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What is a graphical model?

Description of a multivariate function as the combination of simple functions

discrete models: the function takes discrete variables as inputs

we stick to totally ordered co-domains (non negative, optimization)

combination: through a (well-behaved) binary operator

What functions?

Boolean functions: propositional logical reasoning

Numerical functions (integer, real): reasoning with cost or probabilities

infinite valued or bounded functions: logic (feasibility) + cost/probabilities
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What for?

System modeling for optimization, analysis, design. . .

The function describes a system property

Explore it: find its minimum (feasibility, optimisation), or average value (counting)

Example

A digital circuit value of the output

A schedule or a time-table feasibility, acceptability

A pedigree with partial genotypes Mendel consistency, probability

A frequency assignment interference amount

A 3D molecule energy, stability

Computationally hard concise description of a multi-dimensional object, li�le properties
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A definition (parameterized by co-domain B, combination operator
⊕

)

Definition (Graphical Model (GM))

A GMM = 〈V ,Φ〉 with co-domain B and combination operator ⊕ is defined by:

a sequence of n variables V , each with an associated finite domain of size less than d.

a set Φ of e functions (or factors).

Each function ϕS ∈ Φ is a function from DS → B. S is called the scope of the function
and |S| its arity.

Definition (Joint function)

ΦM(v) =
⊕
ϕS∈Φ

ϕS(v[S])
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A Boolean Graphical model

Definition (Constraint network (used in Constraint programming))

A GMM = 〈V ,Φ〉 defined by:

a sequence of n variables V , each with an associated finite domain of size less than d.

a set Φ of e Boolean functions (or constraints).

Definition (Joint function)

ΦM(v) =
∧

ϕS∈Φ

ϕS(v[S])
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A Stochastic Graphical model

Definition (Markov Random Field (used in Machine Learning, Statistical Physics))

A GMM = 〈V ,Φ〉 defined by:

a sequence of n variables V , each with an associated finite domain of size less than d.

a set Φ of e non negative functions (potentials).

Definition (Joint function and associated probability distribution)

ΦM(v) =
∏

ϕS∈Φ

ϕS(v[S]) PM(V ) ∝ ΦM(V )

MRF can be estimated from data
Using eg. regularized approximate/pseudo log-likelihood approaches.
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Language matters. . .

How are functions ϕS ∈ Φ represented?

Default: as tensors over B. (multidimensional tables)

Boolean vars: (weighted) clauses. (disjunction of literals: variables or their negation)

Using a specific language, subset of all tensors or clauses or dedicated (All-Different).

this influences complexities, tensors as a default
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What does this cover?

A variety of well-studied frameworks

Propositional Logic (PL): Boolean domains and co-domain, conjunction of clauses

Constraint Networks (CN): Finite domains, Boolean co-domain, conjunction of tensors

Cost Function Networks (CFN): Finite domains, numerical co-domain, sum of tensors.

Markov Random Fields (MRF): Finite domains, R+ as co-domain, product of tensors.

Bayesian Networks (BN): MRF + normalized functions and scopes following a DAG.

Generalized Additive Independence [BG95], Weighted PL, �adratic Pseudo-Boolean
Optimization [BH02]. . .
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The graphs of Graphical Models

Definition ((Hyper)graph ofM = 〈V ,Φ〉)
One vertex per variable, one (hyper)edge per scope S of
function ϕS ∈ Φ.

Definition (Factor graph ofM = 〈V ,Φ〉)
One vertex per variable or function, an edge connects the
vertex ϕs to all variables in S.
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Focus on “Cost Function Networks”

CFNM = 〈V ,Φ〉, parameterized by an upper bound k

M defines a non negative joint function ΦM = min(
∑
ϕS∈Φ

ϕS , k)

Flexible

k = 1 same as Constraint Networks

k =∞ same as GAI, − log() transform of MRFs (Boltzmann)

k finite k is a known upper bound

ϕ∅ is a naive lower bound on the minimum cost
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Queries

Optimization queries

SAT/PL: is the minimum of ΦM 4 t ?

CSP/CN: is the minimum of ΦM 4 t ?

WCSP/CFN: is the minimum of ΦM 4 α ?

MAP/MRF: is the minimum of ΦM 4 α ?

MPE/BN: is the minimum of ΦM 4 α ?

Counting queries

#-SAT/PL: how many assignments satisfy ΦM = t ?

MAR/MRF: compute Z =
∑

(ΦM) or PM(X = u) where X ∈ V

MAR/BN: compute PM(X = u) where X ∈ V
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Example: MinCUT with hard and weighted edges

Graph G = (V,E) with edge weight function w

A boolean variable xi per vertex i ∈ V
A cost function wij = w(i, j)× 1[xi 6= xj ] per edge (i, j) ∈ E
Hard edges: wij = k

vertices {1, 2, 3, 4}
cut weights 1

but edge (1, 2) hard
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toulbar2 input file (github.com/toulbar2/toulbar2)

MinCut on a 3-clique with hard edge

{ problem :{name: MinCut, mustbe: <100.0},

variables:

{x1: [l], x2: [l,r], x3: [l,r], x4: [r]}

functions: {

cut12:

{scope: [x1,x2], costs: [0.0, 100.0, 100.0, 0.0]},

cut13:

{scope: [x1,x3], costs: [0.0,1.0,1.0,0.0]},

cut23:

{scope: [x2,x3], costs: [0.0,1.0,1.0,0.0]}

...

}
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Binary CFN as 01LP (optimisation alone)

The so called “local polytope” [Sch76; Kos99; Wer07] (w/o last line)

Function
∑
i,a

ϕi(a) · xia+
∑
ϕij∈Φ

a∈Di,b∈Dj

ϕij(a, b) · yiajb such that

∑
a∈Di

xia = 1 ∀i ∈ {1, . . . , n}

∑
b∈Dj

yiajb = xia ∀ϕij ∈ Φ,∀a ∈ Di

∑
a∈Di

yiajb = xjb ∀ϕij ∈ Φ,∀b ∈ Dj

xia ∈ {0, 1} ∀i ∈ {1, . . . , n}
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The local polytope (LP capturing optimisation only)

The main algorithmic a�ractor in the MRF community

Widely used in image processing (now a bit shadowed by Deep Learning)

Very large problems: exact approaches considered as unusable [Kap+13].

Plenty of primal/dual approaches on the local polytope, but universality result [PW13]
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A toolbox with three tools for guaranteed algorithms

Three main families of algorithms

1. global search: backtrack tree-search and branch and bound

2. global inference: non-serial dynamic programming

3. local inference: local application of DP equations

Ignores (useful) stochastic local search approaches.
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Brute force tree-search

Time O(dn), linear space

If all |DX | = 1,ΦM(v),v ∈ DV is the answer

Else choose X ∈ V s.t. |DX | > 1 and u ∈ DX and reduce to
1. one subproblem where Xi = u
2. one where u is removed from DX

Return the minimum of these two subproblems

Branch and Bound
If a lower bound on the optimum is � a known upper bound on ΦM. . . Prune!

NB: ϕ∅ is a lower bound, k is our upper bound.
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Non Serial Dynamic Programming [BB69b; BB69a; BB72; Sha91; Dec99; AM00]

Eliminating variable X ∈ V

Let ΦX be the set {ϕS ∈ Φ s.t. X ∈ S}, T , the neighbors of X .

The message mΦX
T from ΦX to T is:

mΦX
T = min

X
(

⊕
ϕS∈ΦX

ϕS) (1)

Eliminating a variable Distributivity

min
v∈DV

 ⊕
ϕS∈Φ

(ϕS(v[S]))

 = min
v∈DV −{X}

 ⊕
ϕS∈Φ−ΦX∪{mΦX

T }

(ϕS(v[S]))


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A graphical representation
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A graphical representation
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Complexity of eliminating one variable

Complexity of one elimination for tensors

Computing mX
T is O(d|T+1|) time, O(d|T |) space |T | is the degree of X

The overall complexity is dominated by the largest degree encountered during elimination

Clauses L,L′ clauses

If ΦX = {(X ∨L), (¬X ∨L′)} mΦX
T is (L ∨L′).

The resolution principle [Rob65] is an e�icient variable elimination process [DR94; DP60].

19 39



Complexity of eliminating all variables

Exponential in the Dimension [BB69b; BB69a; Bod98] induced/tree-width

Dimension of an elimination order for G Largest set |T | encountered

Dimension of G minimum Dimension over all orders

NP-hard to optimize but useful heuristics exist [BK08].

Tractability

First tractable class: GMs with bounded tree-width.

Main approach for exact solving of counting queries for Bayesian nets[LS88].

Worst case is also best case (space and time)
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Non-serial DP efficient on trees

Message passing

Root the tree and compute messages from leaves

All variables Variables preserved, time & space O(ed2)

Messages are kept as auxiliary functions.

When a variable Xi has received messages from all its neighbors but one (Xj)

Send message mi
j to Xj

mi
j = min

Xi

(ϕi⊕ϕij ⊕
Xo∈neigh(Xi),o 6=j

mo
i ) (2)
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Figure 1: Message passing on a tree, a possible message schedule
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The cyclic case - The heuristic approach

The heuristic approach

Starting from e.g., empty messages, apply the message passing equation (2)

mi
j = min

Xi

(ϕi⊕ϕij ⊕
Xo∈neigh(Xi),o 6=j

mo
i )

on each function until quiescence or maximum number of iterations.
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Boolean and numerical cases

Booleans: Local/arc consistency (CSP), Unit propagation (SAT)

The unique logically equivalent fixpoint can be e�iciently computed

If it contains ϕ∅ > 0, we have a proof of inconsistency

Probabilities: Loopy Belief Propagation [Pea88]

O�en denoted as the "max-sum/min-sum" algorithm.

At the core of Turbo-decoding [BGT93], implemented in all cell phones.

Widely studied [YFW01], but known to not always converge.
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This can be fixed [Sch00; Sch76; Kol06]

Equivalence Preserving Transformations

We can add the message mΨ
Y

And compensate by ’subtracting’ the message from its source

EPTs can enforce generalized versions of “local consistencies”

Transform the model into an equivalent model

with a possibly increased ϕ∅ (lower bound)

Reduces to good old Arc Consistency in the Boolean case

Gave birth to Max-resolution in SAT [LH05]
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Virtual Arc Consistency

Properties[Coo+10]

Solves tree-structured problems

Solves problems with submodular functions (Monge matrices)

Reduces to a max-flow algorithm on Boolean variables (roof-dual for QPBO)

In the context of local polytope

VAC is a fast incremental approximate solver of the local polytope dual that also enforces AC
on logical information
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Maintaining LC during Branch and Bound

Combines Time O(exp(n))

Branch and Bound (Backtrack in the Boolean case)

Incremental Local Consistency enforcing at each node (lower bound)

Variable (and value) ordering heuristics

Crucial for empirical e�iciency

Are now adaptive (learned while searching) [Mos+01; Bou+04]

Li�le theory.
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Maintaining LC During Branch and Bound

Additional ingredients

Search strategies: Best/Depth First [All+15], restarts [GSC97]

Stronger preprocessing at the root node

Dominance analysis [Fre91; DPO13; All+14], . . .

Conflict directed inference (Boolean) [Bie+09]

Combined with graph decomposition (tree-decomposition)
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Solvers and applications areas

SAT solvers
Verification1, planning, diagnosis, theorem proving,. . .

2017: proving an “alien” theorem? ∞
When one splits N in 2, one part must contain a Pythagorean triple (a2 = b2 + c2)

No known proof, puzzled mathematicians for decades (one o�ered a 100 $ reward)

SAT solver proof[HKM16; Lam16]

200TB proof, compressed to 86GB (stronger proof system)2

1Small neural nets too.
2Oliver Kullmann. “The Science of Brute Force”. In: Communications of the ACM (2017).
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The result of a lot of empirical choices

SAT: a lot of free data and free code. . .

International competitions (> 50, 000 benchmarks with many
real problems)

Open source solvers (autocatalytic)

Similar progresses in other “Graphical Model” solvers (CP, CFN)

“ToulBar2 variants were superior to CPLEX variants in all our tests”[HSS18]

(still, there are small problems that cannot be solved in decent time)
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VAC vs. LP on Protein design problems

CPLEX V12.4.0.0

Problem '3e4h.LP' read.

Root relaxation solution time = 811.28 sec.

...

MIP - Integer optimal solution: Objective = 150023297067

Solution time = 864.39 sec.

tb2 and VAC (AC3 based)

loading CFN file: 3e4h.wcsp

Lb after VAC: 150023297067

Preprocessing time: 9.13 seconds.

Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.
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Comparison with Rosetta’s Simulated annealing [Sim+15]

Optimality gap of the Simulated annealing solution as problems get harder
Asymptotic convergence, close to infinity is arbitrarily far
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DWave, Simulated annealing, Toulbar2

Exact vs. heuristic solvers [Mul+19]

DWave within 1.16 kcal/mol of the optimum 10% of the time, 4.35 kcal/mol 50% of the time,
8.45 kcal/mol 90% of the time.
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Learning to play the Sudoku using DL (System 1)

Recent Deep Learning approaches that “learn how to reason”

Recurrent relational Networks [PPW18]: learn “message passing” like functions

SAT-net [Wan+19] embeds a convex relaxation of Max2SAT [GW95] as a final di�erentiable
layer

Architecture and prior

The architectures identify decision variables and (RRN) pairs of interacting variables

Input: a Sudoku problem (hints)

Output: a filled Sudoku grid

Learning: on hint/solution pairs (SGD) (hints: numbers or images, LeNet processed).
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Learning to play the Sudoku using GMs (System 2)

Learning MRFs from data

Optimizing an approximate convex representation of the L1-regularized log-likelihood
with ADMM [Par+17]

Takes expectations of su�icient statistics as input

Simultaneously estimates the GM graph structure and its parameters (tensors)

Requires one regularization hyper-parameter λ

In practice

Adjust λ (empirical risk, using toulbar2) on a test set (1,024 samples)

Validate (on a separate validation set of 1,000 samples)

Image hints: use LeNet to transform images to posterior probabilities
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Not all Sudoku grids are the same

Hard and easy problems

Sodoku instances can be easy (many hints) or hard (17 hints for a unique solution).

The fraction of solved Sudoku in the validation set depends on their hardness

Di�erent situations

RRN [PPW18] used 180,000 + 18,000 + 18,000 of problems with varying hardness (17 to 34
hints)

SATNet [Wan+19]: used 9,000 + 1,000 problems with mostly easy problems (no test set for
hyper-parameters tuning)
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Results

DL approaches

RRN: can solve 96.6 % of the hardest Sudokus using 198,000 examples

SAT-Net can solve 98.3% of easy Sudokus using 10,000 examples

The GM approach learns to solve

100 % of hard Sudoku problems from 9,000 + 1,024 examples

100 % of easy Sudoku problems from 7,000 + 1,024 examples (58.2% of hard problems)

The rules of Sudoku can be extracted automatically as constraints [Kum+20]

These minimum empirically 100% correct GMs do not give “exact” rules

13,000 recover an exact formulation of the Sudoku rules
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Learning from noisy hints (images)

DL approaches

RRN: did not try it.

SAT-Net can solve 63.2 % of easy Sudoku problems from 10,000 samples (theoretical max.
of 74.7%: LeNet accuracy 99.2%, 36.2 hints on average)

The GM approach learns to solve

82 % of hard Sudoku problems from 8,000+1,024 examples

77 % of easy Sudoku problems from 8,000+1.024 examples (more hints, more LeNet
errors)

13,000 noisy samples are enough to recover an exact formulation of the Sudoku rules
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Learning from noisy hints (images)

Additional capacities

one can also use noisy solutions (not only hints) for learning.

one can add (design) constraints on the output.

Graphical models

Can be learned from (noisy) data (including DL output if desirable)

Can o�en be analyzed and solved using exact (or guaranteed) algorithms

theoreticals limits[Vuf+16], PAC learnability [Kum+20], specialized languages?
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