GRAPHICAL MODELS – PROPOSITIONAL LOGIC AND PROBABILISTIC REASONING

LAAS/CNRS CONFINED SEMINAR

M.C. COOPER¹, S. DE GIVRY² T. SCHIEX² & C. BROUARD² (LEARNING)

¹ Université Fédérale de Toulouse, ANITI, IRIT, Toulouse, France
 ² Université Fédérale de Toulouse, ANITI, INRAE MIAT, UR 875, Toulouse, France

More details in the STACS'2020 tutorial

May 5, 2020

Description of a multivariate function as the combination of simple functions

- discrete models: the function takes discrete variables as inputs
- we stick to totally ordered co-domains (non negative, optimization)
- combination: through a (well-behaved) binary operator

ANITI INRAC

Description of a multivariate function as the combination of simple functions

- discrete models: the function takes discrete variables as inputs
- we stick to totally ordered co-domains (non negative, optimization)
- combination: through a (well-behaved) binary operator

What functions?

- Boolean functions: propositional logical reasoning
- Numerical functions (integer, real): reasoning with cost or probabilities
- infinite valued or bounded functions: logic (feasibility) + cost/probabilities

System modeling for optimization, analysis, design...

- The function describes a system property
- Explore it: find its minimum (feasibility, optimisation), or average value (counting)

System modeling for optimization, analysis, design...

- The function describes a system property
- Explore it: find its minimum (feasibility, optimisation), or average value (counting)

Example

- A digital circuit
- A schedule or a time-table
- A pedigree with partial genotypes
- A frequency assignment
- A 3D molecule

value of the output feasibility, acceptability Mendel consistency, probability interference amount energy, stability

System modeling for optimization, analysis, design...

- The function describes a system property
- Explore it: find its minimum (feasibility, optimisation), or average value (counting)

Example

- A digital circuit
- A schedule or a time-table
- A pedigree with partial genotypes
- A frequency assignment
- A 3D molecule

value of the output feasibility, acceptability Mendel consistency, probability interference amount energy, stability

Computationally hard

concise description of a multi-dimensional object, little properties

Definition (Graphical Model (GM))

A GM $\mathcal{M} = \langle V, \Phi \rangle$ with co-domain B and combination operator \oplus is defined by:

- \blacksquare a sequence of n variables V, each with an associated finite domain of size less than d.
- **a** set Φ of e functions (or factors).
- Each function $\varphi_{S} \in \Phi$ is a function from $D^{S} \to B$. *S* is called the scope of the function and |S| its arity.

Definition (Joint function)

$$\Phi_{\mathcal{M}}(oldsymbol{v}) = igoplus_{oldsymbol{S} \in \Phi} arphi_{oldsymbol{S}}(oldsymbol{v}[oldsymbol{S}])$$

Definition (Constraint network (used in Constraint programming))

- A GM $\mathcal{M} = \langle V, \Phi
 angle$ defined by:
 - a sequence of n variables V, each with an associated finite domain of size less than d.
 - a set Φ of e Boolean functions (or constraints).

Definition (Joint function)

$$\Phi_{\mathcal{M}}(oldsymbol{v}) = igwedge_{oldsymbol{S}} arphi_{oldsymbol{S}}(oldsymbol{v}[oldsymbol{S}])$$

Definition (Markov Random Field (used in Machine Learning, Statistical Physics))

- A GM $\mathcal{M} = \langle \boldsymbol{V}, \Phi
 angle$ defined by:
 - a sequence of n variables V, each with an associated finite domain of size less than d.
 - **a** set Φ of e non negative functions (potentials).

Definition (Joint function and associated probability distribution)

$$\Phi_{\mathcal{M}}(oldsymbol{v}) = \prod_{arphi_{oldsymbol{S}} \in \Phi} arphi_{oldsymbol{S}}(oldsymbol{v}[oldsymbol{S}])$$

 $P_{\mathcal{M}}(\boldsymbol{V}) \propto \Phi_{\mathcal{M}}(\boldsymbol{V})$

MRF can be estimated from data

Using eg. regularized approximate/pseudo log-likelihood approaches.

How are functions $\varphi_{S} \in \Phi$ represented?

Default: as tensors over *B*.

(multidimensional tables)

- Boolean vars: (weighted) clauses. (disjunction of literals: variables or their negation)
- Using a specific language, subset of all tensors or clauses or dedicated (ALL-DIFFERENT).
- this influences complexities, tensors as a default

A variety of well-studied frameworks

- Propositional Logic (PL): Boolean domains and co-domain, conjunction of clauses
- Constraint Networks (CN): Finite domains, Boolean co-domain, conjunction of tensors
- Cost Function Networks (CFN): Finite domains, numerical co-domain, sum of tensors.
- Markov Random Fields (MRF): Finite domains, \mathbb{R}^+ as co-domain, product of tensors.
- Bayesian Networks (BN): MRF + normalized functions and scopes following a DAG.
- Generalized Additive Independence [BG95], Weighted PL, Quadratic Pseudo-Boolean Optimization [BH02]...

Definition ((Hyper)graph of $\mathcal{M} = \langle V, \Phi \rangle$)

One vertex per variable, one (hyper)edge per scope ${\cal S}$ of function $\varphi_{{\cal S}}\in \Phi.$

Definition (Factor graph of $\mathcal{M} = \langle V, \Phi \rangle$)

One vertex per variable or function, an edge connects the vertex φ_s to all variables in S.

CFN $\mathcal{M} = \langle \boldsymbol{V}, \Phi \rangle,$ parameterized by an upper bound k

 ${\mathcal M}$ defines a non negative joint function

$$\Phi_{\mathcal{M}} = \min(\sum_{\varphi_{\mathbf{S}} \in \Phi} \varphi_{\mathbf{S}}, k)$$

Flexiblek = 1same as Constraint Networks $k = \infty$ same as GAI, $-\log()$ transform of MRFs (Boltzmann)k finitek is a known upper bound φ_{\emptyset} is a naive lower bound on the minimum cost

QUERIES

Optimization queries

- **SAT**/PL: is the minimum of $\Phi_{\mathcal{M}} \preccurlyeq t$?
- CSP/CN: is the minimum of $\Phi_{\mathcal{M}} \preccurlyeq t$?
- WCSP/CFN: is the minimum of $\Phi_{\mathcal{M}} \preccurlyeq \alpha$?
- MAP/MRF: is the minimum of $\Phi_{\mathcal{M}} \preccurlyeq \alpha$?
- MPE/BN: is the minimum of $\Phi_{\mathcal{M}} \preccurlyeq \alpha$?

Counting queries

- #-SAT/PL: how many assignments satisfy $\Phi_{\mathcal{M}} = t$?
- MAR/MRF: compute $Z = \sum (\Phi_M)$ or $P_M(X = u)$ where $X \in V$
- MAR/BN: compute $P_{\mathcal{M}}(X = u)$ where $X \in V$

Graph G = (V, E) with edge weight function w

- **A** boolean variable x_i
- A cost function $w_{ij} = w(i, j) \times \mathbb{1}[x_i \neq x_j]$
- Hard edges: $w_{ij} = k$

per vertex $i \in V$ per edge $(i, j) \in E$

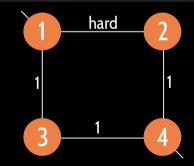
Example: MINCUT with hard and weighted edges

Graph G = (V, E) with edge weight function w

- A boolean variable x_i
- A cost function $w_{ij} = w(i, j) \times \mathbb{1}[x_i \neq x_j]$
- Hard edges: $w_{ij} = k$

 $\begin{array}{l} \text{per vertex } i \in V \\ \text{per edge } (i,j) \in E \end{array}$

vertices {1, 2, 3, 4}
 cut weights 1
 but edge (1, 2) hard



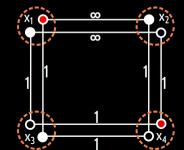
Example: MINCUT with hard and weighted edges

Graph G = (V, E) with edge weight function w

- A boolean variable x_i
- A cost function $w_{ij} = w(i, j) \times \mathbb{1}[x_i \neq x_j]$
- Hard edges: $w_{ij} = k$

 $\begin{array}{l} \text{per vertex } i \in V \\ \text{per edge } (i,j) \in E \end{array}$

vertices {1, 2, 3, 4}
cut weights 1
but edge (1, 2) hard



TOULBAR2 INPUT FILE (GITHUB.COM/TOULBAR2/TOULBAR2)

MinCut on a 3-clique with hard edge

```
{ problem :{name: MinCut, mustbe: <100.0},</pre>
    variables:
      \{x1: [1], x2: [1,r], x3: [1,r], x4: [r]\}
    functions: {
      cut12:
        {scope: [x1,x2], costs: [0.0, 100.0, 100.0, 0.0]},
      cut13:
        {scope: [x1,x3], costs: [0.0,1.0,1.0,0.0]},
      cut23:
        {scope: [x2,x3], costs: [0.0,1.0,1.0,0.0]}
```

•••

BINARY CFN AS 01LP (OPTIMISATION ALONE)

The so called "local polytope" [Sch76; Kos99; Wer07]

(w/o last line)

Function
$$\sum_{i,a} arphi_i(a) \cdot x_{ia} +$$

$$\sum_{a \in D^{i}} x_{ia} = 1$$
$$\sum_{b \in D^{j}} y_{iajb} = x_{ia}$$
$$\sum_{a \in D^{i}} y_{iajb} = x_{jb}$$
$$x_{ia} \in \{0, 1\}$$

$$\sum_{\substack{\varphi_{ij} \in \Phi \\ \in D^i, b \in D^j}} \varphi_{ij}(a, b) \cdot y_{iajb}$$
 such that

$$\forall i \in \{1, \dots, n\}$$

$$\forall \varphi_{ij} \in \Phi, \forall a \in D^i$$

$$\forall \varphi_{ij} \in \Phi, \forall b \in D^j$$

$$\forall i \in \{1, \dots, n\}$$

The main algorithmic attractor in the MRF community

- Widely used in image processing (now a bit shadowed by Deep Learning)
- Very large problems: exact approaches considered as unusable [Kap+13].
- Plenty of primal/dual approaches on the local polytope, but universality result [PW13]

Three main families of algorithms

- 1. global search: backtrack tree-search and branch and bound
- 2. global inference: non-serial dynamic programming
- 3. local inference: local application of DP equations

Ignores (useful) stochastic local search approaches.

Time $O(d^n)$, linear space

- \blacksquare If all $|D^X|=1, \Phi_{\mathcal{M}}(\boldsymbol{v}), \boldsymbol{v} \in D^{\boldsymbol{V}}$ is the answer
- Else choose $X \in \boldsymbol{V}$ s.t. $|D^X| > 1$ and $u \in D^X$ and reduce to
 - 1. one subproblem where $X_i = u$
 - 2. one where u is removed from D^X
- Return the minimum of these two subproblems

Branch and Bound

If a lower bound on the optimum is \succeq a known upper bound on $\Phi_{\mathcal{M}}...$

Prune!

NB: φ_{\varnothing} is a lower bound, k is our upper bound.

Eliminating variable $X \in V$

Let Φ^X be the set $\{\varphi_S \in \Phi \text{ s.t. } X \in S\}$, T, the neighbors of X.

The message $m_{\boldsymbol{T}}^{\Phi_X}$ from Φ^X to \boldsymbol{T} is:

$$m_{\boldsymbol{T}}^{\Phi_X} = \min_X (\bigoplus_{\varphi_{\boldsymbol{S}} \in \Phi^X} \varphi_{\boldsymbol{S}})$$

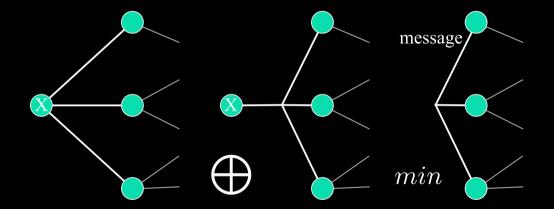
(1)

Eliminating a variable

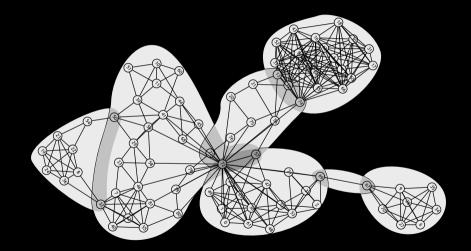
Distributivity

$$\min_{\boldsymbol{v}\in D^{\boldsymbol{V}}}\left[\bigoplus_{\varphi_{\boldsymbol{S}}\in\Phi}(\varphi_{\boldsymbol{S}}(\boldsymbol{v}[\boldsymbol{S}]))\right] \quad = \quad \min_{\boldsymbol{v}\in D^{\boldsymbol{V}-\{X\}}}\left[\bigoplus_{\varphi_{\boldsymbol{S}}\in\Phi-\Phi^{X}\cup\{m_{\boldsymbol{T}}^{\Phi_{X}}\}}(\varphi_{\boldsymbol{S}}(\boldsymbol{v}[\boldsymbol{S}]))\right]$$

A GRAPHICAL REPRESENTATION



A GRAPHICAL REPRESENTATION



$\begin{array}{l} \mbox{Complexity of one elimination for tensors} \\ \mbox{Computing } m_T^X \mbox{ is } O(d^{|T+1|}) \mbox{ time, } O(d^{|T|}) \mbox{ space } & |T| \mbox{ is the degree of } X \\ \mbox{The overall complexity is dominated by the largest degree encountered during elimination} \end{array}$

Clauses	$oldsymbol{L},oldsymbol{L}'$ clauses
If $\Phi^X = \{(X \lor \boldsymbol{L}), (\neg X \lor \boldsymbol{L'})\}$	$m_{m{T}}^{\Phi_X}$ is $(m{L} ee m{L'}).$
The resolution principle [Rob65] is an efficient variable elimination process	[DR94; DP60].

Exponential in the DIMENSION [BB69b; BB69a; Bod98]

- **DIMENSION** of an elimination order for G
- $\blacksquare \text{ Dimension of } G$
- NP-hard to optimize but useful heuristics exist [ВК08].

Tractability

- First tractable class: GMs with bounded tree-width.
- Main approach for exact solving of counting queries for Bayesian nets[LS88].
- Worst case is also best case (space and time)

Largest set |T| encountered

induced/tree-width

minimum DIMENSION over all orders

39

Message passing

Root the tree and compute messages from leaves

All variables

Variables preserved, time & space $O(ed^2)$

Messages are kept as auxiliary functions.

- When a variable X_i has received messages from all its neighbors but one (X_j)
- Send message m_j^i to X_j

$$m_j^i = \min_{X_i} (\varphi_i \oplus \varphi_{ij} \bigoplus_{X_o \in neigh(X_i), o \neq j} m_i^o)$$
⁽²⁾

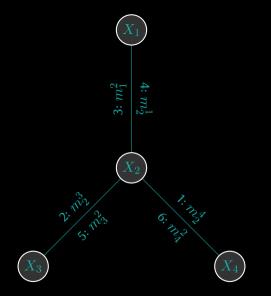


Figure 1: Message passing on a tree, a possible message schedule

The heuristic approach

Starting from e.g., empty messages, apply the message passing equation (2)

$$m_j^i = \min_{X_i} (\varphi_i \oplus \varphi_{ij} \bigoplus_{X_o \in neigh(X_i), o \neq j} m_i^o)$$

on each function until quiescence or maximum number of iterations.

Booleans: Local/arc consistency (CSP), Unit propagation (SAT)

- The unique logically equivalent fixpoint can be efficiently computed
- If it contains $\varphi_{\varnothing} > 0$, we have a proof of inconsistency

Probabilities: Loopy Belief Propagation [Pea88]

- Often denoted as the "max-sum/min-sum" algorithm.
- At the core of Turbo-decoding [BGT93], implemented in all cell phones.
- Widely studied [YFW01], but known to not always converge.

Equivalence Preserving Transformations

- We can add the message $m_{m Y}^{\Psi}$
- And compensate by 'subtracting' the message from its source

EPTs can enforce generalized versions of "local consistencies"

- Transform the model into an equivalent model
- with a possibly increased φ_{\emptyset} (lower bound)
- Reduces to good old *Arc Consistency* in the Boolean case
- Gave birth to Max-resolution in SAT [LH05]

Properties[Coo+10]

- Solves tree-structured problems
- Solves problems with submodular functions (Monge matrices)
- Reduces to a max-flow algorithm on Boolean variables (roof-dual for QPBO)

In the context of local polytope

VAC is a fast incremental approximate solver of the local polytope dual that also enforces AC on logical information

Combines

- Branch and Bound (Backtrack in the Boolean case)
- Incremental Local Consistency enforcing at each node (lower bound)

Variable (and value) ordering heuristics

- Crucial for empirical efficiency
- Are now adaptive (learned while searching) [Mos+01; Bou+04]
- Little theory.

Additional ingredients

- Search strategies: Best/Depth First [All+15], restarts [GSC97]
- Stronger preprocessing at the root node
- Dominance analysis [Fre91; DPO13; All+14], ...
- Conflict directed inference (Boolean) [Bie+09]
- Combined with graph decomposition (tree-decomposition)

SAT solvers

Verification¹, planning, diagnosis, theorem proving,...

¹Small neural nets too. ²Oliver Kullmann. "The Science of Brute Force". In: *Communications of the ACM* (2017).

SAT solvers

Verification¹, planning, diagnosis, theorem proving,...

2017: proving an "alien" theorem?	∞
When one splits ${\mathbb N}$ in 2 , one part must contain a Pythagorean triple	$(a^2 = b^2 + c^2)$

¹Small neural nets too. ²Oliver Kullmann. "The Science of Brute Force". In: *Communications of the ACM* (2017).

SAT solvers

Verification¹, planning, diagnosis, theorem proving,...

2017: proving an "alien" theorem?	∞
When one splits ${\mathbb N}$ in $2,$ one part must contain a Pythagorean triple	$(a^2 = b^2 + c^2)$

No known proof, puzzled mathematicians for decades (one offered a 100 \$ reward)

¹Small neural nets too. ²Oliver Kullmann. "The Science of Brute Force". In: *Communications of the ACM* (2017).

SAT solvers

Verification¹, planning, diagnosis, theorem proving,...

2017: proving an "alien" theorem?	∞
When one splits ${\mathbb N}$ in $2,$ one part must contain a Pythagorean triple	$(a^2 = b^2 + c^2)$

No known proof, puzzled mathematicians for decades (one offered a 100 \$ reward)

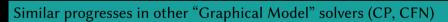
SAT solver proof[HKM16; Lam16]

200TB proof, compressed to 86GB (stronger proof system)²

¹Small neural nets too. ²Oliver Kullmann. "The Science of Brute Force". In: *Communications of the ACM* (2017).

SAT: a lot of free data and free code...

- International competitions (> 50,000 benchmarks with many real problems)
- Open source solvers (autocatalytic)



"ToulBar2 variants were superior to CPLEX variants in all our tests" [HSS18]

(still, there are small problems that cannot be solved in decent time)

VAC vs. LP on Protein design problems

CPLEX V12.4.0.0

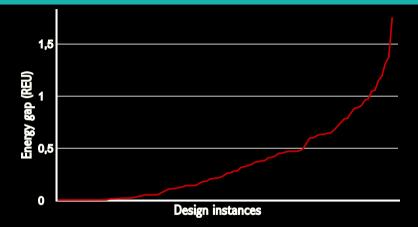
```
Problem '3e4h.LP' read.
Root relaxation solution time = 811.28 sec.
...
MIP - Integer optimal solution: Objective = 150023297067
Solution time = 864.39 sec.
```

tb2 and VAC

```
(AC3 based)
```

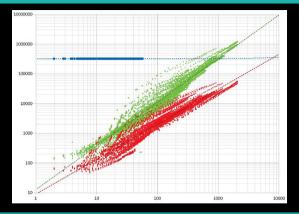
```
loading CFN file: 3e4h.wcsp
Lb after VAC: 150023297067
Preprocessing time: 9.13 seconds.
Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.
```

Comparison with Rosetta's Simulated annealing ${}_{{\rm [Sim+15]}}$



Optimality gap of the Simulated annealing solution as problems get harder Asymptotic convergence, close to infinity is arbitrarily far

DWAVE, SIMULATED ANNEALING, TOULBAR2



Exact vs. heuristic solvers

[Mul+19]

DWave within 1.16 kcal/mol of the optimum 10% of the time, 4.35 kcal/mol 50% of the time, 8.45 kcal/mol 90% of the time.

LEARNING TO PLAY THE SUDOKU USING DL (SYSTEM 1)

Recent Deep Learning approaches that "learn how to reason"

- Recurrent relational Networks [PPW18]: learn "message passing" like functions
- SAT-net [Wan+19] embeds a convex relaxation of Max2SAT [GW95] as a final differentiable layer

Architecture and prior

- The architectures identify decision variables and (RRN) pairs of interacting variables
- Input: a Sudoku problem (hints)
- Output: a filled Sudoku grid
- Learning: on hint/solution pairs (SGD) (hints: numbers or images, LeNet processed).

LEARNING TO PLAY THE SUDOKU USING GMs (SYSTEM 2)

Learning MRFs from data

- Optimizing an approximate convex representation of the L1-regularized log-likelihood with ADMM [Par+17]
- Takes expectations of sufficient statistics as input
- Simultaneously estimates the GM graph structure and its parameters (tensors)
- Requires one regularization hyper-parameter λ

In practice

- Adjust λ (empirical risk, using toulbar2) on a test set (1,024 samples)
- Validate (on a separate validation set of 1,000 samples)
- Image hints: use LeNet to transform images to posterior probabilities

Hard and easy problems

- Sodoku instances can be easy (many hints) or hard (17 hints for a unique solution).
- The fraction of solved Sudoku in the validation set depends on their hardness

Different situations

- RRN [PPW18] used 180,000 + 18,000 + 18,000 of problems with varying hardness (17 to 34 hints)
- SATNet [Wan+19]: used 9,000 + 1,000 problems with mostly easy problems (no test set for hyper-parameters tuning)

Results

DL approaches

- RRN: can solve 96.6 % of the hardest Sudokus using 198,000 examples
- SAT-Net can solve 98.3% of easy Sudokus using 10,000 examples

The GM approach learns to solve

- 100 % of hard Sudoku problems from 9,000 + 1,024 examples
- 100 % of easy Sudoku problems from 7,000 + 1,024 examples (58.2% of hard problems)
- The rules of Sudoku can be extracted automatically as constraints [Kum+20]
- These minimum empirically 100% correct GMs do not give "exact" rules
- 13,000 recover an exact formulation of the Sudoku rules

LEARNING FROM NOISY HINTS (IMAGES)

DL approaches

- RRN: did not try it.
- SAT-Net can solve 63.2 % of easy Sudoku problems from 10,000 samples (theoretical max. of 74.7%: LeNet accuracy 99.2%, 36.2 hints on average)

The GM approach learns to solve

- 82 % of hard Sudoku problems from 8,000+1,024 examples
- 77 % of easy Sudoku problems from 8,000+1.024 examples (more hints, more LeNet errors)
- 13,000 noisy samples are enough to recover an exact formulation of the Sudoku rules

Additional capacities

- one can also use noisy solutions (not only hints) for learning.
- one can add (design) constraints on the output.

Graphical models

Can be learned from (noisy) data (including DL output if desirable)
 Can often be analyzed and solved using exact (or guaranteed) algorithms
 theoreticals limits[Vuf+16], PAC learnability [Kum+20], specialized languages?

THANK YOU! QUESTIONS? David Allouche et al. "Computational protein design as an optimization problem". In: *Artificial Intelligence* 212 (2014), pp. 59–79.

- David Allouche et al. "Anytime Hybrid Best-First Search with Tree Decomposition for Weighted CSP". In: *Principles and Practice of Constraint Programming*. Springer. 2015, pp. 12–29.
- Srinivas M Aji and Robert J McEliece. "The generalized distributive law". In: *IEEE transactions on Information Theory* 46.2 (2000), pp. 325–343.
- Umberto Bertele and Francesco Brioschi. "A new algorithm for the solution of the secondary optimization problem in non-serial dynamic programming". In: *Journal of Mathematical Analysis and Applications* 27.3 (1969), pp. 565–574.
- Umberto Bertele and Francesco Brioschi. "Contribution to nonserial dynamic programming". In: *Journal of Mathematical Analysis and Applications* 28.2 (1969), pp. 313–325.
- Umberto Bertelé and Francesco Brioshi. *Nonserial Dynamic Programming*. Academic Press, 1972.

- Fahiem Bacchus and Adam Grove. "Graphical models for preference and utility". In: *Proceedings of the Eleventh conference on Uncertainty in artificial intelligence*. Morgan Kaufmann Publishers Inc. 1995, pp. 3–10.
- Claude Berrou, Alain Glavieux, and Punya Thitimajshima. "Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1". In: *Proceedings of ICC'93-IEEE International Conference on Communications*. Vol. 2. IEEE. 1993, pp. 1064–1070.
- E. Boros and P. Hammer. "Pseudo-Boolean Optimization". In: *Discrete Appl. Math.* 123 (2002), pp. 155–225.
- Armin Biere et al. "Conflict-driven clause learning sat solvers". In: *Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications* (2009), pp. 131–153.
- H L Bodlaender and A M C A Koster. *Treewidth Computations I. Upper Bounds*. Tech. rep. UU-CS-2008-032. Utrecht, The Netherlands: Utrecht University, Department of Information and Computing Sciences, Sept. 2008. URL: http: //www.cs.uu.nl/research/techreps/repo/CS-2008/2008-032.pdf.

- Hans L Bodlaender. "A partial k-arboretum of graphs with bounded treewidth". In: *Theoretical computer science* 209.1-2 (1998), pp. 1–45.
- Frédéric Boussemart et al. "Boosting systematic search by weighting constraints". In: *ECAI*. Vol. 16. 2004, p. 146.

- M. Cooper et al. "Soft arc consistency revisited". In: *Artificial Intelligence* 174 (2010), pp. 449–478.
- Rina Dechter. "Bucket Elimination: A Unifying Framework for Reasoning". In: *Artificial Intelligence* 113.1–2 (1999), pp. 41–85.
- Martin Davis and Hilary Putnam. "A computing procedure for quantification theory". In: *Journal of the ACM (JACM)* 7.3 (1960), pp. 201–215.
- Simon De Givry, Steven D Prestwich, and Barry O'Sullivan. "Dead-end elimination for weighted CSP". In: *Principles and Practice of Constraint Programming*. Springer. 2013, pp. 263–272.
- Rina Dechter and Irina Rish. "Directional resolution: The Davis-Putnam procedure, revisited". In: *KR* 94 (1994), pp. 134–145.

Eugene C. Freuder. "Eliminating Interchangeable Values in Constraint Satisfaction Problems". In: *Proc. of AAAI'91*. Anaheim, CA, 1991, pp. 227–233.

- Carla P Gomes, Bart Selman, and Nuno Crato. "Heavy-tailed distributions in combinatorial search". In: *International Conference on Principles and Practice of Constraint Programming*. Springer. 1997, pp. 121–135.
- Michel X Goemans and David P Williamson. "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming". In: *Journal of the ACM (JACM)* 42.6 (1995), pp. 1115–1145.
- Marijn JH Heule, Oliver Kullmann, and Victor W Marek. "Solving and verifying the boolean pythagorean triples problem via cube-and-conquer". In: *International Conference on Theory and Applications of Satisfiability Testing*. Springer. 2016, pp. 228–245.
- Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. "Exact MAP-Inference by Confining Combinatorial Search with LP Relaxation". In: *Thirty-Second AAAI Conference on Artificial Intelligence.* 2018.

- Joerg Kappes et al. "A comparative study of modern inference techniques for discrete energy minimization problems". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2013, pp. 1328–1335.
- Vladimir Kolmogorov. "Convergent tree-reweighted message passing for energy minimization". In: *Pattern Analysis and Machine Intelligence, IEEE Transactions on* 28.10 (2006), pp. 1568–1583.
- A M C A. Koster. "Frequency assignment: Models and Algorithms". Available at www.zib.de/koster/thesis.html. PhD thesis. The Netherlands: University of Maastricht, Nov. 1999.
- Oliver Kullmann. "The Science of Brute Force". In: *Communications of the ACM* (2017).
- Mohit Kumar et al. "Learning MAX-SAT from Contextual Examples for Combinatorial Optimisation". In: *Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence*. AAAI. 2020.

- Evelyn Lamb. "Maths proof smashes size record: supercomputer produces a 200-terabyte proof-but is it really mathematics?" In: *Nature* 534.7605 (2016), pp. 17–19.
- J. Larrosa and F. Heras. "Resolution in Max-SAT and its relation to local consistency in weighted CSPs". In: *Proc. of the 19th IJCAI*. Edinburgh, Scotland, 2005, pp. 193–198.
- S.L. Lauritzen and D.J. Spiegelhalter. "Local computations with probabilities on graphical structures and their application to expert systems". In: *Journal of the Royal Statistical Society Series B* 50 (1988), pp. 157–224.
- Matthew W Moskewicz et al. "Chaff: Engineering an efficient SAT solver". In: *Proceedings of the 38th annual Design Automation Conference*. ACM. 2001, pp. 530–535.
- Vikram Khipple Mulligan et al. "Designing Peptides on a Quantum Computer". In: *bioRxiv* (2019), p. 752485.

Youngsuk Park et al. "Learning the network structure of heterogeneous data via pairwise exponential Markov random fields". In: *Proceedings of machine learning research* 54 (2017), p. 1302.

- Judea Pearl. *Probabilistic Reasoning in Intelligent Systems, Networks of Plausible Inference*. Palo Alto: Morgan Kaufmann, 1988.
- Rasmus Palm, Ulrich Paquet, and Ole Winther. "Recurrent relational networks". In: *Advances in Neural Information Processing Systems*. 2018, pp. 3368–3378.
- Daniel Prusa and Tomas Werner. "Universality of the local marginal polytope". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, pp. 1738–1743.
- J. Alan Robinson. "A machine-oriented logic based on the resolution principle". In: *Journal of the ACM* 12 (1965), pp. 23–44.
- T. Schiex. "Arc consistency for soft constraints". In: *Principles and Practice of Constraint Programming CP 2000*. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411–424.

M.I. Schlesinger. "Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (Syntactic analysis of two-dimensional visual signals in noisy conditions)". In: *Kibernetika* 4 (1976), pp. 113–130.

- G. Shafer. *An Axiomatic Study of Computation in Hypertrees*. Working paper 232. Lawrence: University of Kansas, School of Business, 1991.
- David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: *Journal of Chemical Theory and Computation* 11.12 (2015), pp. 5980–5989. DOI: 10.1021/acs.jctc.5b00594.
- Marc Vuffray et al. "Interaction screening: Efficient and sample-optimal learning of Ising models". In: *Advances in Neural Information Processing Systems*. 2016, pp. 2595–2603.
- Po-Wei Wang et al. "SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver". In: *ICML'19 proceedings, arXiv preprint arXiv:1905.12149.* 2019.

T. Werner. "A Linear Programming Approach to Max-sum Problem: A Review.". In: *IEEE Trans. on Pattern Recognition and Machine Intelligence* 29.7 (July 2007), pp. 1165–1179. URL: http://dx.doi.org/10.1109/TPAMI.2007.1036.

Jonathan S Yedidia, William T Freeman, and Yair Weiss. "Bethe free energy, Kikuchi approximations, and belief propagation algorithms". In: *Advances in neural information processing systems* 13 (2001).