
1

Zuse Institute Berlin (ZIB), Germany 
http://www.zib.de/koster/

Arie Koster
koster@zib.de

Decomposition of Graphs: 
Upper bounds, Lower bounds, and 

Exact methods to compute Treewidth

SOFT’06

25 September 2006, Nantes

2

Arie Koster

Overview

� Introduction

� Tree Decompositions

� Computing Treewidth

� Using Treewidth



2

3

Arie Koster

Back in 1997 …

� Minimum Interference Frequency Assignment

� Good upper bounds, 

neither lower bounds nor optimal solutions

� Integer linear programming does not work

�What to do next?

4

Arie Koster

Properties of 2G
wireless communication

Transmitter Receiver

emits electromagnetic 
oscillations at a frequency

detects 
oscillations

Quality of the received signal:
Signal-to-noise ratio

Poor signal-to-noise ratio: 
interference of the signal

Objective: Frequency plan without interference or, second 
best, with minimum interference



3

5

Arie Koster

Interference

Level of interference depends on

� distance between transmitters, geographical position, 

� power of the signals, direction in which signals are transmitted,

� weather conditions

� assigned frequencies

� co-channel interference

� adjacent-channel interference

Interference is measured between pairs of transmitters

6

Arie Koster

Separation

Whole spectrum is not allowed at every 
location:

� government regulations,

� agreements with operators in neighboring 
regions, 

� requirements military forces, etc.

Site

Blocked channels

Frequencies assigned to the same location 
(site) have to be separated



4

7

Arie Koster

Modeling MI-FAP

� Interference graph

� Vertices represent transmitters; 
Domain of assignable frequencies

� Edges represent constraints/interference
Matrix with penalties for combination of frequenciesg

Partial Constraint Satisfaction Problem (with binary relations)

More frequency assignment: http://fap.zib.de

8

Arie Koster

Related problems
- Vertex Coloring

Integer Programming suffers from symmetry;
linear relaxation not strong at all



5

9

Arie Koster

What to do next?

� Graph decomposition:

Coloring of Western-Europe does not depend on Eastern-Europe, 
only on Central-Europe

Coloring of Iberian peninsula only depends on color of France

10

Arie Koster

Graph Decomposition

� First 3 solutions equivalent for rest of problem

� 3rd solution has lowest number of colors: preferred

� 4th solution is not equivalent for rest of problem

� Only #colors non-equivalent solutions exist

Coloring of rest of Europe only depends on France

Does there exist (polynomial-time) algorithms that use this 
information?



6

11

Arie Koster

Independent Set
on trees

� Repeatedly 

� Select a (all) leaf(s) of the tree in IS

� Remove it (them) and its (their) neighbors

12

Arie Koster

3
5 

2

3
9 

Weighted Independent Set 
on trees

� Root tree at arbitrary vertex, T(v) subtree rooted at v

� A(v) = max weighted IS in T(v)

� B(v) = max weighted IS in T(v) not containing v

For leafs v:

� A(v)=c(v); B(v)=0

For v with children x1,…,xk

� B(v)=A(x1)+…+A(xk)

� A(v)=max{c(v)+B(x1)+…+B(xk),B(v)}

B(France)=3+2+5, A(France)=9+0+0+5



7

13

Arie Koster

Beyond trees: 
series-parallel graphs

� SP-tree: binary tree representing parallel and 

series composition of series-parallel graph

� leafs ~ edges

� S-nodes for series

� P-nodes for parallel

� Subtrees correspond to SP-graphs

Parallel composition Series composition

14

Arie Koster

Weighted Independent Set
on series-parallel graphs

� (G,s,t) defines SP-graph, G(i) SP-graph for subtree rooted at i

� AA(i) = max WIS containing both s and t

AB(i) = max WIS containing s but not t

BA(i) = max WIS containing t but not s

BB(i) = max WIS containing neither s nor t

� Leafs: AA(i)=-∞, AB(i)=c(s), BA(i)=c(t), BB(i)=0

� Internal S-node i with children j and k (s’ terminal between j,k):

AA(i) := max{ AA(j)+AA(k)-c(s’), AB(j)+BA(k) }

AB(i) := max{ AA(j)+AB(k)-c(s’), AB(j)+BB(k) }, …

� Internal P-node i with children j and k:

AA(i) := AA(j)+AA(k)-c(s)-c(t)

AB(i) := AB(j)+AB(k)-c(s), …

Generalization beyond series-parallel graphs?



8

15

Arie Koster

Overview

� Introduction

� Tree Decompositions

� Computing Treewidth

� Using Treewidth

16

Arie Koster

b c c

cd
e

hf fa ga a g

b c

d e
f

ha g

Tree Decomposition

� A tree decomposition:

� Tree with a vertex set 

associated with every 

node

� For all edges {v,w}: 

there is a set 

containing both v and 

w

� For every v: the nodes 

that contain v form a 

connected subtree

Definition



9

17

Arie Koster

b c c

cd
e

hf fa ga a g

b c

d e
f

ha g

Tree Decomposition

� A tree decomposition:

� Tree with a vertex set 

associated with every 

node

� For all edges {v,w}: 

there is a set 

containing both v and 

w

� For every v: the nodes 

that contain v form a 

connected subtree

Definition

18

Arie Koster

b c

d e
f

ha g

Tree Decomposition

� A tree decomposition:

� Tree with a vertex set 

associated with every 

node

� For all edges {v,w}: 

there is a set 

containing both v and 

w

� For every v: the nodes 

that contain v form a 

connected subtree

b c c

cd
e

hf fa ga a g

Definition



10

19

Arie Koster

Treewidth

� Width of tree decomposition:

� Treewidth of graph G: tw(G)= minimum 

width over all tree decompositions of G.

a b c
d e f
g h

1||max −∈ iIi X

b c c

cd
e

hf fa ga a g

b c

d e
f

ha g

maximum bag size - 1

Definition

20

Arie Koster

First observations

Each clique has to be part of at least one node

Clique number - 1 is a lower bound for treewidth

b c

d e
f

ha g
b c c

cd
e

hf fa ga a g

later more lower bounds ...

Trees have treewidth 1



11

21

Arie Koster

Graphs of bounded treewidth

� Graphs of bounded treewidth generalize both 

trees and series-parallel graphs

� Trees have treewidth 1 v.v.

� Series-parallel graphs have treewidth at most 2

� Treewidth measures the tree-likeness of graphs

� Concept introduced by Robertson & Seymour in 

1980s in their work on graph minor theorem

Definition

22

Arie Koster

Algorithms using tree 
decompositions

� Step 1: Find tree decomposition of width bounded by some small k.

� Heuristics.

� O(f(k)n) in theory.

� Fast O(n) algorithms for k=2, k=3.

� By construction, e.g., for trees, series-parallel-graphs.

� Step 2: Use dynamic programming, bottom-up on the tree.

� Root tree (I,F)

� Let Yi=∪∪∪∪Xi over all descendants of i∈I

� Compute optimal solution in G[Yi] for each set S ⊆ Xi, based on 

the solutions for the children

TD-based Algorithms



12

23

Arie Koster

Weighted Independent Set 
on graphs with treewidth k

� For node i in tree decomposition, S ⊆ Xi write

� R(i, S) = maximum weight of IS S of G[Yi] with S ∩ Xi = S, – ∞ if 

such S does not exist

� Compute for each node i, a table with all values R(i, …).

� Each such table can be computed in O(2k) time when 

treewidth at most k.

� Gives O(n) algorithm when treewidth is (small) constant.

Many problems can be solved in polynomial time given a graph of 

bounded treewidth

TD-based Algorithms

24

Arie Koster

Treewidth results

� Arnborg, Lagergren and Seese (1991), based upon the work of 

Courcelle (1990), showed that many NP-complete problems 

modeled on graphs with bounded branchwidth or treewidth can be 

solved in polynomial time using a branch decomposition or tree 

decomposition of the graph.

� NP-complete problems modeled on graphs:

� Traveling Salesman Problem

� Disjoint Paths Problem

� Maximum Planar Subgraph

� General Minor Containment

� (Partial) Constraint Satisfaction Problems

TD-based Algorithms



13

25

Arie Koster

Branchwidth, Treewidth, Pathwidth

Robertson and Seymour [106]: For a graph G =(V,E ), 
max{ bw(G), 2 } ≤ tw(G) + 1 ≤ max{ 3/2 bw(G), 2 }

Graphs with bounded treewidth have bounded branchwidth and 
vice versa

Pathwidth: T is restricted to be a path; tw(G) ≤≤≤≤ pw(G)

Trees do not have bounded pathwidth

Given a branch decomposition, we can construct a tree 
decomposition with TD-width at most 3/2 times the BD-width

26

Arie Koster

Overview

� Introduction

� Tree Decompositions

� Computing Treewidth

� Using Treewidth



14

27

Arie Koster

Computing Treewidth in Theory

Computing TREEWIDTH is NP-hard Arnborg et al.[13]

Computing treewidth

Linear time algorithm for TREEWIDTH if k not part of the input
Bodlaender [25]

TREEWIDTH:
Given k ≥ 0 and G a graph, is the treewidth of G ≤ k ?

� Exponential in k
� Not practical, even for k as small as 4

Several exponential time algorithms

� O( 2n poly(n) ) time Arnborg et al.[13]
� O( 1.9601n poly(n) ) time Fomin et al.[57]
� O( 2.9512n poly(n) ) time, O(poly(n)) space [ESA2006]
� poly(n) denotes a polynomial in n

References refer to INFORMS Tutorials 2005 chapter

28

Arie Koster

Computing Treewidth in Practice

Each (maximal) clique has to be part of at least one node

Simplicial vertex:
A vertex is simplicial if all its neighbors are mutually adjacent

A simplicial vertex is part of only one maximal clique

A simplicial vertex has to occur in only one TD-node

Treewidth Upper bounds

Reconsider our first observation:



15

29

Arie Koster

A first algorithm:

Assumption: G has a simplicial vertex, and after ist removal 
there is again and again a simplicial vertex

Return tree decomposition

Attach node to a node containing all neighbors of vi in G[vi,...,vn]

Construct a TD-node with vi and all its neighbors in G[vi,...,vn]

For i = n down to 1 do

Repeatedly remove a simplicial vertex of G: v1,...,vn

… …

Width of returned TD equals maximum clique minus 1

Treewidth Upper bounds

30

Arie Koster

Example

There does not always exist a simplicial vertex in general graphs!



16

31

Arie Koster

If the assumption holds:

Tree Decompoisition is optimal !!!

Which graphs satisfy the assumption ?

Perfect Elimination Scheme σ = [v1,...,vn]:
An ordering of the vertices such that for all i, vi is a simplicial
vertex of the induced graph G[vi,...,vn]

Chordal graph:
Every cycle of size at least 4 contains a chord

G is chordal iff there exists a perfect elimination scheme [59,64]

Width of returned TD equals maximum clique minus 1

Optimal algorithm for chordal graphs!

Treewidth Upper bounds

32

Arie Koster

Non-chordal graphs

What to do with non-chordal graphs ?

Gavril [59]: A graph G =(V,E ) is chordal if and only if there 
exists a tree T =(I,F ) such that one can associate with each 
vertex v ∈V a subtree Tv=(Iv,Fv ) of T, such that vw ∈E if and 
only if Iv ∩ Iw ≠ ∅. 

There exists a chordalization H H =(V,E ∪F ) of G with maximum 

clique size k+1 if and only if the treewidth of G is k.

b d f
i j

l

k
h

g

eca σ = [b,a,c,d,g,h,e,f,i,k,j,l]

Treewidth Upper bounds



17

33

Arie Koster

Chordalization Algorithms

Linear time algorithms to test graph chordality:

� Lexicographic Breadth First Search (LEX_M & LEX_P)

� Rose, Tarjan & Lueker [111]

� Maximum Cardinality Search (MCS & MCS_M)

� Tarjan & Yannakakis [120], Heggernes et al. [84]

Treewidth Upper bounds

Find chordalization of G with small maximum clique size

� Adapt algorithms to test if a graph is chordal

� Algorithms for related MIN-FILL-IN problem

Dirac, 1961: Every non-complete triangulated graph has two 
nonadjacent simplicial vertices

Without loss of generality an arbitrary vertex can be put at the

end of the elimination scheme

34

Arie Koster

Maximum Cardinality Search

� MCS

� Repeatedly select vertex with 

largest number of labeled 

neighbors b d

e

c

a

-0

-0-0

-0 -0

-0

-0-1

50 -1

-1

-141

50 -1

31

-241

50 -1

31

2241

50 -2

31

2241

50 12

Step 0: [.,.,.,.,.]

Step 1: [.,.,.,.,a]

Step 2: [.,.,.,b,a]

Step 3: [.,.,c,b,a]

Step 4: [.,d,c,b,a]

Step 5: [e,d,c,b,a]

Treewidth Upper bounds



18

35

Arie Koster

Minimum Fill-In problem

MINIMUM FILL-IN:
min{ |F| : (V,E+F) is chordal }

Computing MINIMUM FILL-IN is NP-hard

Heuristics:
� Greedy Fill-In

� repeatedly select vertex that introduces least number 
of edges to be simplicial

� remove vertex, add fill-in edges
� Minimum Degree Fill-In

� repeatedly select vertex with smallest degree
� remove vertex, add fill-in edges

Treewidth Upper bounds

36

Arie Koster

Further algorithms

�Minimum separating set heuristic [83]

�Sparse Fill-In [unpublished; work in progress]

� Combination of Greedy and Minimum Degree Fill-In algorithms

�Metaheuristics

� Tabu Search [45]

� Simulated Annealing [79]

� Genetic algorithm [92]

� Minimal Chordalization

� Turns chordalization into a minimal one

Treewidth Upper bounds



19

37

Arie Koster

Upper bounds by example

Upper bounds for pignet2-pp (1002 vertices, 3730 edges)

100

125

150

175

200

225

250

1 10 100 1000 10000 100000

SF
I

M
DF
I

M
DF
I+
M
C

GF
I

GF
I+
M
C

SF
I+
M
C

M
SV
S

M
CS
+
M
C

M
CS

LE
X-
P

LE
X-
MM

CS
-M

CPU time (s) →

U
p
p
e
r 
b
o
u
n
d

→

Treewidth Upper bounds

38

Arie Koster

Computing Treewidth

Steps so far are “as optimal as” possible!



20

39

Arie Koster

Two types of preprocessing

� Reduction rules (Simplification) [39]

� Rules that change G into a smaller `equivalent’ graph

� Maintains a lower bound variable for treewidth low

� Safe separators (Divide and Conquer) [32]

� Splits the graph into two or more smaller parts with 

help of a separator that is made to a clique

Treewidth preprocessing

40

Arie Koster

Reduction

� Safe rules that

� Make G smaller

� Maintain optimality…

� Use for preprocessing graphs when computing treewidth

Input Graph G 
Preprocessing

rules
Reduced Graph H

Compute
Treewidth 
for H

Tree decomposition
for H

Undo
preprocessing

Tree decomposition
for G

Compute
Treewidth 
for G

Treewidth preprocessing



21

41

Arie Koster

Reduction rules

� Uses and generalizes ideas and rules from algorithm to recognize

graphs of treewidth ≤ 3 from Arnborg and Proskurowski

� Example: Series rule: remove a vertex of degree 2 and connect its 

neighbors

� Safe for graphs of treewidth ≥ 2

v

Series rule

Original Graph Reduced Graph

Treewidth preprocessing

42

Arie Koster

ReduceReduce

Undo reductionsUndo reductions

a b c

d
e f

g

a b

e f

a b
e f

SolveSolve

g

e f

a b
e f

g
fe

cb

f

a b
e f

g
fe

b
fca b

e f

g
fe

b
fc

dc f

Example

Treewidth preprocessing



22

43

Arie Koster

� Variable: low (integer, lower bound on treewidth)

� Graph G

� Invariant: value of max(low, treewidth(G))

� Rules

� Locally rewrite G to a graph with fewer vertices

� Possibly update or check low

� We say a rule is safe, when it maintains the invariant.

� Use only safe rules.

Type of rules

Treewidth preprocessing

44

Arie Koster

Rule 1: Simplicial rule

� Let v be a simplicial vertex in G

� Remove v.

� Set low := max (low, degree(v))

� Simplicial rule is safe.

� Special cases: islet rule (singletons), twig rule (degree(v) = 1)

Simplicial =
Neighbors form a clique

Simplicial =
Neighbors form a clique

Simplicial rule

Original Graph Reduced Graph

Treewidth preprocessing



23

45

Arie Koster

Rule 2: Almost Simplicial rule

� Let v be a almost simplicial vertex 

in G and low ≥ degree(v)

� Remove v, 

� turn neighbors into clique

� Almost Simplicial rule is safe.

Almost Simplicial =
Neighbors except one 
form a clique

Almost Simplicial =
Neighbors except one 
form a clique

Almost Simplicial rule

Original Graph Reduced Graph

Treewidth preprocessing

46

Arie Koster

Example low = 3



24

47

Arie Koster

Increasing low further

Treewidth preprocessing

Further rules: buddy/buddies rule, (extended) cube rule

Arnborg and Proskurowski [12]:

� tw(G)=1 if and only if G is reduced to the empty graph by islet 

rule (vertices of degree 0) and twig rule (vertices of degree 1)

� tw(G)=2 if and only if G is reduced to the empty graph by islet, 
twig, and series rule (vertices of degree 2)

� tw(G)=3 if and only if G is reduced to the empty graph by islet, 

twig, series, triangle, buddy, and cube rule

Low can be increased to 2, 3, and 4 respectively if these rules 
cannot be applied anymore and graph is not empty yet.

48

Arie Koster

Results for probabilistic networks

instance |V| |E| |V| |E| low instance |V| |E| |V| |E| low

alarm 37 65 0 0 4 oesoca+ 67 208 14 75 9
barley 48 126 26 78 4 oesoca 39 67 0 0 3

boblo 221 328 0 0 3 oesoca42 42 72 0 0 3

diabetes 413 819 116 276 4 oow-bas 27 54 0 0 4

link 724 1738 308 1158 4 oow-solo 40 87 27 63 4
mildew 35 80 0 0 4 oow-trad 33 72 23 54 4
munin1 189 366 66 188 4 pignet2 3032 7264 1002 3730 4
munin2 1003 1662 165 451 4 pigs 441 806 48 137 4
munin3 1044 1745 96 313 4 ship-ship 50 114 24 65 4
munin4 1041 1843 215 642 4 vsd 38 62 0 0 4

munin-kgo 1066 1730 0 0 5 water 32 123 22 96 5
wilson 21 27 0 0 3

original preprocessedoriginal preprocessed

� Some cases could be solved with preprocessing to optimality

� Often substantial reductions obtained

� Time needed for preprocessing is small (never more than a few 

seconds)

Treewidth preprocessing



25

49

Arie Koster

Graph separators

� S ⊂V is a separator of G, if G -S has more than one connected 

component

� S is a minimal separator, if S is a separator and S does not contain 

another separator as proper subset

S

Treewidth preprocessing

50

Arie Koster

Safe separator

S is safe for treewidth, or a safe separator if and only if the treewidth 

of G equals the maximum over the treewidth of all graphs obtained by

� Taking a connected component W of G -S

� Take the graph, induced by W ∪S

� Make S into a clique in that graph

+

Original Graph Components

Treewidth preprocessing



26

51

Arie Koster

Using safe separators

� Splitting the graph for divide and conquer preprocessing

� Until no safe separators can be found

� Slower but more powerful compared to reduction

� Most or all reduction rules can be obtained as special cases of 

the use of safe separators

� Look for sufficient conditions for separators to be safe

Treewidth preprocessing

52

Arie Koster

Lemma 1 

Let S be a separator in G. The treewidth of G is at most the 
maximum over all connected components W of G of the treewidth of 
G [W ∪S ] + clique(S )

+

Treewidth preprocessing



27

53

Arie Koster

Lemma 2

�Clique separators are safe

�Separators of size 0 and 1 are safe

+

Contraction of 
bold edges

Treewidth preprocessing

Let S be a separator. If for all components W of G -S, G 
[W ∪S ] contains a clique on S as a minor, then S is safe.

54

Arie Koster

Safeness of 
minimal almost clique separators

� If one component is contracted to the red vertex, the separator 

turns into a clique: minimal almost clique separators are safe!

� Minimal Separators of size 2 are safe

� `Almost all’ minimal separators of size 3 are safe 

� only 3 independent vertices can be non-safe

� Minimal separators of size 3 that split off at least two vertices are 

safe

S is almost
clique when S -v
is a clique for 
some vertex v

S is almost
clique when S -v
is a clique for 
some vertex v

Treewidth preprocessing



28

55

Arie Koster

A safe separator in Europe …

56

Arie Koster

Results for probabilistic networks

instance |V| |E| clique
almost-
clique size 3 # graphs # cliques # To Do low

barley-pp 26 78 0 7 0 8 7 1 5
diabetes-pp 116 276 0 85 0 86 84 2 4
link-pp 308 1158 0 0 0 1 0 1 4
munin1-pp 66 188 0 2 0 3 2 1 4
munin2-pp 165 451 6 13 4 24 12 12 4
munin3-pp 96 313 2 2 2 7 4 3 4
munin4-pp 215 642 3 4 0 8 2 6 4
oesoca+-pp 14 75 0 0 0 1 0 1 9
oow-trad-pp 23 54 0 0 1 2 1 1 4
oow-solo-pp 27 63 0 0 1 2 0 2 4
pathfinder-pp 12 43 0 5 0 6 6 0 6
pignet2-pp 1002 3730 0 0 0 1 0 1 4
pigs-pp 48 137 0 1 0 2 1 1 5
ship-ship-pp 24 65 0 0 0 1 0 1 4
water-pp 22 96 0 1 0 2 1 1 6

size separators output

Treewidth preprocessing



29

57

Arie Koster

Why Lower Bounds?

� Benchmark quality of constructed tree decompositions (upper bounds)

� Speed up of branch & bound methods (e.g. Gogate & Dechter [63])

� Indicates expected performance of dynamic programming algorithms

Treewidth Lower Bounds

Very dense areas in graphs contribute to treewidth

Grid structures contribute to treewidth

tw(G)=min(n,m)

58

Arie Koster

Induced subgraphs

Theorem The treewidth of a graph can not increase by taking
subgraphs

)()( GtwHtw ≤

)()( GtwGLB ≤
)()( GtwHLB ≤

H subgraph of G

Corollary If the LB can increase by taking subgraphs, an 
improved lower bound can be found by taking the maximum
over all subgraphs:

)()(max GtwHLB
GH

≤
⊆

Treewidth Lower Bounds



30

59

Arie Koster

Foundations II

Theorem The treewidth of a graph can not increase by taking
minors

)()( GtwHtw ≤

)()( GtwGLB ≤
)()( GtwHLB ≤

H minor of G

Corollary If the LB can increase by taking minors, an 
improved lower bound can be found by taking the maximum
over all minors:

)()(max GtwHLB
GH

≤
≺

Treewidth Lower Bounds

60

Arie Koster

Degree-Based Lower Bounds I

Lemma The minimum degree of a graph is a lower bound for
treewidth

)()( GtwG ≤δ

Corollary The degeneracy of a graph is a lower bound for
treewidth

)()(max)( GtwHGD
GH

≤=
⊆

δδ

Corollary The contraction degeneracy of a graph is a lower
bound for treewidth

)()(max)( GtwHGC
GH

≤= δδ
≺

Treewidth Lower Bounds



31

61

Arie Koster

Relationships

δ

2δ

Rγ

tw

Dδ

D2δ

DRγ

Cδ

C2δ

CRγ

= less than or equal

+1

+11)()(2 +≤ GDGD δδ
1)()(2 +≤ GCGC δδ

2*

2*

)(2)(

)(2)(

2

2

GCGC

GDGD

R

R

δγ
δγ

≤
≤

Treewidth Lower Bounds

62

Arie Koster

Complexity

δ

2δ

Rγ

tw

Dδ

D2δ

DRγ

Cδ

C2δ

CRγ

Polynomial time NP-hard

Treewidth Lower Bounds



32

63

Arie Koster

Lower bounds by example

40

45

50

55

60

65

70

75

0.01 0.1 1 10 100 1000 10000

M
M
D

LB
N(
M
M
D)

M
CS
LB

LB
N(
M
CS
LB
)

M
M
D+

LB
X(
M
M
D+
)

LB
N+
(M
D)

M
CS
LB
+

LB
X(
M
CS
LB
+)

LB
P(
M
M
D)

LB
P(
M
CS
LB
)

LB
P+
(M
D)

Lower bounds for graph queen15-15

CPU time (s) →

Lo
w
e
r
b
o
u
n
d

→

Treewidth Lower Bounds

64

Arie Koster

Planar Graphs

)()( GtwGC ≤δ

5)( ≤Hδ
5)( ≤GCδ

G planar, H minor of G

Theorem Planarity is closed under taking minors

Theorem The genus of G cannot increase by taking minors

)()( GtwGC ≤δ

kH +≤ 5)(δ
kGC +≤ 5)(δ

G graph of genus k, H minor of G

Treewidth Lower Bounds

Alternative lower bound by Brambles [36, ESA2005]



33

65

Arie Koster

Brambles

� tw(n x n grid) = n

� Search for n x n grids as minor of G

� Two different algorithms

� General graphs: 

BFS + connectivity closure; max disjoint paths

� Planar graphs:

Partition outer face; max disjoint paths in north-south, west-east

� Robertson, Seymour, Thomas ’94: every planar graph of 

treewidth k has a ck x ck grid as minor

2nd algorithm gives a constant approximation for treewidth on 
planar graphs!

Treewidth Lower Bounds

66

Arie Koster

Lower bounds by obstruction

wv

…

wv

…

Assume: 
k neighbors
tw(G)≤k-2

Edge {v,w} must be in chordalization
Clique of k+2 vertices: width≥k+1

Lower bound by Clautiaux et al.:

Until LB’ ≤ LB; return LB

Compute new LB’

If LB’ > LB, LB := LB+1

Assume tw(G) ≤ LB; Add edges by argument above

Repeat

Compute initial LB

Treewidth Lower Bounds



34

67

Arie Koster

Exact methods

1)(ωmin)(
)(

Η −−−−====
∈∈∈∈

HGtw
GH

Let H(G ) be the set of all chordalizations of G.

Select best H and compute maximum clique size!

O( 2n poly(n) ) time+memory algorithm [ESA 2006]

Experiments with integer programming formulation (B&C)

Branch-and-Bound algorithm Gogate and Dechter [63]

O( 2k+2 ) algorithm Shoikhet and Geiger [117]

Treewidth Exact

68

Arie Koster

Chordalization polytope



 <<<<∪∪∪∪∈∈∈∈

====
otherwise

(w)(v) and FEvw if

0

ππ1
vwy

Evwyy

Evwyy

wvvw

wvvw

∉∉∉∉≤≤≤≤++++
∈∈∈∈====++++

1

1
Existence of edges

Vwvuyyyy wvvwuwuv ∈∈∈∈++++++++≤≤≤≤++++ ,,1
Simplicity of vertices

Chordalization polytope:
Convex hull of all chordalizations H of G.

Treewidth Exact



35

69

Arie Koster

Chordalization polytope

)(max1)(ω)(

1)(max)(ω
],...,[

,...,1

],...,[
,...,1

ivvH
ni

ivvH
ni

vNHHtw

vNH

ni

ni

====

====

====−−−−====

++++====







 ∈∈∈∈∑∑∑∑

≠≠≠≠∈∈∈∈
Cyy

vw
vw

Vv
:maxmin

Treewidth

Chordalization polytope

CCCVCCyy C

C

i
ii →→→→≥≥≥≥⊆⊆⊆⊆∀∀∀∀−−−−≤≤≤≤++++









∑∑∑∑

−−−−

====
++++ }...,,1{:ρ,3,1)1(ρ)(ρ1

1
)1(ρ)(ρOrdering of vertices

Treewidth Exact

70

Arie Koster

Objectives

Treewidth

Vvyzts

z

vw
vw ∈∈∈∈≥≥≥≥∑∑∑∑

≠≠≠≠

..

min

Fill-in

∑∑∑∑
∉∉∉∉

++++====
Evw

wvvw yyfts

f

)(..

min

Weighted Treewidth

Vvyccwts

w

vw
vwwv ∈∈∈∈++++≥≥≥≥ ∑∑∑∑

≠≠≠≠

)log()log(..

min

Cy∈∈∈∈ Chordalization polytope

Treewidth Exact



36

71

Arie Koster

Separation of ordering inequalities

CCCVCCyy C

C

i
ii →→→→≥≥≥≥⊆⊆⊆⊆∀∀∀∀−−−−≤≤≤≤++++









∑∑∑∑

−−−−

====
++++ }...,,1{:ρ,3,1)1(ρ)(ρ1

1
)1(ρ)(ρ

Inequality for every subset & every order of the subset

Implicit consideration by separation

(((( )))) (((( )))) 111 )1(ρ)(ρ1

1
)1(ρ)(ρ −−−−≤≤≤≤−−−−++++









−−−−∑∑∑∑

−−−−

====
++++ C

C

i
ii yy

1)1(ρ)(ρ1

1
)1(ρ)(ρ ≥≥≥≥++++








∑∑∑∑

−−−−

====
++++ C

C

i
ii xxvwvw yx −−−−==== 1:

Separation by shortest path computation in auxiliary digraph

Treewidth Exact

72

Arie Koster

Cliques

Ordering represents a chordal graph

Without loss of generality, we can put an arbitrary vertex at the 

end of the ordering

Dirac (1961): Every non-complete chordal graph has two 
nonadjacent simplicial vertices

Without loss of generality, we can put a (maximal/maximum) 

clique in G at the end of the ordering

Tarjan & Yannakakis (1984): Ordering can be build from 
the back, selecting recursively vertex with highest number of 
ordered neighbors

Treewidth Exact



37

73

Arie Koster

Petersen graph

379

>886765

57

278018

B&C nodes

0

41.18

0

0

Gap (%)

1.27maximum 

clique

Fill-in

>3600noneFill-in

0.43maximum 

clique

Treewidth

449.18noneTreewidth

CPU time (s)StrategyObjective

Maximum clique breaks symmetries(?); simplifies computation

Fill-in more difficult than treewidth???

Treewidth Exact

74

Arie Koster

Instances

Randomly generated partial-k-trees (Shoiket&Geiger,1998)

� Generate k-tree
� Randomly remove p% of the edges
�treewidth at most k
�n=100, k=10, p=30/40/50

Instances from frequency assignment, probabilistic networks, …

Computational framework

SCIP (http://scip.zib.de/) with CPLEX 10.0 as LP solver

Treewidth Exact



38

75

Arie Koster

8.60

8.80

9.00

9.20

9.40

9.60

9.80

10.00

10.20

1 2 3 4 5 6 7 8 9 10

LP end of root

Results partial k-trees: treewidth

30%: 4 out of 10 solved within 1 hour CPU time

40%: 1 out of 10 solved within 1 hour CPU time

9.40

9.50

9.60

9.70

9.80

9.90

10.00

10.10

1 2 3 4 5 6 7 8 9 10

LP end of root

30% 40%

Treewidth

Very good lower bound, difficult to find optimal solution

Treewidth Exact

76

Arie Koster

Results realistic instances

3.61

1.93

2.25

1.33

1.29

0.86

CPU(s)

fill-in

3

2

2

1

9

2

#nodes

6861

8568

986

349

2767

1307

#nodes

133.67

103.50

15.22

7.88

13.15

4.88

CPU(s)

Combinedtreewidth

943691875.244815625link-pp-minor-025

27125399.614315124link-pp-minor-024

16131128.214014423link-pp-minor-023

585837.823813722link-pp-minor-022

723829.913513021link-pp-minor-021

968023.422912520link-pp-minor-020

#nodesCPU(s)fi(G)|E||V|instance

minors of link-pp selected; ω(G)=9, tw(G)=13

0.1

1

10

100

1000

10000

20 21 22 23 24 25

C
P

U
 t

im
e 

(s
)

treewidth fill-in combined

fz
mnn 1)1(

1

2
1min ++++−−−−−−−−++++

Treewidth Exact



39

77

Arie Koster

Overview

� Introduction

� Tree Decompositions

� Computing Treewidth

� Using Treewidth

78

Arie Koster

Minimum Interference FAP

� Graph G=(V,E)

� Vertices correspond to 

bi-directional connections

� Edges indicate interference 

between two connections

� For every vertex v, set of 

frequency pairs D(v) is specified

� Interference quantified by edge penalties p(v,f ,w,g)

� Preferences for frequencies quantified by penalties q(v,f)

� Objective: Select for each vertex exactly one frequency, 

such that the total penalty is minimized.

TD-based Algorithms



40

79

Arie Koster

Dynamic Programming Algorithm

b d f
i j

l

k
h

g

eca

Contract vertices according to tree-decomposition.

TD-based Algorithms

80

Arie Koster

Dynamic Programming Algorithm

ab

d f
i j

l

k
h

g

ec

D D Dab a b= ×
Contract vertices according to tree-decomposition.

TD-based Algorithms



41

81

Arie Koster

Dynamic Programming Algorithm

f
i j

l

k
h

g

ec

Contract vertices according to tree-decomposition.

D D Dabd ab d⊂ × vertex b is not connected 
with rest of the graph.

b

a

d

TD-based Algorithms

82

Arie Koster

Does it work in practice ?

� Only with (pre)processing techniques

� Graph reduction

� Vertices with degree 1 can be removed

� Vertices with degree 2 can be removed

� Domain reduction

� Upper bounding

� Dominance of domain elements

TD-based Algorithms



42

83

Arie Koster

Computational Results

1

100

10000

1E+06

1E+08

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

subsets during dynamic programming algorithm

# 
as

si
g

n
m

en
ts

computed theoretical

TD-based Algorithms

84

Arie Koster

Results Tree Decomposition

Instance LP QP CSP Tree Decomposition 

    Preprocessing DP 

Upper 
Bound 

CELAR06 5 - 3389 0 3389 3389 
CELAR07 5 - - 0 - 343592 
CELAR08 - - - 0 - 262 
CELAR09 - 14969 - 11391 15571 15571 
CELAR10 - 31204 - 31516 Solved 31516 
GRAPH05 - - - 221 Solved 221 
GRAPH06 - - - 4112 4123 4123 
GRAPH07 - - - 4324 Solved 4324 
GRAPH11 - - - 2553 - 3080 
GRAPH12 - - - 11496 11827 11827 
GRAPH13 - - - 8676 - 10110 

 

TD-based Algorithms



43

85

Arie Koster

Further results

� CALMA benchmarks:

� For 7 of the 11 instances optimal solution found

� For the other 4 instances lower bounds in the range 

57.3% to 98.2% of the upper bound

� Tree Decomposition can be used  to solve 

optimization problems in practice

� Application to other optimization problems

TD-based Algorithms

86

Arie Koster

Open problems

� Is TREEWIDTH polynomial for planar graphs ?

� Is TREEWIDTH NP-hard for planar graphs ?

� Does there exist (practical) integer programming 

formulations for computing treewidth?

� How good can the contraction degeneracy be in 

general graphs (as lower bound for tw(G) ) ?

� Do other heuristics than MCS have a lower-

bounding counter-part ?



44

87

Arie Koster

Open problems

Which optimization problems
can be solved in practice with 

Graph Decomposition-based algorithms

?

88

Arie Koster

Further reading
� Branch and Tree Decomposition Techniques for Discrete Optimization, INFORMS 

TutORials in Operations Research Series, Chapter 1, 2005 (with Illya Hicks, E. 
Kolotoğlu)

� Combinatorial Optimisation on Graphs of bounded Treewidth, The Computer Journal, 
2006, to appear (with H. Bodlaender)

� Solving Partial Constraint Satisfaction Problems with Tree Decomposition, Networks 
40, 2002 (with S. van Hoesel, A. Kolen)

� Lower Bounds for Minimum Interference Frequency Assignment Problems, Ricerca
Operativa 30, 2000 (with S. van Hoesel, A. Kolen)

� Pre-processing rules for triangulation of probabilistic networks, Computational 
Intelligence 21, 2005 (with H. Bodlaender, F. van den Eijkhof)

� Safe Separators for Treewidth, Discrete Mathematics 306, 2006 (with H. Bodlaender)

� Contraction and Treewidth Lower Bounds, Journal of Graph Algorithms and 
Applications 10/ ESA 2004, LNCS 3221 (with H. Bodlaender, T. Wolle)

� Treewidth Lower Bounds with Brambles, ESA 2005, LNCS 3669 (with H. Bodlaender, 
A. Grigoriev)

� On Exact Algorithms for Treewidth, ESA 2006, LNCS 4168 (with H. Bodlaender, F. 
Fomin, D. Kratsch, D. Thilikos)

� On the Chordalization Polytope and Treewidth, in preparation

� http://fap.zib.de http://www.zib.de/koster/
http://www.cs.uu.nl/people/hansb/treewidthLIB/ koster@zib.de


