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WHAT IS A GRAPHICAL MODEL?

Description of a multivariate function as the combination of simple functions

m discrete models: the function takes discrete variables as inputs
m we stick to totally ordered co-domains (non negative, optimization)

m combination: through a (well-behaved) binary operator




WHAT IS A GRAPHICAL MODEL?

Description of a multivariate function as the combination of simple functions

m discrete models: the function takes discrete variables as inputs
m we stick to totally ordered co-domains (non negative, optimization)

m combination: through a (well-behaved) binary operator

What functions?

m Boolean functions: propositional logical reasoning
m Numerical functions (integer, real): reasoning with cost or probabilities

m infinite valued or bounded functions: logic (feasibility) + cost/probabilities



WHAT FOR?

System modeling for optimization, analysis, design...

m The function describes a system property

m Explore it: find its minimum (feasibility, optimisation), or average value (counting)
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WHAT FOR?

System modeling for optimization, analysis, design...

m The function describes a system property

m Explore it: find its minimum (feasibility, optimisation), or average value (counting)

m A digital circuit value of the output
m A schedule or a time-table feasibility, acceptability
m A pedigree with partial genotypes Mendel consistency, probability
m A frequency assignment interference amount
m A 3D molecule energy, stability

Computationally hard concise description of a multi-dimensional object, little properties




A DEFINITION (PARAMETERIZED BY CO-DOMAIN B, COMBINATION OPERATOR EP)

Definition (Graphical Model (GM))

A GM M = (V| ®) with co-domain B and combination operator & is defined by:

m a sequence of n variables V, each with an associated finite domain of size less than d.

m a set ® of e functions (or factors).

m Each function pg € ® is a function from D® — B. S is called the scope of the function
and | S| its arity.

Definition (Joint function)

Om(v) = €D ws(v[S))

psed



A BooLEAN GRAPHICAL MODEL

Definition (Constraint network (used in Constraint programming))
AGM M = (V, ®) defined by:

m a sequence of n variables V', each with an associated finite domain of size less than d.

m a set @ of e Boolean functions (or constraints).

Definition (Joint function)




A StocHASTIC GRAPHICAL MODEL

Definition (Markov Random Field (used in Machine Learning, Statistical Physics))

AGM M = (V, ®) defined by:
m a sequence of n variables V', each with an associated finite domain of size less than d.

m a set @ of e non negative functions (potentials).

Definition (Joint function and associated probability distribution)

op(v) = [ es@[S]) Pum(V) oc (V)
pse®

MREF can be estimated from data

Using eg. regularized approximate/pseudo log-likelihood approaches.




LANGUAGE MATTERS...

How are functions g € ® represented?

Default: as tensors over B. (multidimensional tables)

Boolean vars: (weighted) clauses.  (disjunction of literals: variables or their negation)

Using a specific language, subset of all tensors or clauses or dedicated (ALL-DIFFERENT).

this influences complexities, tensors as a default




WHAT DOES THIS COVER?

A variety of well-studied frameworks

Propositional Logic (PL): Boolean domains and co-domain, conjunction of clauses

m Constraint Networks (CN): Finite domains, Boolean co-domain, conjunction of tensors
m Cost Function Networks (CFN): Finite domains, numerical co-domain, sum of tensors.
m Markov Random Fields (MRF): Finite domains, R* as co-domain, product of tensors.
m Bayesian Networks (BN): MRF + normalized functions and scopes following a DAG.

m Generalized Additive Independence [BG95], Weighted PL, Quadratic Pseudo-Boolean
Optimization [BHo2]...



THE GRAPHS OF GRAPHICAL MODELS

Definition ((Hyper)graph of M = (V' ®))

One vertex per variable, one (hyper)edge per scope S of
function g € .

Definition (Factor graph of M = (V| ®))

One vertex per variable or function, an edge connects the
vertex g to all variables in S.




Focus oN “CosT FUNCTION NETWORKS”

CFN M = (V, @), parameterized by an upper bound k

M defines a non negative joint function ® ¢ = min( Z s, k)
psed

Flexible
mk=1 same as Constraint Networks
m k=00 same as GAl, — log() transform of MRFs (Boltzmann)
m £ finite k is a known upper bound

B (g is a naive lower bound on the minimum cost

9]



Optimization queries

m SAT/PL: is the minimum of ® < t?

m CSP/CN: is the minimum of ® < ¢ ?

m WCSP/CFN: is the minimum of P < . ?
m MAP/MREF: is the minimum of ®( <  ?
m MPE/BN: is the minimum of 4 < ' ?

Counting queries

m #-SAT/PL: how many assignments satisfy ® g =t ?
m MAR/MRF: compute Z = > (P pq) or Pap(X = u) where X € V
= MAR/BN: compute Py((X = u) where X € V



ExAMPLE: MINCUT WITH HARD AND WEIGHTED EDGES

Graph G = (V, E) with edge weight function w

m A boolean variable z; per vertext € V

m A cost function wi; = w(i, j) x 1[z; # xj] per edge (i,j) € E

m Hard edges: w;; = k
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ExAMPLE: MINCUT WITH HARD AND WEIGHTED EDGES

Graph G = (V, E) with edge weight function w

m A boolean variable z; per vertex ¢ € V
m A cost function wj = w(i, j) x 1[z; # x;] per edge (i,j) € E

m Hard edges: w;; = k

':3(1 .\. © .". XZ‘:
m vertices {1,2,3,4} 1 1
m cut weights 1 1 L
m but edge (1, 2) hard AT 1 ks,
b ——0n)




TOULBAR2 INPUT FILE (GITHUB.COM/TOULBARZ/TOULBARZ)

MinCut on a 3-clique with hard edge

{ problem :{name: MinCut, mustbe: <100.0},
variables:
{x1: [1]1, x2: [1,r], x3: [1,r], x4: [rl}
functions: {

cutl2:

{scope: [x1,x2], costs: [0.0, 100.0, 100.0, 0.0]},
cuti3:

{scope: [x1,x3], costs: [0.0,1.0,1.0,0.0]},
cut23:

{scope: [x2,x3], costs: [0.0,1.0,1.0,0.0]}
T


https://github.com/toulbar2/toulbar2

BINARY CFN As 01LP (OPTIMISATION ALONE)

The so called “local polytope” [sch76; kos99; Wer07] (w/o last line)

Function Z vi(a) - T+ Z ©ij(a,b) - Yiqjp such that
i,a <Pij€<1>
aGDi,bED]-
Y # =1 Vie{l,...,n}
acD?
Z Yiajb = Tia V(,Dij € d,Va € D!
be DI
> e = S Vpi; € ®,Yb € D’
acD?
l‘me{o,l} ViG{l,...,n}




THE LOoCAL POLYTOPE (LP CAPTURING OPTIMISATION ONLY)

The main algorithmic attractor in the MRF community

m Widely used in image processing (now a bit shadowed by Deep Learning)
m Very large problems: exact approaches considered as unusable [Kap+13].

m Plenty of primal/dual approaches on the local polytope, but universality result [pw13]




A TOOLBOX WITH THREE TOOLS FOR GUARANTEED ALGORITHMS

Three main families of algorithms

1. global search: backtrack tree-search and branch and bound
2. global inference: non-serial dynamic programming

3. local inference: local application of DP equations

Ignores (useful) stochastic local search approaches.




BRUTE FORCE TREE-SEARCH

Time O(d"), linear space

m Ifall [DX]| = 1,00 (v),v € DY is the answer

m Else choose X € V s.it. [DX| > 1and u € D and reduce to

1. one subproblem where X; = u
2. one where u is removed from DX

m Return the minimum of these two subproblems

Branch and Bound

If a lower bound on the optimum is = a known upper bound on ® ... Prune!

NB: ¢ is a lower bound, £ is our upper bound.




NON SERIAL DYNAMIC PROGRAMMING [BB69s; BB69A; BB72; SHA91; DEC9; AM00]

Eliminating variable X € V'
Let ®X be the set {ps € ®s.t. X € S}, T, the neighbors of X.
The message mgix from ®X to T is:

mgix :II}}II( @ ©vs) (1)

pgEDPX

Eliminating a variable Distributivity

min | @ (es(@[S))| =  min D (esls))

veDV—{X}
pse® ps€®—OXUfmzX}



A GRAPHICAL REPRESENTATION

message

D i




A GRAPHICAL REPRESENTATION




COMPLEXITY OF ELIMINATING ONE VARIABLE

Complexity of one elimination for tensors

Computing m#: is O(dIT+) time, O(dI"!) space |T| is the degree of X

The overall complexity is dominated by the largest degree encountered during elimination

Clauses L, L' clauses
If X = {(XVL),(~X VvV L)} mgX is (LV L).

The resolution principle [Robs5] is an efficient variable elimination process [DR94; DP60].




COMPLEXITY OF ELIMINATING ALL VARIABLES

Exponential in the DIMENSION [BB69b; BB69a; Bod98] induced/tree-width
m DIMENsION of an elimination order for G Largest set |T'| encountered
m DIMENSION of G minimum DIMENSION over all orders

m NP-hard to optimize but useful heuristics exist [BKos].

Tractability

m First tractable class: GMs with bounded tree-width.
m Main approach for exact solving of counting queries for Bayesian nets[Lsss].

m Worst case is also best case (space and time)




NON-SERIAL DP EFFICIENT ON TREES

Message passing

Root the tree and compute messages from leaves

All variables Variables preserved, time & space O(ed?)

Messages are kept as auxiliary functions.
m When a variable X; has received messages from all its neighbors but one (X))

m Send message m; to X;

m’ = min(p; ® @ o ms 2
J X (801 i Xo€neigh(X;),0#] Z) ( )



Figure 1: Message passing on a tree, a possible message schedule




THE CYCLIC CASE - THE HEURISTIC APPROACH

The heuristic approach

Starting from e.g., empty messages, apply the message passing equation (2)

i g o
m’ = min(p; ® @;; @ my)
J X; / Xo€neigh(X;),0#] !

on each function until quiescence or maximum number of iterations.




BOOLEAN AND NUMERICAL CASES

Booleans: Local/arc consistency (CSP), Unit propagation (SAT)

m The unique logically equivalent fixpoint can be efficiently computed

m If it contains ¢z > 0, we have a proof of inconsistency

Probabilities: Loopy Belief Propagation [peass]

m Often denoted as the "max-sum/min-sum" algorithm.
m At the core of Turbo-decoding [BGT93], implemented in all cell phones.

m Widely studied [yFwo1], but known to not always converge.



THIS CAN BE FIXED [ScH00; Sc76; KoL06]

Equivalence Preserving Transformations

m We can add the message my-

m And compensate by ’subtracting’ the message from its source

EPTs can enforce generalized versions of “local consistencies”

m Transform the model into an equivalent model
m with a possibly increased ¢4 (lower bound)
m Reduces to good old Arc Consistency in the Boolean case

m Gave birth to Max-resolution in SAT [LHo5]




VIRTUAL ARC CONSISTENCY

Properties[Coo+10]

m Solves tree-structured problems
m Solves problems with submodular functions (Monge matrices)

m Reduces to a max-flow algorithm on Boolean variables (roof-dual for QPBO)

In the context of local polytope

VAC is a fast incremental approximate solver of the local polytope dual that also enforces AC
on logical information



MAINTAINING LC DURING BRANCH AND BOUND

Combines Time O(exp(n))

m Branch and Bound (Backtrack in the Boolean case)

m Incremental Local Consistency enforcing at each node (lower bound)

Variable (and value) ordering heuristics

m Crucial for empirical efficiency
m Are now adaptive (learned while searching) [Mos+01; Bou+04]

m Little theory.



MAINTAINING LC DURING BRANCH AND BOUND

Additional ingredients

m Search strategies: Best/Depth First [All+15], restarts [GSC97]
m Stronger preprocessing at the root node
m Dominance analysis [Fre91; DPO13; All+14], ...

m Conflict directed inference (Boolean) [Bie+09]

m Combined with graph decomposition (tree-decomposition)




SOLVERS AND APPLICATIONS AREAS

SAT solvers

Verification', planning, diagnosis, theorem proving,...

'Small neural nets too.
2Oliver Kullmann. “The Science of Brute Force”. In: Communications of the ACM (2017).
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SAT solvers

Verification', planning, diagnosis, theorem proving,...

2017: proving an “alien” theorem? 00

When one splits N in 2, one part must contain a Pythagorean triple (@®> = b + c?)
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SOLVERS AND APPLICATIONS AREAS

SAT solvers

Verification', planning, diagnosis, theorem proving,...

2017: proving an “alien” theorem? 00

When one splits N in 2, one part must contain a Pythagorean triple (@®> = b + c?)

No known proof, puzzled mathematicians for decades (one offered a 100 $ reward)

SAT solver proof{Hkmis; Lam1e]

2007'B proof, compressed to 86G B (stronger proof system)?

'Small neural nets too.
2Oliver Kullmann. “The Science of Brute Force”. In: Communications of the ACM (2017).
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THE RESULT OF A LOT OF EMPIRICAL CHOICES

SAT: a lot of free data and free code...

m International competitions (> 50, 000 benchmarks with many
real problems)

m Open source solvers (autocatalytic)

Similar progresses in other “Graphical Model” solvers (CP, CFN)

“ToulBar2 variants were superior to CPLEX variants in all our tests”[Hss18]

(still, there are small problems that cannot be solved in decent time)




VAC vs. LP oN PROTEIN DESIGN PROBLEMS

CPLEX V12.4.0.0

Problem ’3e4h.LP’ read.
Root relaxation solution time = 811.28 sec.

MIP - Integer optimal solution: Objective = 150023297067
Solution time = 864.39 sec.

tb2 and VAC (AC3 based)

loading CFN file: 3edh.wcsp

Lb after VAC: 150023297067

Preprocessing time: 9.13 seconds.

Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.




COMPARISON WITH ROSETTA’S SIMULATED ANNEALING [Sim+15]

=

-

Energy gap (REU)

&

0

Design instances
|
Optimality gap of the Simulated annealing solution as problems get harder

Asymptotic convergence, close to infinity is arbitrarily far



DWAVE, SIMULATED ANNEALING, TOULBAR2

Exact vs. heuristic solvers [Mul+19]

DWave within 1.16 kcal/mol of the optimum 10% of the time, 4.35 kcal/mol 50% of the time,
8.45 kcal/mol 90% of the time.




LEARNING TO PLAY THE SUDOKU USING DL (SYSTEM 1)

Recent Deep Learning approaches that “learn how to reason”

m Recurrent relational Networks [PPw1s]: learn “message passing” like functions

m SAT-net [Wan+19] embeds a convex relaxation of Max2SAT [GWo9s] as a final differentiable
layer

Architecture and prior

m The architectures identify decision variables and (RRN) pairs of interacting variables
m Input: a Sudoku problem (hints)
m Output: a filled Sudoku grid

m Learning: on hint/solution pairs (SGD) (hints: numbers or images, LeNet processed).




LEARNING TO PLAY THE SUDOKU USING GMs (SYSTEM 2)

Learning MRFs from data

m Optimizing an approximate convex representation of the L1-regularized log-likelihood
with ADMM [Par+17]

m Takes expectations of sufficient statistics as input
m Simultaneously estimates the GM graph structure and its parameters (tensors)

m Requires one regularization hyper-parameter A

In practice

m Adjust A (empirical risk, using toulbar2) on a test set (1,024 samples)
m Validate (on a separate validation set of 1,000 samples)

m Image hints: use LeNet to transform images to posterior probabilities



NOT ALL SUDOKU GRIDS ARE THE SAME

Hard and easy problems

m Sodoku instances can be easy (many hints) or hard (17 hints for a unique solution).

m The fraction of solved Sudoku in the validation set depends on their hardness

Different situations

m RRN [ppwi1g] used 180,000 + 18,000 + 18,000 of problems with varying hardness (17 to 34
hints)

m SATNet [Wan+19): used 9,000 + 1,000 problems with mostly easy problems (no test set for
hyper-parameters tuning)




DL approaches

m RRN: can solve 96.6 % of the hardest Sudokus using 198,000 examples
m SAT-Net can solve 98.3% of easy Sudokus using 10,000 examples

The GM approach learns to solve

m 100 % of hard Sudoku problems from 9,000 + 1,024 examples

m 100 % of easy Sudoku problems from 7,000 + 1,024 examples (58.2% of hard problems)
m The rules of Sudoku can be extracted automatically as constraints [Kum+20]

m These minimum empirically 100% correct GMs do not give “exact” rules

m 13,000 recover an exact formulation of the Sudoku rules



LEARNING FROM NOISY HINTS (IMAGES)

DL approaches

®m RRN: did not try it.

m SAT-Net can solve 63.2 % of easy Sudoku problems from 10,000 samples (theoretical max.
of 74.7%: LeNet accuracy 99.2%, 36.2 hints on average)

The GM approach learns to solve

m 82 % of hard Sudoku problems from 8,000+1,024 examples

m 77 % of easy Sudoku problems from 8,000+1.024 examples (more hints, more LeNet
errors)

m 13,000 noisy samples are enough to recover an exact formulation of the Sudoku rules



LEARNING FROM NOISY HINTS (IMAGES)

Additional capacities

m one can also use noisy solutions (not only hints) for learning.

m one can add (design) constraints on the output.

Graphical models

m Can be learned from (noisy) data (including DL output if desirable)
m Can often be analyzed and solved using exact (or guaranteed) algorithms

m theoreticals limits[vuf+16], PAC learnability [kum+20], specialized languages?
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