergenic regions depending on the orientation of the
genes that border the region: convergent (—+«), divergent («——) or conflu-
ent (—— or «—«) genes. In the sequel, for the sake of simplicity, we only
describe the version which takes into account minimum length constraints
independently of the orientation of surrounding elements?.

1.1 Algorithm

Given a nucleic acid sequence of length n, we orient it so that the 5’ end is on the
left and the 3’ end on the right. Naturally, the reverse strand is oriented in the
reverse direction. Nucleotides are numbered both from 1 to n (forward strand)
and from —1 to —n (reverse strand). We denote sites by their position and their
type. The position of a site is an integer (positive or negative but different from
0) such that site p occurs before nucleotide p. The type of a site can be either

2 The complete version is not essentially different, remains linear, but requires the
introduction of additional tracks in the graph.



(I) for a translation initiation site, (A) for an acceptor site, (D) for a donor site
or (T) for a termination site. For any given site, the frame of a site (p, t) is noted
F(p) and is defined as sign(p).(((|p| — 1) mod 3) + 1).

As exemplified in figure 1, we consider that both initiation (ATG) and termi-
nation sites are part of their exons which means that initiation sites occurs on
the left of the ATG but termination sites occur on the right of the stop codons.
Given a sequence of length n and a list of sites (p,t) defined by their position p
and their type ¢, we can define the directed acyclic graph G = (V, E) explored
by EUGENE as follows:

— the set of vertices V contains 2 + 13 x (2n + 2) vertices. There is a source
vertex s and target vertex ¢. For any given nucleotide at position 1 <i < n
in the sequence, there are 13 x 2 vertices. The first 13 vertices are called
the left vertices of nucleotide ¢ and are denoted by vé’j, —6 < j <6. The 13
remaining ones are the right vertices and are denoted by vy ,;,—6 < j < 6.
Furthermore, there are 13 extra right vertices before the first nucleotide
which are denoted by vy ; and 13 extra left vertices after the last nucleotide
denoted by v, +1,;- For all these vertices, j is called the track of the vertex.
For a given nucleotide, from a modeling point of view, the 13 (right/left)
vertices correspond to different states or tracks:

e the 0 track correspond to intergenic (i.e., UTR and real intergenic) pre-
dictions

e tracks 1 to 3 (resp. —1 to —3) correspond to exons in frame 1 to 3 (resp.
—1to —3)

e tracks 4 to 6 (resp. —4 to —6) correspond to introns in phase 1 to 3
(resp. —1 to —3). The phase of an intron is the position were the splicing
occurs wrt. nucleotides: phase 1 introns splice at the frontier of two
codons, phase 2 introns splice before the 2nd base of codons and phase
3 introns splice before the 3rd base of codons.

— the set of edges F contains the following edges:

e edges that connect the source vertex s to all the vg ;. These are the

so-called “prior” edges.

edges that connect each vﬁl +1,; to the target vertex t. These are the

so-called “posterior” edges.

for each nucleotide 7, 13 edges connect v§7j to v; ;,

edges are called “content” edges.

for all 0 < ¢ < n, 13 edges connect vf’j to vfﬂ’j,fﬁ < j < 6. These

edges are called the “no site” edges.

for each site (p,t) occurring on the forward strand (p > 0), extra edges

are added according to t. These edge are called ¢-"signal” edges according

to the type of the site.
* t = (I): an edge that connects v,_;, to U;VF(p) is added to the

—6 < j < 6. These

graphed. It simply represents the fact that an ATG in frame F(p)
allows to go from intergenic to exonic in frame F(p).
x t = (T): an edge that connects Up_1 p(p) O vl o is added to the

graph. Furthermore, the edge that connects vy F(p) 1O Uzln Flp) is



deleted. This simply represents the fact that an in frame Stop codon
effectively stops the current exon.

% t = (D): for all 4,1 < i < 3, an edge that connects v, _; ; with
véﬁ((F(p)fiJrg) mod 3)+4 is added. This represents the fact that splicing
an exon in frame 7 using a donor site in frame F'(p) leads to an intron
in phase 1+ ((F(p) — i+ 3) mod 3).

x t = (A): for all 4,1 <4 < 3, an edge that connects Vp_1.it3 with
v}l),(( F(p)+i+1) mod 3)+1 15 added. This represents the fact that after
an intron in frame 7 using an acceptor site in frame F'(p) leads to an
intron in phase 1+ ((F'(p) + 4+ 1) mod 3).

e similar modifications are done for sites occurring on the reverse comple-
ment strand.

The graph defined in this way is a directed acyclic graph. Considering weights,
we just assume that all edges e € E are weighted with a weight w(e) € [0, +o0].
As we mentionned before, in order to identify a shortest path in this graph, the
simplest standard algorithm is the so-called Bellman algorithm ([1] or [4], section
25.4).This algorithm is the most simple instance of dynamic programming and
is based on the fact that any sub-path of an optimal path must also be optimal.
This algorithm associates to each vertex u € V a variable SP[u] that will in
fine contain the length of a shortest path from s to w and a variable 7[u] that
will contain the vertex that must be used to reach u in a shortest path. Initially,
only SP[s] is known and equal to 0. In order to compute the length of a shortest
path from vertex s to a vertex v it suffices to know the length of a shortest
path from s to any vertex u that immediately precede v in the graph (the edge
(u,v) is in F). The length of a shortest path from s to v is simply the minimum
over all u preceding v of the sum of the length of the shortest path from s to u
and the weight w((u, v)). The parent 7[v] is then fixed to the the vertex u that
minimizes this sum. The graph being acyclic, any topological ordering can be
used to apply this simple relaxation procedure iteratively and finally compute
SP|t]. This computation can be made in a time and space linear in the size of the
graph and therefore in the length of the sequence (the linear space is essentially
needed fo the 7[v] data structure, needed to recover the shortest path at the
end).

The minimum length constraints we want to take into account can be for-
malized as follows. A minimum length constraint is defined by a length ¢ and a
track number k, —6 < k < 6. A prediction is a path from s to ¢ in the prediction
graph. For any path in the prediction graph, we say it violates a constraint (¢, k)
if it contains a sub-path (ug, w1, ..., Um—_1, Upy) such that:

— ug # s and has a track different from k,

— Uy, # t and has a track different from k,

— for all vertices u;, 1 <i<m — 1, u;’s track is k
— and finally m — 1 < 2/

Such a sub-path is said to be a violating sub-path, the edge (up,u1) being the
opening edge and (uy,—1, s, ) being the closing edge. A path is said to be feasible
if it does not violate any constraint.



The algorithm exploits the fact that if we consider an optimal feasible path
P from s to a given vertex v then either the last edge (u,v) of it connects 2
vertices of the same track or not:

1. in the first case, then obviously, the sub-path that connects s to u is also
an optimal feasible path from s to u or else we could use it as a short-cut
and improve over P without changing feasibility. We get the usual Bellman’s
property.

2. in the second case, this is no more true because an optimal feasible path from
s to u may finish by a sub-path such that the addition of edge (u,v) will be
the closing edge of a sub-path that violates a constraint (¢, k). Since we want
to consider only feasible paths, we can conclude that the sub-path of P that
connects s to u is either entirely composed of vertices from track k (except
s) which means that it cannot contain an opening edge or it must finish by a
path (u, ..., um—1,u) that remains on track k for at least m = 2¢ vertices.
Then the sub-path from s to u; must be a feasible optimal path from s to u;
or else we could shortcut. We get an adapted version of Bellman’s property.

To exploit these properties, as in Bellman’s algorithm, EUGENE’s algorithm
associates two variable to each vertex w in the graph: SP[u] contains the length
of the shortest feasible path that goes from s to u, 7[u] contains a reference to
a vertex that must be used to reach u using a shortest feasible path. Initially,
only SPJs] is known and equal to 0. Consider a feasible shortest path from s to
a given vertex v: it must reach v using an edge (u,v) that connect one of the
vertices that immediately precede v in the graph to v. This edge can be either:

— an edge that connect two vertices of the same track (a “no signal” or a “con-
tent” edge). The first case of above property applies and the shortest feasible
path that reach v through u, noted SP,[v] has length SP[u] + w((u,v)). In
this case, we say that u is the u-parent of v.

— an edge that connects two vertices from different tracks ((I), (T'), (D) or (A)-
signal edges). The second case of the above property applies. Let k be the
track of u and (¢, k) the constraint that applies to track k (if no constraint
exists, one can use the trivial (0, k) constraint). The shortest feasible path
that reach v through v can simply be obtained by going back on track k for
2¢ vertices, reaching a vertex w on track k (if vertex v is too close to s, we will
reach the vertex w = vf ; and stop there). Let di[w,u] be the length of the
path that goes from w to u staying on track k. Since £ is bounded, both w and
di[w,u] can be computed in constant time. The length of a feasible shortest
path that reach v from u is then SP,[v] = SP|w]+dg[w, u]+w((u,v)), which
again can be computed in constant time. In this case, we say that w is the
u-parent of v.

Consider all the vertices u immediately preceding v. The number of such vertices
is bounded by the number of tracks (13). We can compute all SP,[v] in constant
time. Now, we know that SP[v] = min,(SP,[v]). Let v* = argmin,(SP,[v]).
We then set 7[v] to the u*-parent of v.



This elementary constant time procedure can be applied iteratively from
vertex s to vertex ¢ using any topological ordering of the vertices. According to
the property above, after processing, SP[t] contains the length of the shortest
feasible path from s to ¢ and this path can be recovered by back-tracing along
the 7[] variables, starting from ¢. Since |V| = O(n), the algorithm is time linear
in the length of the sequence. The only data-structures used being the SP[] and
7], it is also space linear.

1.2 Scoring

The algorithm above applies to any weighting of the graph. It is now time
to describe how edges are weighted. The first version of our prototype, called
EUGENE I, integrates the following sources of information:

— output of five interpolated Markov models (IMM, [18]) for respectively frame
1, 2, 3 exons, introns and intergenic sequences. Given the sequence, the IMMs
allow to compute the probability P;(N;) that the nucleotide N; at position ¢
appears on each track ¢. The corresponding edge is weighted — log(P;(N;))
(see Figure 1). These models have been estimated on the AraClean v1.1
dataset [14] using maximum likelihood estimation for all orders from 0 to
8. For each conditional probability distribution, a linear combination of the
distributions obtained for orders 0 to 8 is used according to the amount of
information available, as in Glimmer [18]).

A difference with the IMM approach used in Glimmer is that the interpolated
Markov models used to estimate the probabilities P;(NV;) are used in such
a way that the graph G that represents a sequence and the graph G that
represents its reverse complementary are equivalent up to a half-turn of the
graph. This guarantees that any sequence will be analyzed exactly has its
reverse complementary which seems desirable. To do this, the Markov models
on the forward strand are estimated supposing that the Markov property
holds in one direction. The Markov model on the reverse strand assume
that the Markov property holds in the other direction. The same matrix
can therefore be used on both forward and reverse strand (after a reverse
complementation) which reduces the number of coding models from 6 to 3.

— output of existing signal prediction software. These software typically output
a so-called “confidence” 0 < ¢; < 1 on the fact that a possible signal occur-
ring at position 4 is used (i.e., the corresponding switch used). This confi-
dence cannot decently be interpreted directly as a probability. We make the
assumption that the switch’s weights have the parametric form — log(a.cf )
where the constants a and b have to be estimated for each source of evidence
(see Figure 1).

These a,b parameters are estimated once the IMM parameters have been
estimated. The estimation is done by maximizing the percentage of correct
predictions by EUGENE on the same learning set (Araclean 1.1). For fixed
values of the parameters to optimize, the measure of the percentage of correct
predictions can simply be performed by applying EUGENE on the whole



Araclean dataset. Since EUGENE is linear time, this is relatively efficient.
The parameter estimation is then done using a very simple genetic algorithm
whose results are refined by locally sampling the parameter space (which
has a reasonable number of dimensions). The whole process is brutal and
relatively inefficient but is performed only once. More work is needed to see
how this estimation process could be made computationally less brutal.

A second version, called EUGENE II can use, in conjunction with these basic
information, results from cDNA and protein databases search:

— cDNA alignments in conjunction with splice sites are used to modify the
graph as follows: matches (resp. gaps) delete intronic (resp. exonic) tracks
in the graph. This forbids paths that would be incompatible with the cDNA
data. Actually, cDNA/EST hits are found using Sim4 [6].

— similarly, EUGENE II can exploit protein matches (found using BlastX).
However, one cannot be confident enough in such information to directly
use matches/gaps as constraints and we therefore simply modify the P;(N;)
using a simple pseudo-count scheme.

In practice, the structure and weights of the graph can be directly modified
by the user using a very simple language that allows to include information
about starts, splice sites, exonic, intronic, intergenic tracks on a per nucleotide
basis. The language allows to delete or create “signal” edges in the graph and to
modify the weight of any edge (either signal or content edges). To modify weights,
we simply rely on a probabilistically inspired pseudo-count scheme. Initially, all
edges are not only weighted by a positive weight w but also by a count c. If
the user wants to modify the weight of an edge, s/he must mention a weight
w’' € [0,4+00] and a count ¢’. The corresponding edge will then be weighted

- log(eXp(_w)'Cciegp(_wl)'c/) with count ¢+ ¢'.

2 EuGeéne in action

In this section we show how EUGENE works in practice by applying it to the
contig 38 from the Araset dataset [12, 11] which contains two genes with respec-
tively 3 and 13 exons. We first collect information about splice sites and ATG by
submitting the sequence to NetGene2 [20], SplicePredictor [2] and NetStart [13]
using a dedicated Perl script. The combination of information sources is, at this
time, our best “similarity-free” known ingredient selection for A. thaliana. This
automatically builds files containing positions and strengths of “switches” in the
graph. Additional information may be provided by the user. For example, a line
stating “start r4 vrai 3.7e-02 nocheck” states that there is a reverse start
at position 4 and the weight of the corresponding edge should be —log(0.037).
The “nocheck’’ indicates that the user does not want EUGENE to report at the
end if this ATG has been effectively used in the prediction.

We then start EUGENE and ask for a graphical zoom from nucleotide 3001
to 7000 (region of the second gene according to Araset’s annotations). On this



sequence, EUGENE I locates all exons/introns border of the 2 genes. EUGENE
outputs images in PNG or GIF format which can directly be used on Web pages.
The X-axis is the sequence. The Y-axis represents successive “tracks”: reverse
introns, frame -3, -2, -1 exons, intergenic sequences (this includes UTR), frame
1, 2, 3 exons and forward introns.
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Fig. 2. EUGENE I applied to contig 38 of Araset

On each track, the black curve represents the output of the IMM models
smoothed over a window of 100 nucleotides and normalized. The large horizontal
blocks represent EUGENE’s prediction. On the exonic tracks alone, small vertical
bars represent potential stops and potential starts (ATG), the height of the bar
being representative of the quality of the ATG according to the available evidence.
On the intronic tracks, the vertical bars represent donors/acceptors. Again, the
height of the bar is representative of the quality of the splice site.

EUGENE I is not always as successful, eg. on the sequence of a tRNA syn-
thetase, where EUGENE I chooses one wrong splice site for one exon border.
However, enough ¢cDNA data exists so that EUGENE II is able to unambigu-
ously locate all exons/introns borders. The initial spliced alignment between
the genomic sequence and the ¢cDNA is done using sim4 [6] and then used by
EUGENE. On the graphic below, this additional information is provided: the
intronic tracks show blocks that represent ¢cDNA matches interconnected by
thin lines that represent gaps (connecting splice sites). In this case, no protein
database information is used.

Considering protein databases, EUGENE accepts similarity information from
different databases. As it has been said before, each similarity information mod-
ify the weights following a pseudo-count scheme. If several databases are used,
different counts are associated to each database. These counts are optimized as
the a, b parameters for signal sensors. Using SPTR, PIR and TrEMBL as 3 dif-



ferent databases, one can see that the optimized count for SPTR are stronger
than for PIR and that the TTEMBL count seems to converge towards 0.
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Fig. 3. EUGENE II applied to a tRNA synthetase with cDNA data

3 Evaluation

The parameters used in EUGENE have been estimated on Araclean [14]. Araclean
contains 144 genes with very few context around the genes. This lack of context
makes it difficult for EUGENE to decide whether an intergenic or intronic mode
should be used on the sequences border. Anyway, EUGENE I correctly identifies
all the exons (including the ATG) of 76% of the sequences of Araclean. Taking
into account the lack of context, if we inform EUGENE I that all predictions
must start and end in intergenic mode (i.e., no partial gene is allowed) then the
percentage of perfectly recognized genes gets up to more than to 82% (without
using any ¢cDNA/EST /protein homology information).

However this test is not very satisfactory. To get a better idea of EUGENE
performances, we have used another recent dataset. The “Araset” dataset has
originally been designed and used to assess several existing gene or signal find-
ing software [11]. The clear winner of this evaluation is GeneMark.hmm [9]. We
therefore decided to compare EUGENE to GeneMark.hmm on this dataset (which
does not share any sequence with the Araclean dataset used for EUGENE param-
eter estimation). The evaluation performed in [11] includes different performance
measures, among which we will consider:

— sites prediction quality: for splice sites, the number of predicted, correct,
over-predicted and missing sites has been measured.

— exon prediction quality: for all exons, the number of predicted, correct, over-
lapping, wrong and missing exons has been measured.



— gene level prediction quality: in this case, a gene is considered as correctly
predicted if all its exons are correctly predicted. Il all exons are not correctly
predicted, the gene can be missing (all exons are missing), partial (some
exons are missing or partial), wrong (the predicted gene does not exist — as
far as we know), split (a correct gene has been split in two or more predicted
genes), fused (correct adjacent genes have been predicted as one gene).

— gene borders prediction: for predicted translation initiation sites (AUG) and
terminator sites (stops), the number of correct prediction has been mea-
sured. For AUG, we also give the number of incorrect predictions which are
nevertheless in phase with the real AUG site.

In each case, the overall performance is abstracted in the two usual specificity
(Sp) and sensitivity (S,) measures introduced in [19].

Sp = number of correctly predicted items / number of actual items
S, = number of correctly predicted items / number of predicted items

For a more detailed definition of the measures, we invite the reader to refer
to [11, 19]. Note also that the biological truth, considered here as unambigu-
ously provided by Araset’s annotations, is not so simple: alternative splicing or
translation initiation exists and make these numbers less reliable than one may
think a priori.

Table 1 presents the results® obtained for splice sites. EUGENE I is less sensi-
tive but more specific than GeneMark.HMM. Table 2 gives similar numbers for
translation initiation (AUG) and terminator (stop codons) sites. Here, the results
are clearly in favor of EUGENE.

For the gene model level we also evaluated EUGENE II. We used SPTR as the
protein database. We also have a cDNA/EST database built using EMBL, and
cleaned from documented partially or alternatively spliced cDNA. However, this
database is built entirely automatically and is known to contain data inconsistent
with Araset annotations for some of the genes of Araset (these inconsistencies are
the results of contamination with genomic DNA and undocumented alternatively
or partially spliced cDNA). Although using this cDNA/EST information alone
improves the performances of EUGENE, the current version of EUGENE II tested
uses only protein informations from SPTR because of its reliability. A clean
c¢DNA/EST database would improve EUGENE IT’s performances.

Although an in-depth analysis is still needed to be more conclusive, it appears
from the measures above that the essential strength of EUGENE lies in its abil-
ity to correctly identify gene’s borders: compared to GeneMark. HMM, EUGENE
merges or split very few genes and identifies most translation initiation sites or
terminator sites correctly. We think that this improvement is caused by two origi-
nal elements of EUGENE: one is the use of a dedicated intergenic Markov model,
which is not a background 0" order model and is different from the intronic

3 Reference [11] gives a number of introns (and therefore acceptors and donors) of 860.
However, parsing the reference file distributed with the instances, we only found 859
introns.
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model; the other lies in the fact that, except for the IMM, its parameters have
been estimated by maximum of “successful recognition” rather than maximum
likelihood. This probably tends to compensate for the weaknesses of the model.
Initially, we thought that the good quality of the splice sites predictors used
by EUGENE (NetGene2 and Splice Predictor) was a major reason for its good
performances. Looking to the splice sites prediction ability of EUGENE, this is
less obvious now although EUGENE clearly inherits the excellent specificity of
NetGene2.

This report is still quite preliminary and we expect to enhance EUGENE’s
effectiveness in a near future (and apply it to other organisms). Actually, com-
pared to other gene finding algorithms, EUGENE is relatively simple: it uses a
single Markov model set independently of GC% (although this is probably more
important for the human genome than for Arabidopsis thaliana), does not take
into account signals such as polyA or promoters or does not model UTR. This
should leave room for improvements. Another important direction lies in the
use of protein and cDNA/EST hits. We think that the integration, at the low-
est level, of spliced alignment algorithms in the spirit of [6, 8] could help both
to better take into account similarity information and also to filter out most
inconsistent data. Other sources of similarity such as conservation of exons be-
tween (orphan) genes of the same family should also be integrated (M-F. Sagot,
personal communication). We are currently working on these points.

Binaries for EUGENE can be requested from Thomas.Schiex@toulouse.inra.fr.
One of the weakness of EUGENE is naturally its parasitic behavior: to have a
fully complete running version of EUGENE one must first install NetStart, Spli-
cePredictor and NetGene2 which itself depend on SAM. For light users, a Perl
script that submit one sequence to the web interfaces of all these softwares and
that collect the results in the adequate file format has been developed. Because
EUGENE parameter estimation has been done using precise versions of these soft-
wares, the best idea would be a priori to install the same version. .. we recently
installed a local version of the above tools on a new machine using NetGene2
2.42 and SAM 3.2. The bad surprise was that NetGene2 did not gave the same
output as the Web version which we used up to now. The nice surprise is that
without any a,b parameter re-estimation, the gene-level sensibility and speci-
ficity are now equal respectively to 64.2% and 89.8% respectively which shows
both the good robustness EUGENE and the positive side-effect of its parasitic
behavior: any improvement in the hosts may yield an improvement in EUGENE
itself.
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