Decomposition of Graphs:
 Upper bounds, Lower bounds, and

 Exact methods to compute Treewidth

 Exact methods to compute Treewidth}

25 September 2006, Nantes

Overview

- Introduction
- Tree Decompositions
- Computing Treewidth
- Using Treewidth

Back in 1997

- Minimum Interference Frequency Assignment

- Good upper bounds, neither lower bounds nor optimal solutions
- Integer linear programming does not work \rightarrow What to do next?

Properties of 2G wireless communication

detects oscillations

Quality of the received signal:
Signal-to-noise ratio
Poor signal-to-noise ratio: interference of the signal
Objective: Frequency plan without interference or, second best, with minimum interference

Interference

Level of interference depends on

- distance between transmitters, geographical position,
- power of the signals, direction in which signals are transmitted,
- weather conditions
- assigned frequencies
- co-channel interference
- adjacent-channel interference

Interference is measured between pairs of transmitters

Separation

Frequencies assigned to the same location
(site) have to be separated

Blocked channels

Whole spectrum is not allowed at every location:

- government regulations,
- agreements with operators in neighboring regions,
- requirements military forces, etc.

Modeling MI-FAP

- Interference graph
- Vertices represent transmitters;
 Domain of assignable frequencies
- Edges represent constraints/interference Matrix with penalties for combination of frequenciesg

Partial Constraint Satisfaction Problem (with binary relations)

More frequency assignment: http://fap.zib.de

Related problems - Vertex Coloring

Integer Programming suffers from symmetry; linear relaxation not strong at all

What to do next?

- Graph decomposition:

Graph Decomposition

\square Coloring of rest of Europe only depends on France

- First 3 solutions equivalent for rest of problem
- 3rd solution has lowest number of colors: preferred
- 4th solution is not equivalent for rest of problem
- Only \#colors non-equivalent solutions exist
\qquad Does there exist (polynomial-time) algorithms that use this information?

Independent Set on trees

- Repeatedly
- Select a (all) leaf(s) of the tree in IS
- Remove it (them) and its (their) neighbors

Weighted Independent Set on trees

- Root tree at arbitrary vertex, $\mathrm{T}(\mathrm{v})$ subtree rooted at v
- $A(v)=$ max weighted IS in T(v)
- $B(v)=$ max weighted IS in $T(v)$ not containing v
For leafs v :

Beyond trees: series-parallel graphs

Parallel composition

- SP-tree: binary tree representing parallel and series composition of series-parallel graph
- leafs ~ edges
- S-nodes for series
- P-nodes for parallel

- Subtrees correspond to SP-graphs

Weighted Independent Set on series-parallel graphs

- (G,s,t) defines SP-graph, G(i) SP-graph for subtree rooted at i
- $A A(i)=\max$ WIS containing both s and t
$A B(i)=$ max WIS containing s but not t
$B A(i)=$ max WIS containing t but not s
$\mathrm{BB}(\mathrm{i})=$ max WIS containing neither s nor t
- Leafs: $A A(i)=-\infty, A B(i)=c(s), B A(i)=c(t), B B(i)=0$
- Internal S-node i with children j and $\mathrm{k}\left(\mathrm{s}^{\prime}\right.$ terminal between $\left.\mathrm{j}, \mathrm{k}\right)$:
$A A(i):=\max \left\{A A(j)+A A(k)-c\left(s^{\prime}\right), A B(j)+B A(k)\right\}$
$A B(i):=\max \left\{A A(j)+A B(k)-c\left(s^{\prime}\right), A B(j)+B B(k)\right\}, \ldots$
- Internal P -node i with children j and k :
$A A(i):=A A(j)+A A(k)-c(s)-c(t)$
$A B(i):=A B(j)+A B(k)-c(s), \ldots$
Generalization beyond series-parallel graphs?

Overview

- Introduction
- Tree Decompositions
- Computing Treewidth
- Using Treewidth

Tree Decomposition

- A tree decomposition:
- Tree with a vertex set associated with every node

- For all edges $\{\mathrm{v}, \mathrm{w}\}$: there is a set containing both v and w
- For every v: the nodes that contain v form a
 connected subtree

Treewidth

- Width of tree decomposition:

$$
\max _{i \in I}\left|X_{i}\right|-1
$$

maximum bag size - 1

- Treewidth of graph $G: \operatorname{tw}(G)=$ minimum width over all tree decompositions of G.

First observations

Each clique has to be part of at least one node

Clique number - 1 is a lower bound for treewidth
later more lower bounds ...

Graphs of bounded treewidth

- Graphs of bounded treewidth generalize both trees and series-parallel graphs
- Trees have treewidth 1 v.v.
- Series-parallel graphs have treewidth at most 2
- Treewidth measures the tree-likeness of graphs
- Concept introduced by Robertson \& Seymour in 1980s in their work on graph minor theorem

Algorithms using tree decompositions

- Step 1: Find tree decomposition of width bounded by some small k.
- Heuristics.
- $\mathrm{O}(\mathrm{f}(k) n)$ in theory.
- Fast $\mathrm{O}(n)$ algorithms for $k=2, k=3$.
- By construction, e.g., for trees, series-parallel-graphs.
- Step 2: Use dynamic programming, bottom-up on the tree.
- Root tree (I,F)
- Let $Y_{i}=\cup X_{i}$ over all descendants of $i \in I$
- Compute optimal solution in $G\left[Y_{i}\right]$ for each set $S \subseteq X_{i}$, based on the solutions for the children

Weighted Independent Set
 on graphs with treewidth \mathbf{k}

- For node i in tree decomposition, $S \subseteq \mathrm{X}_{i}$ write
- $\mathrm{R}(i, S)=$ maximum weight of $\mathrm{IS} S$ of $\mathrm{G}\left[Y_{i}\right]$ with $S \cap X_{i}=S,-\infty$ if such S does not exist
- Compute for each node i, a table with all values $\mathrm{R}(i, \ldots)$.
- Each such table can be computed in $\mathrm{O}\left(2^{k}\right)$ time when treewidth at most k.
- Gives $\mathrm{O}(n)$ algorithm when treewidth is (small) constant.
\square Many problems can be solved in polynomial time given a graph of bounded treewidth

Treewidth results

- Arnborg, Lagergren and Seese (1991), based upon the work of Courcelle (1990), showed that many NP-complete problems modeled on graphs with bounded branchwidth or treewidth can be solved in polynomial time using a branch decomposition or tree decomposition of the graph.
- NP-complete problems modeled on graphs:
- Traveling Salesman Problem
- Disjoint Paths Problem
- Maximum Planar Subgraph
- General Minor Containment
- (Partial) Constraint Satisfaction Problems

Branchwidth, Treewidth, Pathwidth

> Robertson and Seymour [106]: For a graph $G=(V, E)$, $\max \{\operatorname{bw}(\mathrm{G}), 2\} \leq \operatorname{tw}(\mathrm{G})+1 \leq \max \{\lfloor 3 / 2 \mathrm{bw}(\mathrm{G})\rfloor, 2\}$

Graphs with bounded treewidth have bounded branchwidth and vice versa
\square Given a branch decomposition, we can construct a tree decomposition with TD-width at most 3/2 times the BD-width

Pathwidth: T is restricted to be a path; $\mathrm{tw}(\mathrm{G}) \leq \mathrm{pw}(\mathrm{G})$

Trees do not have bounded pathwidth

Overview

- Introduction
- Tree Decompositions
- Computing Treewidth
- Using Treewidth

Computing Treewidth in Theory

TREEWIDTH:

Given $\mathrm{k} \geq 0$ and G a graph, is the treewidth of $\mathrm{G} \leq \mathrm{k}$?

\square Linear time algorithm for TREEWIDTH if k not part of the input | Bodlaender [25] |
| :---: |

- Exponential in k
- Not practical, even for k as small as 4

Several exponential time algorithms

- O(2^{n} poly(n)) time

Arnborg et al.[13]

- O($1.9601^{\text {n }}$ poly(n)) time
- O(2.9512^{n} poly(n)) time, O(poly(n)) space

Fomin et al.[57]
[ESA2006]

- poly(n) denotes a polynomial in n

Treewidth Upper bounds
 Computing Treewidth in Practice

Reconsider our first observation:

Each (maximal) clique has to be part of at least one node

Simplicial vertex:

A vertex is simplicial if all its neighbors are mutually adjacent

A simplicial vertex has to occur in only one TD-node

A first algorithm:

Assumption: G has a simplicial vertex, and after ist removal there is again and again a simplicial vertex

Repeatedly remove a simplicial vertex of $G: \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$
For $\mathrm{i}=\mathrm{n}$ down to 1 do
Construct a TD-node with v_{i} and all its neighbors in $G\left[v_{i}, \ldots, v_{n}\right]$
Attach node to a node containing all neighbors of v_{i} in $G\left[v_{i}, \ldots, v_{n}\right]$
Return tree decomposition

Width of returned TD equals maximum clique minus 1

Example

There does not always exist a simplicial vertex in general graphs!

If the assumption holds:

Width of returned TD equals maximum clique minus 1
Tree Decompoisition is optimal !!!
Which graphs satisfy the assumption ?

Perfect Elimination Scheme $\sigma=\left[\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right]$:

An ordering of the vertices such that for all i, v_{i} is a simplicial vertex of the induced graph $\mathrm{G}\left[\mathrm{v}_{\mathrm{i}}, \ldots, \mathrm{v}_{\mathrm{n}}\right]$

Chordal graph:

Every cycle of size at least 4 contains a chord

G is chordal iff there exists a perfect elimination scheme [59,64]

Optimal algorithm for chordal graphs!

Chordalization Algorithms

Find chordalization of G with small maximum clique size

- Adapt algorithms to test if a graph is chordal
- Algorithms for related MIN-FILL-IN problem

Dirac, 1961: Every non-complete triangulated graph has two nonadjacent simplicial vertices

Without loss of generality an arbitrary vertex can be put at the end of the elimination scheme

Linear time algorithms to test graph chordality:

- Lexicographic Breadth First Search (LEX_M \& LEX_P)
- Rose, Tarjan \& Lueker [111]
- Maximum Cardinality Search (MCS \& MCS_M)
- Tarjan \& Yannakakis [120], Heggernes et al. [84]

Maximum Cardinality Search

- MCS
- Repeatedly select vertex with largest number of labeled neighbors

Step 0: [.,.,.,.,.]
Step 1: [.,.,.,.,a]
Step 2: $[, \ldots, \ldots, \mathrm{b}, \mathrm{a}]$
Step 3: [.,.,c,b,a]
Step 4: [., d, c, b, a]
Step 5: [e,d,c,b,a]

Minimum Fill-In problem

MINIMUM FILL-IN:

$\min \{|F|:(V, E+F)$ is chordal $\}$
\square Computing MINIMUM FILL-IN is NP-hard
Heuristics:

- Greedy Fill-In
- repeatedly select vertex that introduces least number of edges to be simplicial
- remove vertex, add fill-in edges
- Minimum Degree Fill-In
- repeatedly select vertex with smallest degree
- remove vertex, add fill-in edges

Treewidth Upper bounds

Further algorithms

\rightarrow Minimum separating set heuristic [83]
\rightarrow Sparse Fill-In [unpublished; work in progress]

- Combination of Greedy and Minimum Degree Fill-In algorithms
\rightarrow Metaheuristics
- Tabu Search [45]
- Simulated Annealing [79]
- Genetic algorithm [92]
- Minimal Chordalization
- Turns chordalization into a minimal one

Two types of preprocessing

- Reduction rules (Simplification) [39]
- Rules that change G into a smaller `equivalent' graph
- Maintains a lower bound variable for treewidth low
- Safe separators (Divide and Conquer) [32]
- Splits the graph into two or more smaller parts with help of a separator that is made to a clique

Reduction rules

- Uses and generalizes ideas and rules from algorithm to recognize graphs of treewidth ≤ 3 from Arnborg and Proskurowski
- Example: Series rule: remove a vertex of degree 2 and connect its neighbors

- Safe for graphs of treewidth ≥ 2

Type of rules

- Variable: Iow (integer, lower bound on treewidth)
- Graph G
- Invariant: value of max(low, treewidth(G))
- Rules
- Locally rewrite G to a graph with fewer vertices
- Possibly update or check low
- We say a rule is safe, when it maintains the invariant.
- Use only safe rules.

Rule 1: Simplicial rule

- Let v be a simplicial vertex in G
- Remove v.

Simplicial = Neighbors form a clique

- Set low := max (low, degree(v))

- Simplicial rule is safe.
- Special cases: islet rule (singletons), twig rule (degree($(v)=1)$

Rule 2: Almost Simplicial rule

- Let v be a almost simplicial vertex in G and $/ o w \geq$ degree (v)
- Remove $v_{\text {, }}$

> Almost Simplicial = Neighbors except one form a clique

- turn neighbors into clique

- Almost Simplicial rule is safe.

Example low = 3

Increasing low further

Further rules: buddy/buddies rule, (extended) cube rule

Arnborg and Proskurowski [12]:

- $\mathrm{tw}(\mathrm{G})=1$ if and only if G is reduced to the empty graph by islet rule (vertices of degree 0) and twig rule (vertices of degree 1)
- $\operatorname{tw}(\mathrm{G})=2$ if and only if G is reduced to the empty graph by islet, twig, and series rule (vertices of degree 2)
- $\mathrm{tw}(\mathrm{G})=3$ if and only if G is reduced to the empty graph by islet, twig, series, triangle, buddy, and cube rule

Low can be increased to 2,3 , and 4 respectively if these rules cannot be applied anymore and graph is not empty yet.

Results for probabilistic networks

	original		preprocesed					
instance	$\mid \mathbf{V \|}$	\|E		\|V		\|E		Iow
alarm	37	65	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$			
barley	48	126	26	78	4			
boblo	221	328	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$			
diabetes	413	819	116	276	4			
link	724	1738	308	1158	4			
mildew	35	80	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$			
munin1	189	366	66	188	4			
munin2	1003	1662	165	451	4			
munin3	1044	1745	96	313	4			
munin4	1041	1843	215	642	4			
munin-kgo	1066	1730	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{5}$			

	original		preprocessed		
instance	$\|\mathbf{V \|}\|$	$\|\mathbf{E}\|$	$\|\mathbf{V}\|$	$\|\mathbf{E}\|$	Iow
oesoca+	67	208	14	75	9
oesoca	39	67	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$
oesoca42	42	72	$\mathbf{0}$	$\mathbf{0}$	3
oow-bas	27	54	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$
oow-solo	40	87	27	63	4
oow-trad	33	72	23	54	4
pignet2	3032	7264	1002	3730	4
pigs	441	806	48	137	4
ship-ship	50	114	24	65	4
vsd	38	62	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$
water	32	123	22	96	5
wilson	21	27	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$

\rightarrow Some cases could be solved with preprocessing to optimality
\rightarrow Often substantial reductions obtained
\rightarrow Time needed for preprocessing is small (never more than a few seconds)

Graph separators

- $S \subset V$ is a separator of G if $G-S$ has more than one connected component
- S is a minimal separator, if S is a separator and S does not contain another separator as proper subset

Safe separator

S is safe for treewidth, or a safe separator if and only if the treewidth of G equals the maximum over the treewidth of all graphs obtained by

- Taking a connected component W of $G-S$
- Take the graph, induced by $W \cup S$
- Make S into a clique in that graph

Using safe separators

- Splitting the graph for divide and conquer preprocessing
- Until no safe separators can be found
- Slower but more powerful compared to reduction
- Most or all reduction rules can be obtained as special cases of the use of safe separators
- Look for sufficient conditions for separators to be safe

Lemma 1

Let S be a separator in G. The treewidth of G is at most the maximum over all connected components W of G of the treewidth of $G[W \cup S]+\operatorname{clique}(S)$

Lemma 2

Let S be a separator. If for all components W of $G-S, G$ [$W \cup S$] contains a clique on S as a minor, then S is safe.

\rightarrow Clique separators are safe

\rightarrow Separators of size 0 and 1 are safe

Safeness of
 minimal almost clique separators

S is almost clique when $S-v$ is a clique for some vertex v

- If one component is contracted to the red vertex, the separator turns into a clique: minimal almost clique separators are safe!
\rightarrow Minimal Separators of size 2 are safe
\rightarrow `Almost all' minimal separators of size 3 are safe - only 3 independent vertices can be non-safe
- Minimal separators of size 3 that split off at least two vertices are safe

A safe separator in Europe

Results for probabilistic networks

	size		separators			output					
instance	\|V		\|E		clique	almostclique	size 3	\# graphs	\# cliques	\# To Do	low
barley-pp	26	78	0	7	0	8	7	1	5		
diabetes-pp	116	276	0	85	0	86	84	2	4		
link-pp	308	1158	0	0	0	1	0	1	4		
munin1-pp	66	188	0	2	0	3	2	1	4		
munin2-pp	165	451	6	13	4	24	12	12	4		
munin3-pp	96	313	2	2	2	7	4	3	4		
munin4-pp	215	642	3	4	0	8	2	6	4		
oesoca+-pp	14	75	0	0	0	1	0	1	9		
oow-trad-pp	23	54	0	0	1	2	1	1	4		
oow-solo-pp	27	63	0	0	1	2	0	2	4		
pathfinder-pp	12	43	0	5	0	6	6	0	6		
pignet2-pp	1002	3730	0	0	0	1	0	1	4		
pigs-pp	48	137	0	1	0	2	1	1	5		
ship-ship-pp	24	65	0	0	0	1	0	1	4		
water-pp	22	96	0	1	0	2	1	1	6		

Why Lower Bounds?

- Benchmark quality of constructed tree decompositions (upper bounds)
- Speed up of branch \& bound methods (e.g. Gogate \& Dechter [63])
- Indicates expected performance of dynamic programming algorithms

Very dense areas in graphs contribute to treewidth
\square Grid structures contribute to treewidth

Induced subgraphs

Theorem The treewidth of a graph can not increase by taking subgraphs

H subgraph of G
$\left.\begin{array}{l}t w(H) \leq t w(G) \\ L B(G) \leq t w(G)\end{array}\right\} \quad L B(H) \leq t w(G)$

Corollary If the $L B$ can increase by taking subgraphs, an improved lower bound can be found by taking the maximum over all subgraphs:

$$
\max _{H \subseteq G} L B(H) \leq t w(G)
$$

Foundations II

Theorem The treewidth of a graph can not increase by taking minors
$\left.\begin{array}{l}t w(H) \leq t w(G) \\ L B(G) \leq t w(G)\end{array}\right\} \quad L B(H) \leq t w(G)$

Corollary If the $\angle B$ can increase by taking minors, an improved lower bound can be found by taking the maximum over all minors:

$$
\max _{H \prec G} L B(H) \leq t w(G)
$$

Degree-Based Lower Bounds I

Lemma The minimum degree of a graph is a lower bound for treewidth

$$
\delta(G) \leq t w(G)
$$

Corollary The degeneracy of a graph is a lower bound for treewidth

$$
\delta D(G)=\max _{H \subseteq G} \delta(H) \leq t w(G)
$$

Corollary The contraction degeneracy of a graph is a lower bound for treewidth

$$
\delta C(G)=\max _{H \prec G} \delta(H) \leq t w(G)
$$

Lower bounds by example

Lower bounds for graph queen15-15

Brambles

- $\mathrm{tw}(\mathrm{n} \times \mathrm{n}$ grid) $=\mathrm{n}$
- Search for $\mathrm{n} \times \mathrm{n}$ grids as minor of G
- Two different algorithms
- General graphs:

BFS + connectivity closure; max disjoint paths

- Planar graphs:

Partition outer face; max disjoint paths in north-south, west-east

- Robertson, Seymour, Thomas '94: every planar graph of treewidth k has a ck x ck grid as minor

2nd algorithm gives a constant approximation for treewidth on planar graphs!

Exact methods

Branch-and-Bound algorithm Gogate and Dechter [63]
$\mathrm{O}\left(2^{\mathrm{k}+2}\right)$ algorithm
Shoikhet and Geiger [117]
$\square \mathrm{O}\left(2^{\mathrm{n}} \operatorname{poly}(\mathrm{n})\right)$ time+memory algorithm [ESA 2006]
Experiments with integer programming formulation (B\&C)

Let $\mathbf{H}(G)$ be the set of all chordalizations of G.

$$
t w(G)=\min _{H \in \mathrm{H}(G)} \omega(H)-1
$$

Select best H and compute maximum clique size!

Chordalization polytope

Chordalization polytope:

Convex hull of all chordalizations H of G.

$$
y_{v w}= \begin{cases}1 & \text { if } \mathrm{vw} \in \mathrm{E} \cup F \text { and } \pi(\mathrm{v})<\pi(\mathrm{w}) \\ 0 & \text { otherwise }\end{cases}
$$

Existence of edges

$$
\begin{array}{ll}
y_{v w}+y_{w v}=1 & v w \in E \\
y_{v w}+y_{w v} \leq 1 & v w \notin E
\end{array}
$$

Simplicity of vertices

$$
y_{u v}+y_{u w} \leq 1+y_{v w}+y_{w v} \quad u, v, w \in V
$$

Chordalization polytope

Ordering of vertices

$$
\begin{gathered}
\left(\sum_{i=1}^{|C|-1} y_{\rho(i) \rho(i+1)}\right)+y_{\rho(|C|) \rho(1)} \leq|C|-1 \quad \forall C \subseteq V,|C| \geq 3, \rho:\{1, \ldots,|C|\} \rightarrow C \\
\omega(H)=\max _{i=1, \ldots, n}\left|N_{H\left[v_{i}, \ldots, v_{n}\right]}\left(v_{i}\right)\right|+1 \\
t w(H)=\omega(H)-1=\max _{i=1, \ldots, n}\left|N_{H\left[v_{i}, \ldots, v_{n}\right]}\left(v_{i}\right)\right|
\end{gathered}
$$

Treewidth

$$
\min \left\{\max _{v \in V} \sum_{w \neq v} y_{v w}: y \in C\right\} \quad \text { Chordalization polytope }
$$

Objectives

```
Treewidth \(\min z\)
s.t. \(\quad z \geq \sum_{w \neq v} y_{v w} \quad v \in V\)
Fill-in
\(\min \quad f\)
s.t. \(f=\sum_{v w \notin E}\left(y_{v w}+y_{w v}\right)\)
```

Weighted Treewidth
min w
s.t. $\quad w \geq \log \left(c_{v}\right)+\sum_{w \neq v} \log \left(c_{w}\right) y_{v w} \quad v \in V$
$y \in C \quad$ Chordalization polytope

Separation of ordering inequalities

$\left(\sum_{i=1}^{|C|-1} y_{\rho(i) \rho(i+1)}\right)+y_{\rho(|C|) \rho(1)} \leq|C|-1 \quad \forall C \subseteq V,|C| \geq 3, \rho:\{1, \ldots,|C|\} \rightarrow C$

Implicit consideration by separation

$$
\begin{gathered}
\left(\sum_{i=1}^{|C|-1}\left(y_{\rho(i) \rho(i+1)}-1\right)\right)+\left(y_{\rho(|C|) \rho(1)}-1\right) \leq-1 \\
x_{v w}:=1-y_{v w} \sum \quad\left(\sum_{i=1}^{|C|-1} x_{\rho(i) \rho(i+1)}\right)+x_{\rho(|C|) \rho(1)} \geq 1
\end{gathered}
$$

Separation by shortest path computation in auxiliary digraph

Cliques

\square Ordering represents a chordal graph
Dirac (1961): Every non-complete chordal graph has two nonadjacent simplicial vertices

Without loss of generality, we can put an arbitrary vertex at the end of the ordering

Tarjan \& Yannakakis (1984): Ordering can be build from the back, selecting recursively vertex with highest number of ordered neighbors

Without loss of generality, we can put a (maximal/maximum) clique in G at the end of the ordering

Petersen graph

Objective	Strategy	CPU time (s)	B\&C nodes	Gap (\%)
Treewidth	none	449.18	278018	0
Treewidth	maximum clique	0.43	57	0
Fill-in	none	>3600	>886765	41.18
Fill-in	maximum clique	1.27	379	0

Maximum clique breaks symmetries(?); simplifies computation

Fill-in more difficult than treewidth???

Instances

\square Randomly generated partial-k-trees (Shoiket\&Geiger,1998)

- Generate k-tree
- Randomly remove p\% of the edges
\rightarrow treewidth at most k
$\rightarrow \mathrm{n}=100, \mathrm{k}=10, \mathrm{p}=30 / 40 / 50$
\square Instances from frequency assignment, probabilistic networks, ...

Computational framework

SCIP (http://scip.zib.de/) with CPLEX 10.0 as LP solver

Results partial k-trees: treewidth

Treewidth

$\square 30 \%$: 4 out of 10 solved within 1 hour CPU time 40\%: 1 out of 10 solved within 1 hour CPU time

- LP $=$ end of root

Very good lower bound, difficult to find optimal solution

Results realistic instances

minors of link-pp selected; $\omega(\mathrm{G})=9, \operatorname{tw}(\mathrm{G})=13$

				treewidth		fill-in		Combined	
instance	$\|\mathrm{V}\|$	$\|\mathrm{E}\|$	$\mathrm{fi}(\mathrm{G})$	$\mathrm{CPU}(\mathrm{s})$	\#nodes	$\mathrm{CPU}(\mathrm{s})$	\#nodes	$\mathrm{CPU}(\mathrm{s})$	\#nodes
link-pp-minor-020	20	125	29	23.42	9680	0.86	2	4.88	1307
link-pp-minor-021	21	130	35	29.91	7238	1.29	9	13.15	2767
link-pp-minor-022	22	137	38	37.82	5858	1.33	1	7.88	349
link-pp-minor-023	23	144	40	128.21	16131	2.25	2	15.22	986
link-pp-minor-024	24	151	43	399.61	27125	1.93	2	103.50	8568
link-pp-minor-025	25	156	48	1875.24	94369	3.61	3	133.67	6861

Overview

- Introduction
- Tree Decompositions
- Computing Treewidth
- Using Treewidth

Minimum Interference FAP

- Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Vertices correspond to bi-directional connections
- Edges indicate interference between two connections
- For every vertex v, set of frequency pairs $D(v)$ is specified
- Interference quantified by edge penalties $p(v, f, w, g)$
- Preferences for frequencies quantified by penalties $q(v, f)$
- Objective: Select for each vertex exactly one frequency, such that the total penalty is minimized.

Dynamic Programming Algorithm

Contract vertices according to tree-decomposition.

Dynamic Programming Algorithm

Contract vertices according to tree-decomposition.

$$
D_{a b}=D_{a} \times D_{b}
$$

Dynamic Programming Algorithm

Contract vertices according to tree-decomposition.
$D_{a b d} \subset D_{a b} \times D_{d} \begin{aligned} & \text { vertex } b \text { is not connected } \\ & \text { with rest of the graph. }\end{aligned}$

Does it work in practice ?

- Only with (pre)processing techniques
- Graph reduction
- Vertices with degree 1 can be removed
- Vertices with degree 2 can be removed
- Domain reduction
- Upper bounding
- Dominance of domain elements

Computational Results

subsets during dynamic programming algorithm
-computed -theoretical

$\underbrace{84}$	esult	T	ee	eco	mpositio	$0 \cap$	TD-based Algorithm
	Instance	LP	QP	CSP	Tree Decomp Preprocessing	osition DP	Upper Bound
	CELAR06	5	-	3389	0	3389	3389
	CELAR07	5	-	-	0	-	343592
	CELAR08	-	-	-	0	-	262
	CELAR09	-	14969	-	11391	15571	15571
	CELAR10	-	31204	-	31516	Solved	31516
	GRAPH05	-	-	-	221	Solved	221
	GRAPH06	-	-	-	4112	4123	4123
	GRAPH07	-	-	-	4324	Solved	4324
	GRAPH11	-	-	-	2553	,	3080
	GRAPH12	-	-	-	11496	11827	11827
	GRAPH13	-	-	-	8676	-	10110

Further results

- CALMA benchmarks:
- For 7 of the 11 instances optimal solution found
- For the other 4 instances lower bounds in the range 57.3% to 98.2% of the upper bound
- Tree Decomposition can be used to solve optimization problems in practice
- Application to other optimization problems

Open problems

- Is TREEWIDTH polynomial for planar graphs ?
- Is TREEWIDTH NP-hard for planar graphs ?
- Does there exist (practical) integer programming formulations for computing treewidth?
- How good can the contraction degeneracy be in general graphs (as lower bound for $\mathrm{tw}(\mathrm{G})$) ?
- Do other heuristics than MCS have a lowerbounding counter-part ?

Open problems

Which optimization problems can be solved in practice with Graph Decomposition-based algorithms

Further reading

- Branch and Tree Decomposition Techniques for Discrete Optimization, INFORMS TutORials in Operations Research Series, Chapter 1, 2005 (with Illya Hicks, E. Kolotoğlu)
- Combinatorial Optimisation on Graphs of bounded Treewidth, The Computer Journal, 2006, to appear (with H. Bodlaender)
- Solving Partial Constraint Satisfaction Problems with Tree Decomposition, Networks 40, 2002 (with S. van Hoesel, A. Kolen)
- Lower Bounds for Minimum Interference Frequency Assignment Problems, Ricerca Operativa 30, 2000 (with S. van Hoesel, A. Kolen)
- Pre-processing rules for triangulation of probabilistic networks, Computational Intelligence 21, 2005 (with H. Bodlaender, F. van den Eijkhof)
- Safe Separators for Treewidth, Discrete Mathematics 306, 2006 (with H. Bodlaender)
- Contraction and Treewidth Lower Bounds, Journal of Graph Algorithms and Applications 10/ ESA 2004, LNCS 3221 (with H. Bodlaender, T. Wolle)
- Treewidth Lower Bounds with Brambles, ESA 2005, LNCS 3669 (with H. Bodlaender, A. Grigoriev)
- On Exact Algorithms for Treewidth, ESA 2006, LNCS 4168 (with H. Bodlaender, F. Fomin, D. Kratsch, D. Thilikos)
- On the Chordalization Polytope and Treewidth, in preparation
- http://fap.zib.de
http://www.zib.de/koster/ http://www.cs.uu.nl/people/hansb/treewidthLIB/ koster@zib.de

