Graphical Models - propositional logic AND PROBABILISTIC REASONING

M.C. Cooper ${ }^{1}$, S. de Givry ${ }^{2}$ T. Schiex ${ }^{2}$ \& C. Brouard ${ }^{2}$ (Learning)

${ }^{1}$ Université Fédérale de Toulouse, ANITI, IRIT, Toulouse, France
${ }^{2}$ Université Fédérale de Toulouse, ANITI, INRAE MIAT, UR 875, Toulouse, France
More details in the STACS'2020 tutorial
May 5, 2020

Description of a multivariate function as the combination of simple functions

- discrete models: the function takes discrete variables as inputs

■ we stick to totally ordered co-domains (non negative, optimization)

- combination: through a (well-behaved) binary operator

What is a graphical model?

Description of a multivariate function as the combination of simple functions

- discrete models: the function takes discrete variables as inputs

■ we stick to totally ordered co-domains (non negative, optimization)

- combination: through a (well-behaved) binary operator

What functions?

- Boolean functions: propositional logical reasoning
- Numerical functions (integer, real): reasoning with cost or probabilities
- infinite valued or bounded functions: logic (feasibility) + cost/probabilities

System modeling for optimization, analysis, design...

- The function describes a system property
- Explore it: find its minimum (feasibility, optimisation), or average value (counting)

System modeling for optimization, analysis, design...

- The function describes a system property
- Explore it: find its minimum (feasibility, optimisation), or average value (counting)

Example

- A digital circuit
- A schedule or a time-table
- A pedigree with partial genotypes
- A frequency assignment
- A 3D molecule
value of the output feasibility, acceptability Mendel consistency, probability interference amount energy, stability

System modeling for optimization, analysis, design...

- The function describes a system property
- Explore it: find its minimum (feasibility, optimisation), or average value (counting)

Example

- A digital circuit
- A schedule or a time-table
- A pedigree with partial genotypes
- A frequency assignment
- A 3D molecule
value of the output feasibility, acceptability Mendel consistency, probability interference amount energy, stability

Computationally hard concise description of a multi-dimensional object, little properties

Definition (Graphical Model (GM))

A GM $\mathcal{M}=\langle V, \Phi\rangle$ with co-domain B and combination operator \oplus is defined by:

- a sequence of n variables V, each with an associated finite domain of size less than d.
\square a set Φ of e functions (or factors).
- Each function $\varphi_{S} \in \Phi$ is a function from $D^{S} \rightarrow B$. S is called the scope of the function and $|S|$ its arity.

Definition (Joint function)

$$
\Phi_{\mathcal{M}}(v)=\bigoplus_{\varphi_{S} \in \Phi} \varphi_{S}(v[S])
$$

Definition (Constraint network (used in Constraint programming))

A $G M \mathcal{M}=\langle V, \Phi\rangle$ defined by:

- a sequence of n variables V, each with an associated finite domain of size less than d.
- a set Φ of e Boolean functions (or constraints).

Definition (Joint function)

$$
\Phi_{\mathcal{M}}(v)=\bigwedge_{\varphi_{S} \in \Phi} \varphi_{S}(v[S])
$$

Definition (Markov Random Field (used in Machine Learning, Statistical Physics))
A GM $\mathcal{M}=\langle\boldsymbol{V}, \Phi\rangle$ defined by:

- a sequence of n variables V, each with an associated finite domain of size less than d.
- a set Φ of e non negative functions (potentials).

Definition (Joint function and associated probability distribution)

$$
\Phi_{\mathcal{M}}(v)=\prod_{\varphi_{S} \in \Phi} \varphi_{S}(v[S]) \quad P_{\mathcal{M}}(V) \propto \Phi_{\mathcal{M}}(V)
$$

MRF can be estimated from data
Using eg. regularized approximate/pseudo log-likelihood approaches.

How are functions $\varphi_{S} \in \Phi$ represented?

- Default: as tensors over B.
(multidimensional tables)
- Boolean vars: (weighted) clauses. (disjunction of literals: variables or their negation)
- Using a specific language, subset of all tensors or clauses or dedicated (AlL-DifFERENT).
- this influences complexities, tensors as a default

A variety of well-studied frameworks

- Propositional Logic (PL): Boolean domains and co-domain, conjunction of clauses
- Constraint Networks (CN): Finite domains, Boolean co-domain, conjunction of tensors
- Cost Function Networks (CFN): Finite domains, numerical co-domain, sum of tensors.
- Markov Random Fields (MRF): Finite domains, \mathbb{R}^{+}as co-domain, product of tensors.
- Bayesian Networks (BN): MRF + normalized functions and scopes following a DAG.

■ Generalized Additive Independence [BG95], Weighted PL, Quadratic Pseudo-Boolean Optimization [BH02]...

Definition ((Hyper)graph of $\mathcal{M}=\langle\boldsymbol{V}, \Phi\rangle)$

One vertex per variable, one (hyper)edge per scope S of function $\varphi_{S} \in \Phi$.

Definition (Factor graph of $\mathcal{M}=\langle\boldsymbol{V}, \Phi\rangle$)
One vertex per variable or function, an edge connects the vertex φ_{s} to all variables in S.

CFN $\mathcal{M}=\langle\boldsymbol{V}, \Phi\rangle$, parameterized by an upper bound k
\mathcal{M} defines a non negative joint function

$$
\Phi_{\mathcal{M}}=\min \left(\sum_{\varphi_{S} \in \Phi} \varphi_{S}, k\right)
$$

Flexible

- $k=1$

■ $k=\infty$

- k finite
- φ_{\varnothing} is a naive lower bound on the minimum cost

Optimization queries

- SAT/PL: is the minimum of $\Phi_{\mathcal{M}} \preccurlyeq t$?
- CSP/CN: is the minimum of $\Phi_{\mathcal{M}} \preccurlyeq t$?
\square WCSP/CFN: is the minimum of $\Phi_{\mathcal{M}} \preccurlyeq \alpha$?
- MAP/MRF: is the minimum of $\Phi_{\mathcal{M}} \preccurlyeq \alpha$?
- MPE/BN: is the minimum of $\Phi_{\mathcal{M}} \preccurlyeq \alpha$?

Counting queries

- \#-SAT/PL: how many assignments satisfy $\Phi_{\mathcal{M}}=t$?
- MAR/MRF: compute $Z=\sum\left(\Phi_{\mathcal{M}}\right)$ or $P_{\mathcal{M}}(X=u)$ where $X \in V$
- MAR/BN: compute $P_{\mathcal{M}}(X=u)$ where $X \in V$

Graph $G=(V, E)$ with edge weight function wA boolean variable x_{i}
per vertex $i \in V$A cost function $w_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$ per edge $(i, j) \in E$Hard edges: $w_{i j}=k$

Graph $G=(V, E)$ with edge weight function w

- A boolean variable x_{i}
per vertex $i \in V$
- A cost function $w_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$ per edge $(i, j) \in E$
- Hard edges: $w_{i j}=k$
- vertices $\{1,2,3,4\}$
- cut weights 1
- but edge $(1,2)$ hard

Graph $G=(V, E)$ with edge weight function w

- A boolean variable x_{i}
per vertex $i \in V$
- A cost function $w_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$ per edge $(i, j) \in E$
- Hard edges: $w_{i j}=k$
- vertices $\{1,2,3,4\}$
- cut weights 1
- but edge $(1,2)$ hard

MinCut on a 3-clique with hard edge
\{ problem :\{name: MinCut, mustbe: <100.0\}, variables:
\{x1: [1], x2: [l,r], x3: [l,r], x4: [r]\} functions: \{
cut12:
\{scope: $[x 1, x 2]$, costs: $[0.0,100.0,100.0,0.0]\}$,
cut13:
\{scope: $[x 1, x 3]$, costs: $[0.0,1.0,1.0,0.0]\}$, cut23:
\{scope: $[x 2, x 3], \operatorname{costs}:[0.0,1.0,1.0,0.0]\}$
\}

$$
\begin{array}{rr}
\text { Function } \sum_{i, a} \varphi_{i}(a) \cdot x_{i a}+ & \sum_{\substack{\varphi_{i j} \in \Phi \\
a \in D^{i}, b \in D^{j}}} \varphi_{i j}(a, b) \cdot y_{i a j b} \text { such that } \\
\sum_{a \in D^{i}} x_{i a}=1 & \forall i \in\{1, \ldots, n\} \\
\sum_{b \in D^{j}} y_{i a j b}=x_{i a} & \forall \varphi_{i j} \in \Phi, \forall a \in D^{i} \\
\sum_{a \in D^{i}} y_{i a j b}=x_{j b} & \forall \varphi_{i j} \in \Phi, \forall b \in D^{j} \\
x_{i a} \in\{0,1\} & \forall i \in\{1, \ldots, n\}
\end{array}
$$

The main algorithmic attractor in the MRF community

- Widely used in image processing (now a bit shadowed by Deep Learning)
- Very large problems: exact approaches considered as unusable [Kap+13].
- Plenty of primal/dual approaches on the local polytope, but universality result [PW13]

Three main families of algorithms

1. global search: backtrack tree-search and branch and bound
2. global inference: non-serial dynamic programming
3. local inference: local application of DP equations

Ignores (useful) stochastic local search approaches.

Time $O\left(d^{n}\right)$, linear space

- If all $\left|D^{X}\right|=1, \Phi_{\mathcal{M}}(v), v \in D^{V}$ is the answer
- Else choose $X \in V$ s.t. $\left|D^{X}\right|>1$ and $u \in D^{X}$ and reduce to

1. one subproblem where $X_{i}=u$
2. one where u is removed from D^{X}

- Return the minimum of these two subproblems

Branch and Bound

If a lower bound on the optimum is \succeq a known upper bound on $\Phi_{\mathcal{M}} \ldots$
Prune!
NB: φ_{\varnothing} is a lower bound, k is our upper bound.

Eliminating variable $X \in \boldsymbol{V}$

Let Φ^{X} be the set $\left\{\varphi_{S} \in \Phi\right.$ s.t. $\left.X \in S\right\}$, T, the neighbors of X.
The message $m_{T}^{\Phi_{X}}$ from Φ^{X} to T is:

$$
\begin{equation*}
m_{T}^{\Phi_{X}}=\min _{X}\left(\bigoplus_{\varphi_{S} \in \Phi^{X}} \varphi_{S}\right) \tag{1}
\end{equation*}
$$

Eliminating a variable
Distributivity

Complexity of one elimination for tensors

Computing m_{T}^{X} is $O\left(d^{|T+1|}\right)$ time, $O\left(d^{|T|}\right)$ space $|T|$ is the degree of X

The overall complexity is dominated by the largest degree encountered during elimination

Clauses
If $\Phi^{X}=\left\{(X \vee L),\left(\neg X \vee L^{\prime}\right)\right\}$
The resolution principle [Rob65] is an efficient variable elimination process [DR94; DP60].

- Dimension of an elimination order for G

Largest set $|T|$ encountered

- Dimension of G minimum Dimension over all orders
- NP-hard to optimize but useful heuristics exist [BK08].

Tractability

■ First tractable class: GMs with bounded tree-width.

- Main approach for exact solving of counting queries for Bayesian nets[LS88].
- Worst case is also best case (space and time)

Message passing
Root the tree and compute messages from leaves

All variables
Variables preserved, time \& space $O\left(e d^{2}\right)$
Messages are kept as auxiliary functions.

- When a variable X_{i} has received messages from all its neighbors but one $\left(X_{j}\right)$
- Send message m_{j}^{i} to X_{j}

$$
\begin{equation*}
m_{j}^{i}=\min _{X_{i}}\left(\varphi_{i} \oplus \varphi_{i j} \underset{X_{o} \in \operatorname{neigh}\left(X_{i}\right), o \neq j}{\oplus} m_{i}^{o}\right) \tag{2}
\end{equation*}
$$

Figure 1: Message passing on a tree, a possible message schedule

The heuristic approach

Starting from e.g., empty messages, apply the message passing equation (2)

$$
m_{j}^{i}=\min _{X_{i}}\left(\varphi_{i} \oplus \varphi_{i j} \underset{X_{o} \in \operatorname{neigh}\left(X_{i}\right), o \neq j}{\oplus} m_{i}^{o}\right)
$$

on each function until quiescence or maximum number of iterations.

Booleans: Local/arc consistency (CSP), Unit propagation (SAT)

- The unique logically equivalent fixpoint can be efficiently computed
- If it contains $\varphi_{\varnothing}>0$, we have a proof of inconsistency

Probabilities: Loopy Belief Propagation [Peas8]

- Often denoted as the "max-sum/min-sum" algorithm.

■ At the core of Turbo-decoding [BGT93], implemented in all cell phones.

- Widely studied [YFW01], but known to not always converge.

Equivalence Preserving Transformations

- We can add the message $m_{Y}^{\frac{\Psi}{Y}}$
- And compensate by 'subtracting' the message from its source

EPTs can enforce generalized versions of "local consistencies"

- Transform the model into an equivalent model
- with a possibly increased φ_{\varnothing} (lower bound)
- Reduces to good old Arc Consistency in the Boolean case
- Gave birth to Max-resolution in SAT [LH05]

Properties[Coo+10]

- Solves tree-structured problems
- Solves problems with submodular functions (Monge matrices)
- Reduces to a max-flow algorithm on Boolean variables (roof-dual for QPBO)

In the context of local polytope

VAC is a fast incremental approximate solver of the local polytope dual that also enforces AC on logical information

Combines

- Branch and Bound (Backtrack in the Boolean case)

■ Incremental Local Consistency enforcing at each node (lower bound)

Variable (and value) ordering heuristics

- Crucial for empirical efficiency
- Are now adaptive (learned while searching) [Mos+01; Bou+04]
- Little theory.

Additional ingredients

- Search strategies: Best/Depth First [All+15], restarts [GSC97]
- Stronger preprocessing at the root node
- Dominance analysis [Fre91; DPO13; All+14], ...
- Conflict directed inference (Boolean) [Bie+09]
- Combined with graph decomposition (tree-decomposition)

SAT solvers

Verification ${ }^{1}$, planning, diagnosis, theorem proving....

[^0]
SAT solvers

Verification ${ }^{1}$, planning, diagnosis, theorem proving,...
2017: proving an "alien" theorem?
When one splits \mathbb{N} in 2, one part must contain a Pythagorean triple

$$
\left(a^{2}=b^{2}+c^{2}\right)
$$

[^1]
SAT solvers

Verification ${ }^{1}$, planning, diagnosis, theorem proving,...
2017: proving an "alien" theorem?
When one splits \mathbb{N} in 2, one part must contain a Pythagorean triple

No known proof, puzzled mathematicians for decades (one offered a $100 \$$ reward)

[^2]
SAT solvers

Verification ${ }^{1}$, planning, diagnosis, theorem proving,...
2017: proving an "alien" theorem?
When one splits \mathbb{N} in 2, one part must contain a Pythagorean triple

No known proof, puzzled mathematicians for decades (one offered a $100 \$$ reward)

SAT solver proof[HKM16; Lam 16]

$200 T B$ proof, compressed to $86 G B$ (stronger proof system) ${ }^{2}$

[^3]SAT: a lot of free data and free code...
■ International competitions (> 50, 000 benchmarks with many real problems)

■ Open source solvers (autocatalytic)

Similar progresses in other "Graphical Model" solvers (CP, CFN)
"ToulBar2 variants were superior to CPLEX variants in all our tests"[HSS18]
(still, there are small problems that cannot be solved in decent time)

VAC vs. LP on Protein design problems

CPLEX V12.4.0.0

Problem '3e4h.LP' read.
Root relaxation solution time $=811.28 \mathrm{sec}$.
...
MIP - Integer optimal solution: Objective $=150023297067$
Solution time $=864.39 \mathrm{sec}$.
tb2 and VAC

```
loading CFN file: 3e4h.wcsp
Lb after VAC: 150023297067
Preprocessing time: 9.13 seconds.
Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.
```


Optimality gap of the Simulated annealing solution as problems get harder Asymptotic convergence, close to infinity is arbitrarily far

Exact vs. heuristic solvers
DWave within $1.16 \mathrm{kcal} / \mathrm{mol}$ of the optimum 10% of the time, $4.35 \mathrm{kcal} / \mathrm{mol} 50 \%$ of the time, $8.45 \mathrm{kcal} / \mathrm{mol} 90 \%$ of the time.

Recent Deep Learning approaches that "learn how to reason"

- Recurrent relational Networks [PPW18]: learn "message passing" like functions
- SAT-net [Wan+19] embeds a convex relaxation of Max2SAT [GW95] as a final differentiable layer

Architecture and prior

- The architectures identify decision variables and (RRN) pairs of interacting variables
- Input: a Sudoku problem (hints)
- Output: a filled Sudoku grid
- Learning: on hint/solution pairs (SGD) (hints: numbers or images, LeNet processed).

Learning MRFs from data

- Optimizing an approximate convex representation of the L1-regularized log-likelihood with ADMM [Par+17]
- Takes expectations of sufficient statistics as input
- Simultaneously estimates the GM graph structure and its parameters (tensors)
- Requires one regularization hyper-parameter λ

In practice

- Adjust λ (empirical risk, using toulbar2) on a test set (1,024 samples)
- Validate (on a separate validation set of 1,000 samples)
- Image hints: use LeNet to transform images to posterior probabilities

Hard and easy problems

- Sodoku instances can be easy (many hints) or hard (17 hints for a unique solution).
- The fraction of solved Sudoku in the validation set depends on their hardness

Different situations

- RRN [PPW18] used $180,000+18,000+18,000$ of problems with varying hardness (17 to 34 hints)
- SATNet [Wan+19]: used 9,000 + 1,000 problems with mostly easy problems (no test set for hyper-parameters tuning)
- RRN: can solve 96.6 \% of the hardest Sudokus using 198,000 examples
- SAT-Net can solve 98.3% of easy Sudokus using 10,000 examples

The GM approach learns to solve

- 100% of hard Sudoku problems from 9,000 $+1,024$ examples
- 100% of easy Sudoku problems from 7,000 $+1,024$ examples (58.2% of hard problems)
- The rules of Sudoku can be extracted automatically as constraints [Kum+20]
- These minimum empirically 100% correct GMs do not give "exact" rules
- 13,000 recover an exact formulation of the Sudoku rules

DL approaches

- RRN: did not try it.
- SAT-Net can solve 63.2% of easy Sudoku problems from 10,000 samples (theoretical max. of 74.7\%: LeNet accuracy 99.2\%, 36.2 hints on average)

The GM approach learns to solve

- 82% of hard Sudoku problems from 8,000+1,024 examples
- 77% of easy Sudoku problems from 8,000+1.024 examples (more hints, more LeNet errors)
- $\mathbf{1 3 , 0 0 0}$ noisy samples are enough to recover an exact formulation of the Sudoku rules

Additional capacities

- one can also use noisy solutions (not only hints) for learning.
- one can add (design) constraints on the output.

Graphical models

- Can be learned from (noisy) data (including DL output if desirable)
- Can often be analyzed and solved using exact (or guaranteed) algorithms
- theoreticals limits[Vuf+16], PAC learnability [Kum+20], specialized languages?

Thank You!
 Questions?

David Allouche et al. "Computational protein design as an optimization problem". In: Artificial Intelligence 212 (2014), pp. 59-79.

David Allouche et al. "Anytime Hybrid Best-First Search with Tree Decomposition for Weighted CSP". In: Principles and Practice of Constraint Programming. Springer. 2015, pp. 12-29.

Srinivas M Aji and Robert J McEliece. "The generalized distributive law". In: IEEE transactions on Information Theory 46.2 (2000), pp. 325-343.

Umberto Bertele and Francesco Brioschi. "A new algorithm for the solution of the secondary optimization problem in non-serial dynamic programming". In: Journal of Mathematical Analysis and Applications 27.3 (1969), pp. 565-574. Umberto Bertele and Francesco Brioschi. "Contribution to nonserial dynamic programming". In: Journal of Mathematical Analysis and Applications 28.2 (1969), pp. 313-325.

Umberto Bertelé and Francesco Brioshi. Nonserial Dynamic Programming. Academic Press, 1972.

Fahiem Bacchus and Adam Grove. "Graphical models for preference and utility". In: Proceedings of the Eleventh conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc. 1995, pp. 3-10.
Claude Berrou, Alain Glavieux, and Punya Thitimajshima. "Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1". In: Proceedings of ICC'93-IEEE International Conference on Communications. Vol. 2. IEEE. 1993, pp. 1064-1070.
E. Boros and P. Hammer. "Pseudo-Boolean Optimization". In: Discrete Appl. Math. 123 (2002), pp. 155-225.

Armin Biere et al. "Conflict-driven clause learning sat solvers". In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications (2009), pp. 131-153.
H L Bodlaender and A M C A Koster. Treewidth Computations I. Upper Bounds. Tech. rep. UU-CS-2008-032. Utrecht, The Netherlands: Utrecht University, Department of Information and Computing Sciences, Sept. 2008. urL: http: //www.cs.uu.nl/research/techreps/repo/CS- 2008/2008-032.pdf.

Hans L Bodlaender. "A partial k-arboretum of graphs with bounded treewidth". In: Theoretical computer science 209.1-2 (1998), pp. 1-45.
Frédéric Boussemart et al. "Boosting systematic search by weighting constraints". In: ECAI. Vol. 16. 2004, p. 146.
M. Cooper et al. "Soft arc consistency revisited". In: Artificial Intelligence 174 (2010), pp. 449-478.

Rina Dechter. "Bucket Elimination: A Unifying Framework for Reasoning". In: Artificial Intelligence 113.1-2 (1999), pp. 41-85.
Martin Davis and Hilary Putnam. "A computing procedure for quantification theory". In: Journal of the ACM (JACM) 7.3 (1960), pp. 201-215.
Simon De Givry, Steven D Prestwich, and Barry O'Sullivan. "Dead-end elimination for weighted CSP". In: Principles and Practice of Constraint Programming. Springer. 2013, pp. 263-272.
Rina Dechter and Irina Rish. "Directional resolution: The Davis-Putnam procedure, revisited". In: KR 94 (1994), pp. 134-145.

Eugene C. Freuder. "Eliminating Interchangeable Values in Constraint Satisfaction Problems". In: Proc. of AAAl'91. Anaheim, CA, 1991, pp. 227-233. Carla P Gomes, Bart Selman, and Nuno Crato. "Heavy-tailed distributions in combinatorial search". In: International Conference on Principles and Practice of Constraint Programming. Springer. 1997, pp. 121-135.
Michel X Goemans and David P Williamson. "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming". In: Journal of the ACM (JACM) 42.6 (1995), pp. 1115-1145.
Marijn JH Heule, Oliver Kullmann, and Victor W Marek. "Solving and verifying the boolean pythagorean triples problem via cube-and-conquer". In: International Conference on Theory and Applications of Satisfiability Testing. Springer. 2016, pp. 228-245.
Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. "Exact MAP-Inference by Confining Combinatorial Search with LP Relaxation". In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

Joerg Kappes et al. "A comparative study of modern inference techniques for discrete energy minimization problems". In: Proceeding's of the IEEE conference on computer vision and pattern recognition. 2013, pp. 1328-1335.
Vladimir Kolmogorov. "Convergent tree-reweighted message passing for energy minimization". In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 28.10 (2006), pp. 1568-1583.

A M C A. Koster. "Frequency assignment: Models and Algorithms". Available at www.zib.de/koster/thesis.html. PhD thesis. The Netherlands: University of Maastricht, Nov. 1999.

Oliver Kullmann. "The Science of Brute Force". In: Communications of the ACM (2017).

Mohit Kumar et al. "Learning MAX-SAT from Contextual Examples for Combinatorial Optimisation". In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence. AAAI. 2020.

Evelyn Lamb. "Maths proof smashes size record: supercomputer produces a 200-terabyte proof-but is it really mathematics?" In: Nature 534.7605 (2016), pp. 17-19.
E. J. Larrosa and F. Heras. "Resolution in Max-SAT and its relation to local consistency in weighted CSPs". In: Proc. of the 19 th IJCAI. Edinburgh, Scotland, 2005, pp. 193-198.
S.L. Lauritzen and D.J. Spiegelhalter. "Local computations with probabilities on graphical structures and their application to expert systems". In: Journal of the Royal Statistical Society - Series B 50 (1988), pp. 157-224.

Matthew W Moskewicz et al. "Chaff: Engineering an efficient SAT solver". In: Proceedings of the 38th annual Design Automation Conference. ACM. 2001, pp. 530-535.
Vikram Khipple Mulligan et al. "Designing Peptides on a Quantum Computer". In: bioRxiv (2019), p. 752485.

Youngsuk Park et al. "Learning the network structure of heterogeneous data via pairwise exponential Markov random fields". In: Proceedings of machine learning research 54 (2017), p. 1302.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems, Networks of Plausible Inference. Palo Alto: Morgan Kaufmann, 1988.

Rasmus Palm, Ulrich Paquet, and Ole Winther. "Recurrent relational networks". In: Advances in Neural Information Processing Systems. 2018, pp. 3368-3378.

Daniel Prusa and Tomas Werner. "Universality of the local marginal polytope". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, pp. 1738-1743.
J. Alan Robinson. "A machine-oriented logic based on the resolution principle". In: Journal of the ACM 12 (1965), pp. 23-44.
T. Schiex. "Arc consistency for soft constraints". In: Principles and Practice of Constraint Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411-424.
M.I. Schlesinger. "Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (Syntactic analysis of two-dimensional visual signals in noisy conditions)". In: Kibernetika 4 (1976), pp. 113-130.
G. Shafer. An Axiomatic Study of Computation in Hypertrees. Working paper 232. Lawrence: University of Kansas, School of Business, 1991.

David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: Journal of Chemical Theory and Computation 11.12 (2015), pp. 5980-5989. DoI: 10.1021/acs . jctc. 5b00594.

Marc Vuffray et al. "Interaction screening: Efficient and sample-optimal learning of Ising models". In: Advances in Neural Information Processing Systems. 2016, pp. 2595-2603.

Po-Wei Wang et al. "SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver". In: ICML'19 proceedings, arXiv preprint arXiv:1905.12149. 2019.
T. Werner. "A Linear Programming Approach to Max-sum Problem: A Review.". In: IEEE Trans. on Pattern Recognition and Machine Intelligence 29.7 (July 2007), pp. 1165-1179. URL: http://dx.doi.org/10.1109/TPAMI . 2007. 1036.

Jonathan S Yedidia, William T Freeman, and Yair Weiss. "Bethe free energy, Kikuchi approximations, and belief propagation algorithms". In: Advances in neural information processing systems 13 (2001).

[^0]: ${ }^{1}$ Small neural nets too.
 ${ }^{2}$ Oliver Kullmann. "The Science of Brute Force". In: Communications of the ACM (2017).

[^1]: ${ }^{1}$ Small neural nets too.
 ${ }^{2}$ Oliver Kullmann. "The Science of Brute Force". In: Communications of the ACM (2017).

[^2]: ${ }^{1}$ Small neural nets too.
 ${ }^{2}$ Oliver Kullmann. "The Science of Brute Force". In: Communications of the ACM (2017).

[^3]: ${ }^{1}$ Small neural nets too.
 ${ }^{2}$ Oliver Kullmann. "The Science of Brute Force". In: Communications of the ACM (2017).

