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Back in 1997 ...

= Minimum Interference Frequency Assignment

NLT L= M 1 Slr = Sl il
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= Good upper bounds,
neither lower bounds nor optimal solutions

- 4= Integer linear programming does not work
ZIBl 5 \What to do next?

Arie Koster

Properties of 2G
wireless communication

Transmitter o Receiver

detects
oscillations

Quality of the received signal:
Signal-to-noise ratio
Poor signal-to-noise ratio:
interference of the signal
Obijective: Frequency plan without interference or, second

best, with minimum interference

emits electromagnetic
oscillations at a frequency




Interference

Level of interference depends on
= distance between transmitters, geographical position,
= power of the signals, direction in which signals are transmitted,
= weather conditions

= assigned frequencies
= co-channel interference
= adjacent-channel interference

|:> Interference is measured between pairs of transmitters
Zi B

Arie Koster

Separation

Frequencies assigned to the same location
(site) have to be separated

Blocked channels

Whole spectrum is not allowed at every
location:
= government regulations,

= agreements with operators in neighbori
regions,

= requirements military forces, etc.

Arie Koster




Modeling MI-FAP

= Interference graph

= Vertices represent transmitters;
Domain of assignable frequencies

= Edges represent constraints/interference
Matrix with penalties for combination of frequenciesg

2 |:> Partial Constraint Satisfaction Problem (with binary relations)

| More frequency assignment: http://fap.zib.de |

Related problems
- Vertex Coloring

Integer Programming suffers from symmetry;
linear relaxation not strong at all




What to do next?

Coloring of Western-Europe does not depend on Eastern-Europe,
only on Central-Europe

Coloring of Iberian peninsula only depends on color of France
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Graph Decomposition

|:> Coloring of rest of Europe only depends on France

e e

= First 3 solutions equivalent for rest of problem

= 3rd solution has lowest humber of colors: preferred
= 4th solution is not equivalent for rest of problem
= Only #colors non-equivalent solutions exist

Does there exist (polynomial-time) algorithms that use this
information?
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Independent Set
on trees

= Repeatedly
= Select a (all) leaf(s) of the tree in IS
= Remove it (them) and its (their) neighbors
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Weighted Independent Set
on trees

= Root tree at arbitrary vertex, T(v) subtree rooted at v
= A(v) = max weighted IS in T(v)

= B(v) = max weighted IS in T(v) not containing v

c For leafs v:
= A(v)=c(v); B(v)=0

3 For v with children x;,...,X,
= B(V)=A(X))+...+A(X,)
= A(v)=max{c(v)+B(x,)+...+B(x,),B(v)}

B(France)=3+2+5, A(France)=9+0+0+5
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Beyond trees:
series-parallel graphs

81 = 82

{79

t1 =1ta

t2
Parallel composition Series composition

SP-tree: binary tree representing parallel and
series composition of series-parallel graph

leafs ~ edges

hg
S-nodes for series bf \-\
- li E

P-nodes for parallel “
qﬂ P qf f(’ (l”!“d

Subtrees correspond to SP-graphs {
ab 1:*
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Weighted Independent Set
on series-parallel graphs

= (G,s,t) defines SP-graph, G(i) SP-graph for subtree rooted at i

= AA(i) = max WIS containing both s and t
AB(i) = max WIS containing s but not t
BA(i) = max WIS containing t but not s
BB(i) = max WIS containing neither s nor t

= Leafs: AA(i)=-00, AB(i)=c(s), BA(i)=c(t), BB(i)=0
= Internal S-node i with children j and k (s’ terminal between j,k):
AA(i) 1= max{ AA()+AA(k)-c(s"), AB(j)+BA(k) }
AB(i) := max{ AA(j)+AB(k)-c(s"), AB(3)+BB(Kk) }, ...
= Internal P-node i with children j and k:
AA(I) := AAQG)+AA(K)-c(s)-c(t)
AB(i) := AB(j)+AB(k)-c(s), ...

Generalization beyond series-parallel graphs?
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Overview

Introduction

= Tree Decompositions

Computing Treewidth

Using Treewidth
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Tree Decomposition

= A tree decomposition:

associated with every
node

= For all edges {v,w}:
there is a set

= For every v: the nodes
that contain v form a
connected subtree

= Tree with a vertex set b

containing both v and @ @ @ @
w
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Tree Decomposition

= A tree decomposition:

= Tree with a vertex set b< ¢
associated with every
node

= For all edges {v,w}:
there is a set

containing both v and @ @ @ @
W

= For every v: the nodes @
that contain v form a

connected subtree

z
Tree Decomposition

= A tree decomposition: a 9
* Tree with a vertex set b< ¢
associated with every e f
node

= For all edges {v,w}:
there is a set

containing both v and @ @
w

= For every v: the nodes
that contain v form a
connected subtree
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Treewidth
= Width of tree decomposition:
a 9 h
max, | X; [-1 b<c f

| maximum bag size - 1 |

» Treewidth of graph G: tw(G)= minimum
width over all tree decompositions of G.

a0 N (D
o &)

20

First observations

: @HeD-(eo

(@]
-

Each clique has to be part of at least one node

Cligue number - 1 is a lower bound for treewidth

later more lower bounds ...

Trees have treewidth 1

10
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Graphs of bounded treewidth

= Graphs of bounded treewidth generalize both
trees and series-parallel graphs

= Trees have treewidth 1 v.v.

= Series-parallel graphs have treewidth at most 2

= Treewidth measures the tree-likeness of graphs

= Concept introduced by Robertson & Seymour in
1980s in their work on graph minor theorem

Algorithms using tree

decompositions

= Step 1: Find tree decomposition of width bounded by some small 4.
= Heuristics.
= O(f(K)n) in theory.
= Fast O(n) algorithms for k=2, k=3.
= By construction, e.g., for trees, series-parallel-graphs.

= Step 2: Use dynamic programming, bottom-up on the tree.
= Root tree (I,F)
= Let Y;=0X; over all descendants of i0I

= Compute optimal solution in G[Y;] for each set S O X;, based on
the solutions for the children

11



y Weighted Independent Set

on graphs with treewidth k

» For node /in tree decomposition, S0 X, write

= R(4 ) = maximum weight of IS Sof G[Y,] with Sn X;= S, — w0 if
such Sdoes not exist

= Compute for each node / a table with all values R(j, ...).

» Each such table can be computed in O(2%) time when
treewidth at most 4.

= Gives O(n) algorithm when treewidth is (small) constant.

|:> Many problems can be solved in polynomial time given a graph of
bounded treewidth

a
Treewidth results

= Arnborg, Lagergren and Seese (1991), based upon the work of
Courcelle (1990), showed that many NP-complete problems
modeled on graphs with bounded branchwidth or treewidth can be
solved in polynomial time using a branch decomposition or tree
decomposition of the graph.

= NP-complete problems modeled on graphs:

» Traveling Salesman Problem

Disjoint Paths Problem

Maximum Planar Subgraph

General Minor Containment

(Partial) Constraint Satisfaction Problems
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Branchwidth, Treewidth, Pathwidth

Robertson and Seymour [106]: For a graph G =(V,E),
max{ bw(G), 2 } < tw(G) + 1 < max{[3/2 bw(G)], 2 }

Graphs with bounded treewidth have bounded branchwidth and
vice versa

Given a branch decomposition, we can construct a tree
decomposition with TD-width at most 3/2 times the BD-width

Trees do not have bounded pathwidth

|:> Pathwidth: T is restricted to be a path; tw(G) < pw(G)

26

Overview

Introduction

Tree Decompositions

Computing Treewidth

Using Treewidth

13



27

Computing Treewidth in Theory

TREEWIDTH:
Given k = 0 and G a graph, is the treewidth of G< k ?

|:> Computing TREEWIDTH is NP-hard ~ Arnborg et al.[13]

Linear time algorithm for TREEWIDTH if k not part of the input
Bodlaender [25]

= Exponential in k
= Not practical, even for k as small as 4

Several exponential time algorithms

= O( 2" poly(n) ) time Arnborg et al.[13]
= O( 1.9601" poly(n) ) time Fomin et al.[57]
= O( 2.9512" poly(n) ) time, O(poly(n)) space  [ESA2006]
= poly(n) denotes a polynomial in n
References refer to INFORMS Tutorials 2005 chapter
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Computing Treewidth in Practice

Reconsider our first observation:

|:> Each (maximal) clique has to be part of at least one node

Simplicial vertex:
A vertex is simplicial if all its neighbors are mutually adjacent

iy

A simplicial vertex is part of only one maximal clique

A simplicial vertex has to occur in only one TD-node

14



=
A first algorithm:

Assumption: G has a simplicial vertex, and after ist removal
there is again and again a simplicial vertex

Repeatedly remove a simplicial vertex of G: vy,...,v,
For i = n down to 1 do

Construct a TD-node with v; and all its neighbors in G[v,,...,v,]

Attach node to a node containing all neighbors of v; in G[v,,...,v,]

Return tree decomposition

Arie Koster

Arie Koster

15
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If the assumption holds:

0l

Width of returned TD equals maximum clique minus 1

|:> Tree Decompoisition is optimal !!!
Which graphs satisfy the assumption ?

Perfect Elimination Scheme o = [v;,...,v,]:
An ordering of the vertices such that for all i, v; is a simplicial
vertex of the induced graph Glv,,...,v,]

Chordal graph:
Every cycle of size at least 4 contains a chord

G is chordal iff there exists a perfect elimination scheme [59,64]

Optimal algorithm for chordal graphs!

32

Non-chordal graphs

What to do with non-chordal graphs ?

Gavril [59]: A graph G =(V,E) is chordal if and only if there
exists a tree 7=(Z F) such that one can associate with each
vertex vOVa subtree 7,=(/,F,) of 7, such that viw OEif and
only if I,n 7, 0.

|:> There exists a chordalization A =(V,£UF) of Gwith maximum
clique size k+1 if and only if the treewidth of Gis &

o= [blalcldlglhlelflilkljll]

16



=
Chordalization Algorithms

|:> Find chordalization of G with small maximum clique size

= Adapt algorithms to test if a graph is chordal
= Algorithms for related MIN-FILL-IN problem

Dirac, 1961: Every non-complete triangulated graph has two
nonadjacent simplicial vertices

|:> Without loss of generality an arbitrary vertex can be put at the
end of the elimination scheme

Linear time algorithms to test graph chordality:

= Lexicographic Breadth First Search (LEX_M & LEX_P)
= Rose, Tarjan & Lueker [111]

= Maximum Cardinality Search (MCS & MCS_M)
= Tarjan & Yannakakis [120], Heggernes et al. [84]

Z
Maximum Cardinality Search

"M QL]
= Repeatedly select vertex with
largest number of labeled
neighbors

Step 0: [,/
Step 1: [.,.,.,-,@]
Step 2: [.,.,.,b,a]
Step 3: [.,.,¢,b,a]
Step 4: [.,d,c,b,a]
Step 5: [e,d,c,b,a]




=
Minimum Fill-In problem

MINIMUM FILL-IN:
min{ |F| : (V,E+F) is chordal }

|:> Computing MINIMUM FILL-IN is NP-hard

Heuristics:
= Greedy Fill-In
= repeatedly select vertex that introduces least number
of edges to be simplicial
= remove vertex, add fill-in edges
= Minimum Degree Fill-In
= repeatedly select vertex with smallest degree
= remove vertex, add fill-in edges

e
Further algorithms

->Minimum separating set heuristic [83]

—>Sparse Fill-In [unpublished; work in progress]

= Combination of Greedy and Minimum Degree Fill-In algorithms

—->Metaheuristics
= Tabu Search [45]
» Simulated Annealing [79]
= Genetic algorithm [92]

= Minimal Chordalization

= Turns chordalization into a minimal one

18
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Upper bounds by example
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Computing Treewidth
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| reoviihpreprcessng|
Two types of preprocessing

= Reduction rules (Simplification) [39]
= Rules that change G into a smaller "equivalent’ graph
» Maintains a lower bound variable for treewidth /ow

= Safe separators (Divide and Conguer) [32]

= Splits the graph into two or more smaller parts with
help of a separator that is made to a clique

40

-
Reduction

Preprocessing

Reduced Graph H
rules

’ Input Graph G ‘

Compute
Treewidth

Compute
Treewidth

for G for H

for G for H

preprocessing

[Tree decomposition } Undo [Tree decomposition}

= Safe rules that
= Make Gsmaller
= Maintain optimality...

= Use for preprocessing graphs when computing treewidth

20
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Reduction rules

= Uses and generalizes ideas and rules from algorithm to recognize

= Example: Series rule: remove a vertex of degree 2 and connect its

Y = Safe for graphs of treewidth > 2

graphs of treewidth < 3 from Arnborg and Proskurowski

neighbors

Series rule

Original Graph Reduced Graph

42

Treewidth preprocessing

> X
f e f e f
g

I Reduce

Undo reductions

21



&
Type of rules

= Variable: low (integer, lower bound on treewidth)
= Graph G

» Invariant: value of max(low, treewidth(G))

» Rules

= Locally rewrite G to a graph with fewer vertices
= Possibly update or check low

= We say a rule is safe, when it maintains the invariant.
= Use only safe rules.

w
Rule 1: Simplicial rule
= Let vbe a simplicial vertex in G —
Simplicial =
* Remove v. Neighbors form a clique
= Set /ow = max (low, degree(v))
Simplicial rule

m ~ W

Original Graph Reduced Graph
= Simplicial rule is safe.

o = Special cases: islet rule (singletons), twig rule (degree(v) = 1)
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= Let v be a almost simplicial vertex
in Gand low > degreg( V)

= Remove v,

= turn neighbors into clique

Rule 2: Almost Simplicial rule

Treewidth preprocessing

Almost Simplicial =
Neighbors except one
form a clique

Original Graph

Almost Simplicial rule

Reduced Graph

N
ZIBY -  Almost Simplicial rule is safe.

Arie Koster
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Example Jow = 3

23



g
Increasing /ow further

|:> Further rules: buddy/buddies rule, (extended) cube rule

Arnborg and Proskurowski [12]:

= tw(G)=1 if and only if G is reduced to the empty graph by islet
rule (vertices of degree 0) and twig rule (vertices of degree 1)

» tw(G)=2 if and only if G is reduced to the empty graph by islet,
twig, and series rule (vertices of degree 2)

= tw(G)=3 if and only if G is reduced to the empty graph by islet,
twig, series, triangle, buddy, and cube rule

Low can be increased to 2, 3, and 4 respectively if these rules
cannot be applied anymore and graph is not empty yet.

.
B

Arie Koster

"
Results for probabilistic networks

original preprocessed original preprocessed

instance | |V] | |E] | |V] | |E]| [ low instance | |V]| | |E] | |V] | |E] | low
alarm 37 65 0 0 4 oesoca+ 67| 208 14 75 9
barley 48| 126 26 78 4 oesoca 39 67 0 0 3
boblo 221| 328 0 0 3 oesoca42 42 72 0 0 3
diabetes 413| 819| 116| 276 4 oow-bas 27 54 0 0 4
link 724| 1738| 308| 1158 4 oow-solo 40 87 27 63 4
mildew 35| 80 0 0 4 oow-trad 33] 72| 23 54 4
muninl 189| 366| 66| 188 4 pignet2 3032| 7264| 1002| 3730 4
munin2 1003| 1662 165/ 451 4 pigs 441| 806| 48| 137 4
munin3 1044| 1745 96| 313 4 ship-ship 50| 114 24 65 4
munin4 1041| 1843| 215 642 4 vsd 38 62 0 0 4
munin-kgo | 1066| 1730 0 0 5 water 32| 123 22 96 5

wilson 21 27 0 0 3

- Some cases could be solved with preprocessing to optimality
- Often substantial reductions obtained

- Time needed for preprocessing is small (never more than a few
seconds)

Arie Koster
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Graph separators

Arie Koster

= S0OVis a separator of G, if G-Shas more than one connected
component

= Sis a minimal separator, if Sis a separator and .S does not contain
another separator as proper subset

50

Safe separator

Arie Koster

S'is safe for treewidth, or a safe separator if and only if the treewidth
of Gequals the maximum over the treewidth of all graphs obtained by

= Taking a connected component Wof G-S
= Take the graph, induced by wWQOS
= Make Sinto a clique in that graph

Original Graph Components

25
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Using safe separators

Splitting the graph for divide and conquer preprocessing

Until no safe separators can be found

Slower but more powerful compared to reduction

= Most or all reduction rules can be obtained as special cases of
the use of safe separators

Look for sufficient conditions for separators to be safe

52

Lemmal

Let Sbe a separator in G. The treewidth of Gis at most the
maximum over all connected components W of G of the treewidth of
G[WOS] + clique(S)

26



=
Lemma 2

Let Sbe a separator. If for all components Wof G-S, G
[WDS] contains a clique on Sas a minor, then Sis safe.

-5 H

/ Contraction of

bold edges
- Clique separators are safe
- Separators of size 0 and 1 are safe
=

Safeness of
minimal almost clique separators

Sis almost
cligue when S-v
is a clique for
some vertex v

= If one component is contracted to the red vertex, the separator
turns into a clique: minimal almost clique separators are safe!

- Minimal Separators of size 2 are safe
- "Almost all’ minimal separators of size 3 are safe
= only 3 independent vertices can be non-safe

g = Minimal separators of size 3 that split off at least two vertices are
safe

27
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A safe separator in Europe ...

Arie Koster

5
Results for probabilistic networks
size separators output
almost-

instance [V] |[E] |clique| cligue | size 3 |# graphs|# cligues # To Do| low
barley-pp 26 78 0 7 0 8 7 1 5
diabetes-pp 116| 276 0 85 0 86 84 2 4
link-pp 308| 1158 0 0 0 1 0 1 4
munini-pp 66| 188 0 2 0 3 2 1 4
munin2-pp 165| 451 6 13 4 24 12 12 4
munin3-pp 96| 313 2 2 2 7 4 3 4
munin4-pp 215 642 3 4 0 8 2 6 4
oesoca+-pp 14 75 0 0 0 1 0 1 9
oow-trad-pp 23 54 0 0 1 2 1 1 4
oow-solo-pp 27 63 0 0 1 2 0 2 4
pathfinder-pp 12 43 0 5 0 6 6 0 6
pignet2-pp 1002| 3730 0 0 0 1 0 1 4
pigs-pp 48| 137 0 1 0 2 1 1 5
ship-ship-pp 24 65 0 0 0 1 0 1 4
water-pp 22 96 0 1 0 2 1 1 6
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Why Lower Bounds?

= Benchmark quality of constructed tree decompositions (upper bounds)
= Speed up of branch & bound methods (e.g. Gogate & Dechter [63])
= Indicates expected performance of dynamic programming algorithms

=
=

Very dense areas in graphs contribute to treewidth

Grid structures contribute to treewidth

tw(G)=min(n,m)

=
Induced subgraphs

Theorem T7he treewidth of a graph can not increase by taking

subgraphs
H subgraph of G
tw(H) < tw(G)
LB(H) < tw(G)
LB(G) < tw(G)

Corollary If the LB can increase by taking subgraphs, an
improved lower bound can be found by taking the maximum
over all subgraphs:

max LB(H) <tw(G)

29
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Foundations 11

Theorem T7he treewidth of a graph can not increase by taking
minors

H minor of G
tw(H ) < tw(G) LB(H) < tw(G)
LB(G) < tw(G)

Corollary If the LB can increase by taking minors, an
improved lower bound can be found by taking the maximum
over all minors:

max LB(H) <tw(G)

60

[ Trceitn overSouncs |
Degree-Based Lower Bounds I

Lemma 7he minimum degree of a graph is a lower bound for
treewidth

3(G) < tw(G)

Corollary 7he degeneracy of a graph is a lower bound for
treewidth

D(G) = max 5(H) < tw(G)

Corollary 7he contraction degeneracy of a graph is a lower
bound for treewidth

&C(G) = max 5(H) < tw(G)

30
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Relationships

| —— = less than or equal |

3,D(G) < D(G) +1
5,C(G) < &C(G) +1

¥<D(G) < 26,D(G)
¥:C(G) < 25,C(G)

Treewidth Lower Bounds

62

Complexity

Polynomial time

Treewidth Lower Bounds

31



63 Treewidth Lower Bounds
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Planar Graphs

| Theorem Planarity is closed under taking minors |
Gplanar, Hminor of G

JC(G) < tw(G)

X(G) <5

3(H)<5

| Theorem 7he genus of G cannot increase by taking minors |

G graph of genus k, A minor of G

IC(G) < tw(G)
IC(G) <5+k
3(H) <5+k

|:> Alternative lower bound by Brambles [36, ESA2005]




=
Brambles

= tw(nxngrid) =n
= Search for n x n grids as minor of G

= Two different algorithms

= General graphs:
BFS + connectivity closure; max disjoint paths
= Planar graphs:
Partition outer face; max disjoint paths in north-south, west-east

= Robertson, Seymour, Thomas '94: every planar graph of
treewidth k has a ck x ck grid as minor

5 2nd algorithm gives a constant approximation for treewidth on
I planar graphs!
2 B

Arie Koster

g
Lower bounds by obstruction

Assume:
k neighbors
tw(G)<k-2

Clique of k+2 vertices: width>k+1
Edge {v,w} must be in chordalization

Lower bound by Clautiaux et al.:
Compute initial LB

Repeat
Assume tw(G) < LB; Add edges by argument above
Compute new LB’
If LB’ > LB, LB := LB+1

Until LB" < LB; return LB

Arie Koster
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Exact methods

N |:> Select best /and compute maximum clique size!

Branch-and-Bound algorithm  Gogate and Dechter [63]
O( 2k+2)) algorithm Shoikhet and Geiger [117]

|:> O( 2" poly(n) ) time+memory algorithm [ESA 2006]

|:> Experiments with integer programming formulation (B&C)

| Let H(G) be the set of all chordalizations of G. |

tW(G)=HrDQi(r(13)co(H)—1

68

Chordalization polytope

Chordalization polytope:
Convex hull of all chordalizations H of G.

_[1 ifvwOEOF and n(v) < n(w)
" ~10 otherwise

[ Existence of edges |
You ¥t Yoo =1 VWOE

You ¥ Yoo €1 VWOE

[Simplicity of vertices|
yUV+yUWS1+ va+ywv u|V|WDV

34
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Chordalization polytope

[ Ordering of vertices |

o
{Zl‘, yp(i)p(i+1)J+ Yoo <IC[=1 OCOV,|C[23,p:{1,...[C} -~ C

o(H) = max|Nyy, ()] +1

=1,.,nt "t

[ Treewidth [

mln{nvga}x;vva:yDC

}\ Chordalization polytope

Treewidth Exact

70

Objectives

[ Treewidth [
min z

st. zz)'y,, vOV
W#V

Fill-in |
min f
st. f= Z(ywv"‘ Yon)
wWwiE
[Weighted Treewidth|
mn w
st.  w=log(c,)+ Y log(c,)y,, vOV

W#V

VARIOER Chordalization polytope

Treewidth Exact

35
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| eowih bac|
Separation of ordering inequalities

‘ |:> Separation by shortest path computation in auxiliary digraph

g2
{Z:l: yP(i)P(i+1)J+ Yoo SIC=1 OCOV,|C[23,p:{1,...[C} -~ C

|:> Inequality for every subset & every order of the subset

Implicit consideration by separation

cl-1
(; (yp(i)P(i+1) _1)J + (yp(‘c‘)p(l) -1)S -1

cl2

X =1= Yo :> (Zl Xp(i)p(i+1)] X epoy 21

72

-
Cliques

|:> Ordering represents a chordal graph

Dirac (1961): Every non-complete chordal graph has two
nonadjacent simplicial vertices

|:> Without loss of generality, we can put an arbitrary vertex at the
end of the ordering

Tarjan & Yannakakis (1984): Ordering can be build from
the back, selecting recursively vertex with highest number of
ordered neighbors

|:> Without loss of generality, we can put a (maximal/maximum)
clique in G at the end of the ordering

36
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Petersen graph

Objective | Strategy CPU time (s) | B&C nodes | Gap (%)

Treewidth | none 449.18 278018 0

Treewidth | maximum 0.43 57 0
clique

Fill-in none >3600 >886765 41.18

Fill-in maximum 1.27 379 0
clique

ol

Maximum clique breaks symmetries(?); simplifies computation

Fill-in more difficult than treewidth???

Treewidth Exact

74

Instances

= Generate k-tree

= Randomly remove p% of the edges

->treewidth at most k
->n=100, k=10, p=30/40/50

|:> Randomly generated partial-k-trees (Shoiket&Geiger,1998)

|:> Instances from frequency assignment, probabilistic networks, ...

Computational framework

” |:> SCIP (http://scip.zib.de/) with CPLEX 10.0 as LP solver

Treewidth Exact

37



=
Results partial k-trees: treewidth

[ Treewidth [

|:> 30%: 4 out of 10 solved within 1 hour CPU time
40%: 1 out of 10 solved within 1 hour CPU time

1010 10.20
10.00 10.00
980
990
9.60
/ —
9.40 /.\W
om0 \/\/
9.20 .\
960
900
40%
30% o
940
1 2 3 4 5 6 7 8 9 10 860
1 2 3 4 5 6 7 8 9 10
——LP —=—end of root —+—LP —=—end of root

|:> Very good lower bound, difficult to find optimal solution

Arie Koster

z
Results realistic instances

|:> minors of link-pp selected; w(G)=9, tw(G)=13

treewidth fill-in Combined
instance IVI | |[E] |fi(G) | CPU(s) | #nodes | CPU(s) | #nodes | CPU(s) | #nodes
link-pp-minor-020 [ 20 | 125 | 29 23.42 9680 0.86 2 4.88 1307
link-pp-minor-021 | 21 130 |35 29.91 7238 1.29 9 13.15 2767
link-pp-minor-022 | 22 | 137 | 38 37.82 5858 1.33 1 7.88 349
link-pp-minor-023 | 23 144 | 40 128.21 16131 2.25 2 15.22 986
link-pp-minor-024 | 24 151 |43 399.61 27125 1.93 2| 103.50 8568
link-pp-minor-025 | 25 | 156 |48 1875.24 | 94369 3.61 3| 133.67 6861

— ]

mnz+—=—f

$n(n=1)-m+1

CPU time (s)

Arie Koster - treewidth fill-in —=combined
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Overview

Introduction

Tree Decompositions

Computing Treewidth

Using Treewidth

z
Minimum Interference FAP

Graph G=(V,E)
= Vertices correspond to
bi-directional connections

= Edges indicate interference
between two connections

= For every vertex v, set of
frequency pairs D(v) is specified

= Interference quantified by edge penalties p(v,f ,w,g)
= Preferences for frequencies quantified by penalties q(v,f)

Obijective: Select for each vertex exactly one frequency,
such that the total penalty is minimized.

39
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Dynamic Programming Algorithm

Contract vertices according to tree-decomposition.

80

Dynamic Programming Algorithm

Contract vertices according to tree-decomposition.

Dab = Dax Db

40
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Dynamic Programming Algorithm

Contract vertices according to tree-decomposition.

X vertex b is not connected
Dabd D Dab Dd with rest of the graph.

82

Does it work in practice ?

= Only with (pre)processing techniques
= Graph reduction

= Vertices with degree 1 can be removed

= Vertices with degree 2 can be removed
» Domain reduction

= Upper bounding

= Dominance of domain elements

41
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Computational Results
-
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Results Tree Decomposition

Instance |LP| QP | CSP | TreeDecomposition | Upper

Preprocessing DP Bound
CELARO6 5 -1 3389 0f 3389 3389
CELARO7 5 - - 0 - 343592
CELAROS8 - - - 0 - 262
CELARO9 -1 14969 - 11391| 15571 15571
CELAR10 - 31204 - 31516| Solved 31516

GRAPHO05 - - - 221| Solved 221

GRAPH06 - - - 4112 4123 4123
GRAPHO7 - - - 4324| Solved 4324
GRAPH11 - - - 2553 - 3080
GRAPH12 - - - 11496| 11827 11827
GRAPH13 - - - 8676 - 10110




Further results

= CALMA benchmarks:
= For 7 of the 11 instances optimal solution found

= For the other 4 instances lower bounds in the range
57.3% to 98.2% of the upper bound

= Tree Decomposition can be used to solve
optimization problems in practice

= Application to other optimization problems

85 TD-based Algorithms
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Open problems

Is TREEWIDTH polynomial for planar graphs ?
Is TREEWIDTH NP-hard for planar graphs ?

Does there exist (practical) integer programming
formulations for computing treewidth?

How good can the contraction degeneracy be in
general graphs (as lower bound for tw(G) ) ?

Do other heuristics than MCS have a lower-
bounding counter-part ?

43
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Open problems

Which optimization problems
can be solved in practice with
Graph Decomposition-based algorithms

?

/ \
B

Arie Koster

Further reading

= Branch and Tree Decomposition Techniques for Discrete Optimization, INFORMS
TutORials in Operations Research Series, Chapter 1, 2005 (with Illya Hicks, E.
Kolotoglu)

= Combinatorial Optimisation on Graphs of bounded Treewidth, The Computer Journal,
2006, to appear (with H. Bodlaender)

= Solving Partial Constraint Satisfaction Problems with Tree Decomposition, Networks
40, 2002 (with S. van Hoesel, A. Kolen)

= Lower Bounds for Minimum Interference Frequency Assignment Problems, Ricerca
Operativa 30, 2000 (with S. van Hoesel, A. Kolen)

= Pre-processing rules for triangulation of probabilistic networks, Computational
Intelligence 21, 2005 (with H. Bodlaender, F. van den Eijkhof)

= Safe Separators for Treewidth, Discrete Mathematics 306, 2006 (with H. Bodlaender)

= Contraction and Treewidth Lower Bounds, Journal of Graph Algorithms and
Applications 10/ ESA 2004, LNCS 3221 (with H. Bodlaender, T. Wolle)

= Treewidth Lower Bounds with Brambles, ESA 2005, LNCS 3669 (with H. Bodlaender,
A. Grigoriev)

= On Exact Algorithms for Treewidth, ESA 2006, LNCS 4168 (with H. Bodlaender, F.
Fomin, D. Kratsch, D. Thilikos)

= On the Chordalization Polytope and Treewidth, in preparation
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Arie Koster
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