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Overview
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� Tree Decompositions

� Computing Treewidth
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Back in 1997 …

� Minimum Interference Frequency Assignment

� Good upper bounds, 

neither lower bounds nor optimal solutions

� Integer linear programming does not work

�What to do next?
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Properties of 2G
wireless communication

Transmitter Receiver

emits electromagnetic 
oscillations at a frequency

detects 
oscillations

Quality of the received signal:
Signal-to-noise ratio

Poor signal-to-noise ratio: 
interference of the signal

Objective: Frequency plan without interference or, second 
best, with minimum interference
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Interference

Level of interference depends on

� distance between transmitters, geographical position, 

� power of the signals, direction in which signals are transmitted,

� weather conditions

� assigned frequencies

� co-channel interference

� adjacent-channel interference

Interference is measured between pairs of transmitters
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Separation

Whole spectrum is not allowed at every 
location:

� government regulations,

� agreements with operators in neighboring 
regions, 

� requirements military forces, etc.

Site

Blocked channels

Frequencies assigned to the same location 
(site) have to be separated
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Modeling MI-FAP

� Interference graph

� Vertices represent transmitters; 
Domain of assignable frequencies

� Edges represent constraints/interference
Matrix with penalties for combination of frequenciesg

Partial Constraint Satisfaction Problem (with binary relations)

More frequency assignment: http://fap.zib.de
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Related problems
- Vertex Coloring

Integer Programming suffers from symmetry;
linear relaxation not strong at all
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What to do next?

� Graph decomposition:

Coloring of Western-Europe does not depend on Eastern-Europe, 
only on Central-Europe

Coloring of Iberian peninsula only depends on color of France
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Graph Decomposition

� First 3 solutions equivalent for rest of problem

� 3rd solution has lowest number of colors: preferred

� 4th solution is not equivalent for rest of problem

� Only #colors non-equivalent solutions exist

Coloring of rest of Europe only depends on France

Does there exist (polynomial-time) algorithms that use this 
information?
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Independent Set
on trees

� Repeatedly 

� Select a (all) leaf(s) of the tree in IS

� Remove it (them) and its (their) neighbors
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Weighted Independent Set 
on trees

� Root tree at arbitrary vertex, T(v) subtree rooted at v

� A(v) = max weighted IS in T(v)

� B(v) = max weighted IS in T(v) not containing v

For leafs v:

� A(v)=c(v); B(v)=0

For v with children x1,…,xk

� B(v)=A(x1)+…+A(xk)

� A(v)=max{c(v)+B(x1)+…+B(xk),B(v)}

B(France)=3+2+5, A(France)=9+0+0+5
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Beyond trees: 
series-parallel graphs

� SP-tree: binary tree representing parallel and 

series composition of series-parallel graph

� leafs ~ edges

� S-nodes for series

� P-nodes for parallel

� Subtrees correspond to SP-graphs

Parallel composition Series composition
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Weighted Independent Set
on series-parallel graphs

� (G,s,t) defines SP-graph, G(i) SP-graph for subtree rooted at i

� AA(i) = max WIS containing both s and t

AB(i) = max WIS containing s but not t

BA(i) = max WIS containing t but not s

BB(i) = max WIS containing neither s nor t

� Leafs: AA(i)=-∞, AB(i)=c(s), BA(i)=c(t), BB(i)=0

� Internal S-node i with children j and k (s’ terminal between j,k):

AA(i) := max{ AA(j)+AA(k)-c(s’), AB(j)+BA(k) }

AB(i) := max{ AA(j)+AB(k)-c(s’), AB(j)+BB(k) }, …

� Internal P-node i with children j and k:

AA(i) := AA(j)+AA(k)-c(s)-c(t)

AB(i) := AB(j)+AB(k)-c(s), …

Generalization beyond series-parallel graphs?
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Overview

� Introduction

� Tree Decompositions

� Computing Treewidth

� Using Treewidth
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Tree Decomposition

� A tree decomposition:

� Tree with a vertex set 

associated with every 

node

� For all edges {v,w}: 

there is a set 

containing both v and 

w

� For every v: the nodes 

that contain v form a 

connected subtree

Definition
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Tree Decomposition

� A tree decomposition:

� Tree with a vertex set 

associated with every 

node

� For all edges {v,w}: 

there is a set 

containing both v and 

w

� For every v: the nodes 

that contain v form a 

connected subtree
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Treewidth

� Width of tree decomposition:

� Treewidth of graph G: tw(G)= minimum 

width over all tree decompositions of G.

a b c
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g h
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maximum bag size - 1

Definition
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First observations

Each clique has to be part of at least one node

Clique number - 1 is a lower bound for treewidth

b c

d e
f

ha g
b c c

cd
e

hf fa ga a g

later more lower bounds ...

Trees have treewidth 1
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Graphs of bounded treewidth

� Graphs of bounded treewidth generalize both 

trees and series-parallel graphs

� Trees have treewidth 1 v.v.

� Series-parallel graphs have treewidth at most 2

� Treewidth measures the tree-likeness of graphs

� Concept introduced by Robertson & Seymour in 

1980s in their work on graph minor theorem

Definition
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Algorithms using tree 
decompositions

� Step 1: Find tree decomposition of width bounded by some small k.

� Heuristics.

� O(f(k)n) in theory.

� Fast O(n) algorithms for k=2, k=3.

� By construction, e.g., for trees, series-parallel-graphs.

� Step 2: Use dynamic programming, bottom-up on the tree.

� Root tree (I,F)

� Let Yi=∪∪∪∪Xi over all descendants of i∈I

� Compute optimal solution in G[Yi] for each set S ⊆ Xi, based on 

the solutions for the children

TD-based Algorithms
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Weighted Independent Set 
on graphs with treewidth k

� For node i in tree decomposition, S ⊆ Xi write

� R(i, S) = maximum weight of IS S of G[Yi] with S ∩ Xi = S, – ∞ if 

such S does not exist

� Compute for each node i, a table with all values R(i, …).

� Each such table can be computed in O(2k) time when 

treewidth at most k.

� Gives O(n) algorithm when treewidth is (small) constant.

Many problems can be solved in polynomial time given a graph of 

bounded treewidth

TD-based Algorithms
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Treewidth results

� Arnborg, Lagergren and Seese (1991), based upon the work of 

Courcelle (1990), showed that many NP-complete problems 

modeled on graphs with bounded branchwidth or treewidth can be 

solved in polynomial time using a branch decomposition or tree 

decomposition of the graph.

� NP-complete problems modeled on graphs:

� Traveling Salesman Problem

� Disjoint Paths Problem

� Maximum Planar Subgraph

� General Minor Containment

� (Partial) Constraint Satisfaction Problems

TD-based Algorithms
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Branchwidth, Treewidth, Pathwidth

Robertson and Seymour [106]: For a graph G =(V,E ), 
max{ bw(G), 2 } ≤ tw(G) + 1 ≤ max{ 3/2 bw(G), 2 }

Graphs with bounded treewidth have bounded branchwidth and 
vice versa

Pathwidth: T is restricted to be a path; tw(G) ≤≤≤≤ pw(G)

Trees do not have bounded pathwidth

Given a branch decomposition, we can construct a tree 
decomposition with TD-width at most 3/2 times the BD-width
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Overview

� Introduction

� Tree Decompositions

� Computing Treewidth

� Using Treewidth
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Computing Treewidth in Theory

Computing TREEWIDTH is NP-hard Arnborg et al.[13]

Computing treewidth

Linear time algorithm for TREEWIDTH if k not part of the input
Bodlaender [25]

TREEWIDTH:
Given k ≥ 0 and G a graph, is the treewidth of G ≤ k ?

� Exponential in k
� Not practical, even for k as small as 4

Several exponential time algorithms

� O( 2n poly(n) ) time Arnborg et al.[13]
� O( 1.9601n poly(n) ) time Fomin et al.[57]
� O( 2.9512n poly(n) ) time, O(poly(n)) space [ESA2006]
� poly(n) denotes a polynomial in n

References refer to INFORMS Tutorials 2005 chapter
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Computing Treewidth in Practice

Each (maximal) clique has to be part of at least one node

Simplicial vertex:
A vertex is simplicial if all its neighbors are mutually adjacent

A simplicial vertex is part of only one maximal clique

A simplicial vertex has to occur in only one TD-node

Treewidth Upper bounds

Reconsider our first observation:
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A first algorithm:

Assumption: G has a simplicial vertex, and after ist removal 
there is again and again a simplicial vertex

Return tree decomposition

Attach node to a node containing all neighbors of vi in G[vi,...,vn]

Construct a TD-node with vi and all its neighbors in G[vi,...,vn]

For i = n down to 1 do

Repeatedly remove a simplicial vertex of G: v1,...,vn

… …

Width of returned TD equals maximum clique minus 1

Treewidth Upper bounds
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Example

There does not always exist a simplicial vertex in general graphs!
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If the assumption holds:

Tree Decompoisition is optimal !!!

Which graphs satisfy the assumption ?

Perfect Elimination Scheme σ = [v1,...,vn]:
An ordering of the vertices such that for all i, vi is a simplicial
vertex of the induced graph G[vi,...,vn]

Chordal graph:
Every cycle of size at least 4 contains a chord

G is chordal iff there exists a perfect elimination scheme [59,64]

Width of returned TD equals maximum clique minus 1

Optimal algorithm for chordal graphs!

Treewidth Upper bounds
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Non-chordal graphs

What to do with non-chordal graphs ?

Gavril [59]: A graph G =(V,E ) is chordal if and only if there 
exists a tree T =(I,F ) such that one can associate with each 
vertex v ∈V a subtree Tv=(Iv,Fv ) of T, such that vw ∈E if and 
only if Iv ∩ Iw ≠ ∅. 

There exists a chordalization H H =(V,E ∪F ) of G with maximum 

clique size k+1 if and only if the treewidth of G is k.

b d f
i j

l

k
h

g

eca σ = [b,a,c,d,g,h,e,f,i,k,j,l]

Treewidth Upper bounds
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Chordalization Algorithms

Linear time algorithms to test graph chordality:

� Lexicographic Breadth First Search (LEX_M & LEX_P)

� Rose, Tarjan & Lueker [111]

� Maximum Cardinality Search (MCS & MCS_M)

� Tarjan & Yannakakis [120], Heggernes et al. [84]

Treewidth Upper bounds

Find chordalization of G with small maximum clique size

� Adapt algorithms to test if a graph is chordal

� Algorithms for related MIN-FILL-IN problem

Dirac, 1961: Every non-complete triangulated graph has two 
nonadjacent simplicial vertices

Without loss of generality an arbitrary vertex can be put at the

end of the elimination scheme
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Maximum Cardinality Search

� MCS

� Repeatedly select vertex with 

largest number of labeled 

neighbors b d

e

c

a

-0

-0-0

-0 -0

-0

-0-1

50 -1

-1

-141

50 -1

31

-241

50 -1

31

2241

50 -2

31

2241

50 12

Step 0: [.,.,.,.,.]

Step 1: [.,.,.,.,a]

Step 2: [.,.,.,b,a]

Step 3: [.,.,c,b,a]

Step 4: [.,d,c,b,a]

Step 5: [e,d,c,b,a]

Treewidth Upper bounds
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Minimum Fill-In problem

MINIMUM FILL-IN:
min{ |F| : (V,E+F) is chordal }

Computing MINIMUM FILL-IN is NP-hard

Heuristics:
� Greedy Fill-In

� repeatedly select vertex that introduces least number 
of edges to be simplicial

� remove vertex, add fill-in edges
� Minimum Degree Fill-In

� repeatedly select vertex with smallest degree
� remove vertex, add fill-in edges

Treewidth Upper bounds
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Further algorithms

�Minimum separating set heuristic [83]

�Sparse Fill-In [unpublished; work in progress]

� Combination of Greedy and Minimum Degree Fill-In algorithms

�Metaheuristics

� Tabu Search [45]

� Simulated Annealing [79]

� Genetic algorithm [92]

� Minimal Chordalization

� Turns chordalization into a minimal one

Treewidth Upper bounds
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Upper bounds by example

Upper bounds for pignet2-pp (1002 vertices, 3730 edges)
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Computing Treewidth

Steps so far are “as optimal as” possible!



20

39

Arie Koster

Two types of preprocessing

� Reduction rules (Simplification) [39]

� Rules that change G into a smaller `equivalent’ graph

� Maintains a lower bound variable for treewidth low

� Safe separators (Divide and Conquer) [32]

� Splits the graph into two or more smaller parts with 

help of a separator that is made to a clique

Treewidth preprocessing
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Reduction

� Safe rules that

� Make G smaller

� Maintain optimality…

� Use for preprocessing graphs when computing treewidth

Input Graph G 
Preprocessing

rules
Reduced Graph H

Compute
Treewidth 
for H

Tree decomposition
for H

Undo
preprocessing

Tree decomposition
for G

Compute
Treewidth 
for G

Treewidth preprocessing
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Reduction rules

� Uses and generalizes ideas and rules from algorithm to recognize

graphs of treewidth ≤ 3 from Arnborg and Proskurowski

� Example: Series rule: remove a vertex of degree 2 and connect its 

neighbors

� Safe for graphs of treewidth ≥ 2

v

Series rule

Original Graph Reduced Graph

Treewidth preprocessing
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ReduceReduce

Undo reductionsUndo reductions

a b c

d
e f

g

a b

e f

a b
e f

SolveSolve

g

e f

a b
e f

g
fe

cb

f

a b
e f

g
fe

b
fca b

e f

g
fe

b
fc

dc f

Example

Treewidth preprocessing
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� Variable: low (integer, lower bound on treewidth)

� Graph G

� Invariant: value of max(low, treewidth(G))

� Rules

� Locally rewrite G to a graph with fewer vertices

� Possibly update or check low

� We say a rule is safe, when it maintains the invariant.

� Use only safe rules.

Type of rules

Treewidth preprocessing

44

Arie Koster

Rule 1: Simplicial rule

� Let v be a simplicial vertex in G

� Remove v.

� Set low := max (low, degree(v))

� Simplicial rule is safe.

� Special cases: islet rule (singletons), twig rule (degree(v) = 1)

Simplicial =
Neighbors form a clique

Simplicial =
Neighbors form a clique

Simplicial rule

Original Graph Reduced Graph

Treewidth preprocessing
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Rule 2: Almost Simplicial rule

� Let v be a almost simplicial vertex 

in G and low ≥ degree(v)

� Remove v, 

� turn neighbors into clique

� Almost Simplicial rule is safe.

Almost Simplicial =
Neighbors except one 
form a clique

Almost Simplicial =
Neighbors except one 
form a clique

Almost Simplicial rule

Original Graph Reduced Graph

Treewidth preprocessing
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Example low = 3
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Increasing low further

Treewidth preprocessing

Further rules: buddy/buddies rule, (extended) cube rule

Arnborg and Proskurowski [12]:

� tw(G)=1 if and only if G is reduced to the empty graph by islet 

rule (vertices of degree 0) and twig rule (vertices of degree 1)

� tw(G)=2 if and only if G is reduced to the empty graph by islet, 
twig, and series rule (vertices of degree 2)

� tw(G)=3 if and only if G is reduced to the empty graph by islet, 

twig, series, triangle, buddy, and cube rule

Low can be increased to 2, 3, and 4 respectively if these rules 
cannot be applied anymore and graph is not empty yet.

48

Arie Koster

Results for probabilistic networks

instance |V| |E| |V| |E| low instance |V| |E| |V| |E| low

alarm 37 65 0 0 4 oesoca+ 67 208 14 75 9
barley 48 126 26 78 4 oesoca 39 67 0 0 3

boblo 221 328 0 0 3 oesoca42 42 72 0 0 3

diabetes 413 819 116 276 4 oow-bas 27 54 0 0 4

link 724 1738 308 1158 4 oow-solo 40 87 27 63 4
mildew 35 80 0 0 4 oow-trad 33 72 23 54 4
munin1 189 366 66 188 4 pignet2 3032 7264 1002 3730 4
munin2 1003 1662 165 451 4 pigs 441 806 48 137 4
munin3 1044 1745 96 313 4 ship-ship 50 114 24 65 4
munin4 1041 1843 215 642 4 vsd 38 62 0 0 4

munin-kgo 1066 1730 0 0 5 water 32 123 22 96 5
wilson 21 27 0 0 3

original preprocessedoriginal preprocessed

� Some cases could be solved with preprocessing to optimality

� Often substantial reductions obtained

� Time needed for preprocessing is small (never more than a few 

seconds)

Treewidth preprocessing
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Graph separators

� S ⊂V is a separator of G, if G -S has more than one connected 

component

� S is a minimal separator, if S is a separator and S does not contain 

another separator as proper subset

S

Treewidth preprocessing
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Safe separator

S is safe for treewidth, or a safe separator if and only if the treewidth 

of G equals the maximum over the treewidth of all graphs obtained by

� Taking a connected component W of G -S

� Take the graph, induced by W ∪S

� Make S into a clique in that graph

+

Original Graph Components

Treewidth preprocessing
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Using safe separators

� Splitting the graph for divide and conquer preprocessing

� Until no safe separators can be found

� Slower but more powerful compared to reduction

� Most or all reduction rules can be obtained as special cases of 

the use of safe separators

� Look for sufficient conditions for separators to be safe

Treewidth preprocessing
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Lemma 1 

Let S be a separator in G. The treewidth of G is at most the 
maximum over all connected components W of G of the treewidth of 
G [W ∪S ] + clique(S )

+

Treewidth preprocessing
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Lemma 2

�Clique separators are safe

�Separators of size 0 and 1 are safe

+

Contraction of 
bold edges

Treewidth preprocessing

Let S be a separator. If for all components W of G -S, G 
[W ∪S ] contains a clique on S as a minor, then S is safe.
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Safeness of 
minimal almost clique separators

� If one component is contracted to the red vertex, the separator 

turns into a clique: minimal almost clique separators are safe!

� Minimal Separators of size 2 are safe

� `Almost all’ minimal separators of size 3 are safe 

� only 3 independent vertices can be non-safe

� Minimal separators of size 3 that split off at least two vertices are 

safe

S is almost
clique when S -v
is a clique for 
some vertex v

S is almost
clique when S -v
is a clique for 
some vertex v

Treewidth preprocessing
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A safe separator in Europe …
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Results for probabilistic networks

instance |V| |E| clique
almost-
clique size 3 # graphs # cliques # To Do low

barley-pp 26 78 0 7 0 8 7 1 5
diabetes-pp 116 276 0 85 0 86 84 2 4
link-pp 308 1158 0 0 0 1 0 1 4
munin1-pp 66 188 0 2 0 3 2 1 4
munin2-pp 165 451 6 13 4 24 12 12 4
munin3-pp 96 313 2 2 2 7 4 3 4
munin4-pp 215 642 3 4 0 8 2 6 4
oesoca+-pp 14 75 0 0 0 1 0 1 9
oow-trad-pp 23 54 0 0 1 2 1 1 4
oow-solo-pp 27 63 0 0 1 2 0 2 4
pathfinder-pp 12 43 0 5 0 6 6 0 6
pignet2-pp 1002 3730 0 0 0 1 0 1 4
pigs-pp 48 137 0 1 0 2 1 1 5
ship-ship-pp 24 65 0 0 0 1 0 1 4
water-pp 22 96 0 1 0 2 1 1 6

size separators output

Treewidth preprocessing
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Why Lower Bounds?

� Benchmark quality of constructed tree decompositions (upper bounds)

� Speed up of branch & bound methods (e.g. Gogate & Dechter [63])

� Indicates expected performance of dynamic programming algorithms

Treewidth Lower Bounds

Very dense areas in graphs contribute to treewidth

Grid structures contribute to treewidth

tw(G)=min(n,m)

58

Arie Koster

Induced subgraphs

Theorem The treewidth of a graph can not increase by taking
subgraphs

)()( GtwHtw ≤

)()( GtwGLB ≤
)()( GtwHLB ≤

H subgraph of G

Corollary If the LB can increase by taking subgraphs, an 
improved lower bound can be found by taking the maximum
over all subgraphs:

)()(max GtwHLB
GH

≤
⊆

Treewidth Lower Bounds
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Foundations II

Theorem The treewidth of a graph can not increase by taking
minors

)()( GtwHtw ≤

)()( GtwGLB ≤
)()( GtwHLB ≤

H minor of G

Corollary If the LB can increase by taking minors, an 
improved lower bound can be found by taking the maximum
over all minors:

)()(max GtwHLB
GH

≤
≺

Treewidth Lower Bounds
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Degree-Based Lower Bounds I

Lemma The minimum degree of a graph is a lower bound for
treewidth

)()( GtwG ≤δ

Corollary The degeneracy of a graph is a lower bound for
treewidth

)()(max)( GtwHGD
GH

≤=
⊆

δδ

Corollary The contraction degeneracy of a graph is a lower
bound for treewidth

)()(max)( GtwHGC
GH

≤= δδ
≺

Treewidth Lower Bounds
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Relationships

δ

2δ

Rγ

tw

Dδ

D2δ

DRγ

Cδ

C2δ

CRγ

= less than or equal

+1

+11)()(2 +≤ GDGD δδ
1)()(2 +≤ GCGC δδ

2*

2*

)(2)(

)(2)(

2

2

GCGC

GDGD

R

R

δγ
δγ

≤
≤

Treewidth Lower Bounds
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Complexity

δ

2δ

Rγ

tw

Dδ

D2δ

DRγ

Cδ

C2δ

CRγ

Polynomial time NP-hard

Treewidth Lower Bounds
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Lower bounds by example

40
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Treewidth Lower Bounds
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Planar Graphs

)()( GtwGC ≤δ

5)( ≤Hδ
5)( ≤GCδ

G planar, H minor of G

Theorem Planarity is closed under taking minors

Theorem The genus of G cannot increase by taking minors

)()( GtwGC ≤δ

kH +≤ 5)(δ
kGC +≤ 5)(δ

G graph of genus k, H minor of G

Treewidth Lower Bounds

Alternative lower bound by Brambles [36, ESA2005]
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Brambles

� tw(n x n grid) = n

� Search for n x n grids as minor of G

� Two different algorithms

� General graphs: 

BFS + connectivity closure; max disjoint paths

� Planar graphs:

Partition outer face; max disjoint paths in north-south, west-east

� Robertson, Seymour, Thomas ’94: every planar graph of 

treewidth k has a ck x ck grid as minor

2nd algorithm gives a constant approximation for treewidth on 
planar graphs!

Treewidth Lower Bounds
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Lower bounds by obstruction

wv

…

wv

…

Assume: 
k neighbors
tw(G)≤k-2

Edge {v,w} must be in chordalization
Clique of k+2 vertices: width≥k+1

Lower bound by Clautiaux et al.:

Until LB’ ≤ LB; return LB

Compute new LB’

If LB’ > LB, LB := LB+1

Assume tw(G) ≤ LB; Add edges by argument above

Repeat

Compute initial LB

Treewidth Lower Bounds
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Exact methods

1)(ωmin)(
)(

Η −−−−====
∈∈∈∈

HGtw
GH

Let H(G ) be the set of all chordalizations of G.

Select best H and compute maximum clique size!

O( 2n poly(n) ) time+memory algorithm [ESA 2006]

Experiments with integer programming formulation (B&C)

Branch-and-Bound algorithm Gogate and Dechter [63]

O( 2k+2 ) algorithm Shoikhet and Geiger [117]

Treewidth Exact
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Chordalization polytope



 <<<<∪∪∪∪∈∈∈∈

====
otherwise

(w)(v) and FEvw if

0

ππ1
vwy

Evwyy

Evwyy

wvvw

wvvw

∉∉∉∉≤≤≤≤++++
∈∈∈∈====++++

1

1
Existence of edges

Vwvuyyyy wvvwuwuv ∈∈∈∈++++++++≤≤≤≤++++ ,,1
Simplicity of vertices

Chordalization polytope:
Convex hull of all chordalizations H of G.

Treewidth Exact
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Chordalization polytope

)(max1)(ω)(

1)(max)(ω
],...,[

,...,1

],...,[
,...,1

ivvH
ni

ivvH
ni

vNHHtw

vNH

ni

ni

====

====

====−−−−====

++++====







 ∈∈∈∈∑∑∑∑

≠≠≠≠∈∈∈∈
Cyy

vw
vw

Vv
:maxmin

Treewidth

Chordalization polytope

CCCVCCyy C

C

i
ii →→→→≥≥≥≥⊆⊆⊆⊆∀∀∀∀−−−−≤≤≤≤++++









∑∑∑∑

−−−−

====
++++ }...,,1{:ρ,3,1)1(ρ)(ρ1

1
)1(ρ)(ρOrdering of vertices
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Objectives

Treewidth

Vvyzts

z

vw
vw ∈∈∈∈≥≥≥≥∑∑∑∑

≠≠≠≠

..

min

Fill-in

∑∑∑∑
∉∉∉∉

++++====
Evw

wvvw yyfts

f

)(..

min

Weighted Treewidth

Vvyccwts

w

vw
vwwv ∈∈∈∈++++≥≥≥≥ ∑∑∑∑

≠≠≠≠

)log()log(..

min

Cy∈∈∈∈ Chordalization polytope

Treewidth Exact
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Separation of ordering inequalities

CCCVCCyy C

C

i
ii →→→→≥≥≥≥⊆⊆⊆⊆∀∀∀∀−−−−≤≤≤≤++++









∑∑∑∑

−−−−

====
++++ }...,,1{:ρ,3,1)1(ρ)(ρ1

1
)1(ρ)(ρ

Inequality for every subset & every order of the subset

Implicit consideration by separation

(((( )))) (((( )))) 111 )1(ρ)(ρ1

1
)1(ρ)(ρ −−−−≤≤≤≤−−−−++++









−−−−∑∑∑∑

−−−−

====
++++ C

C

i
ii yy

1)1(ρ)(ρ1

1
)1(ρ)(ρ ≥≥≥≥++++








∑∑∑∑

−−−−

====
++++ C

C

i
ii xxvwvw yx −−−−==== 1:

Separation by shortest path computation in auxiliary digraph

Treewidth Exact
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Cliques

Ordering represents a chordal graph

Without loss of generality, we can put an arbitrary vertex at the 

end of the ordering

Dirac (1961): Every non-complete chordal graph has two 
nonadjacent simplicial vertices

Without loss of generality, we can put a (maximal/maximum) 

clique in G at the end of the ordering

Tarjan & Yannakakis (1984): Ordering can be build from 
the back, selecting recursively vertex with highest number of 
ordered neighbors

Treewidth Exact
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Petersen graph

379

>886765

57

278018

B&C nodes

0

41.18

0

0

Gap (%)

1.27maximum 

clique

Fill-in

>3600noneFill-in

0.43maximum 

clique

Treewidth

449.18noneTreewidth

CPU time (s)StrategyObjective

Maximum clique breaks symmetries(?); simplifies computation

Fill-in more difficult than treewidth???

Treewidth Exact
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Instances

Randomly generated partial-k-trees (Shoiket&Geiger,1998)

� Generate k-tree
� Randomly remove p% of the edges
�treewidth at most k
�n=100, k=10, p=30/40/50

Instances from frequency assignment, probabilistic networks, …

Computational framework

SCIP (http://scip.zib.de/) with CPLEX 10.0 as LP solver

Treewidth Exact



38

75

Arie Koster

8.60

8.80

9.00

9.20

9.40

9.60

9.80

10.00

10.20

1 2 3 4 5 6 7 8 9 10

LP end of root

Results partial k-trees: treewidth

30%: 4 out of 10 solved within 1 hour CPU time

40%: 1 out of 10 solved within 1 hour CPU time

9.40

9.50

9.60

9.70

9.80

9.90

10.00

10.10

1 2 3 4 5 6 7 8 9 10

LP end of root

30% 40%

Treewidth

Very good lower bound, difficult to find optimal solution

Treewidth Exact
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Results realistic instances

3.61

1.93

2.25

1.33

1.29

0.86

CPU(s)

fill-in

3

2

2

1

9

2

#nodes

6861

8568

986

349

2767

1307

#nodes

133.67

103.50

15.22

7.88

13.15

4.88

CPU(s)

Combinedtreewidth

943691875.244815625link-pp-minor-025

27125399.614315124link-pp-minor-024

16131128.214014423link-pp-minor-023

585837.823813722link-pp-minor-022

723829.913513021link-pp-minor-021

968023.422912520link-pp-minor-020

#nodesCPU(s)fi(G)|E||V|instance

minors of link-pp selected; ω(G)=9, tw(G)=13

0.1

1

10

100

1000

10000

20 21 22 23 24 25

C
P

U
 t

im
e 

(s
)

treewidth fill-in combined

fz
mnn 1)1(

1

2
1min ++++−−−−−−−−++++

Treewidth Exact
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Overview

� Introduction

� Tree Decompositions

� Computing Treewidth

� Using Treewidth
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Minimum Interference FAP

� Graph G=(V,E)

� Vertices correspond to 

bi-directional connections

� Edges indicate interference 

between two connections

� For every vertex v, set of 

frequency pairs D(v) is specified

� Interference quantified by edge penalties p(v,f ,w,g)

� Preferences for frequencies quantified by penalties q(v,f)

� Objective: Select for each vertex exactly one frequency, 

such that the total penalty is minimized.

TD-based Algorithms
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Dynamic Programming Algorithm

b d f
i j

l

k
h

g

eca

Contract vertices according to tree-decomposition.

TD-based Algorithms

80

Arie Koster

Dynamic Programming Algorithm

ab

d f
i j

l

k
h

g

ec

D D Dab a b= ×
Contract vertices according to tree-decomposition.

TD-based Algorithms
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Dynamic Programming Algorithm

f
i j

l

k
h

g

ec

Contract vertices according to tree-decomposition.

D D Dabd ab d⊂ × vertex b is not connected 
with rest of the graph.

b

a

d

TD-based Algorithms
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Does it work in practice ?

� Only with (pre)processing techniques

� Graph reduction

� Vertices with degree 1 can be removed

� Vertices with degree 2 can be removed

� Domain reduction

� Upper bounding

� Dominance of domain elements

TD-based Algorithms
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Computational Results

1

100

10000

1E+06

1E+08

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

subsets during dynamic programming algorithm

# 
as

si
g

n
m

en
ts

computed theoretical

TD-based Algorithms
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Results Tree Decomposition

Instance LP QP CSP Tree Decomposition 

    Preprocessing DP 

Upper 
Bound 

CELAR06 5 - 3389 0 3389 3389 
CELAR07 5 - - 0 - 343592 
CELAR08 - - - 0 - 262 
CELAR09 - 14969 - 11391 15571 15571 
CELAR10 - 31204 - 31516 Solved 31516 
GRAPH05 - - - 221 Solved 221 
GRAPH06 - - - 4112 4123 4123 
GRAPH07 - - - 4324 Solved 4324 
GRAPH11 - - - 2553 - 3080 
GRAPH12 - - - 11496 11827 11827 
GRAPH13 - - - 8676 - 10110 

 

TD-based Algorithms
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Further results

� CALMA benchmarks:

� For 7 of the 11 instances optimal solution found

� For the other 4 instances lower bounds in the range 

57.3% to 98.2% of the upper bound

� Tree Decomposition can be used  to solve 

optimization problems in practice

� Application to other optimization problems

TD-based Algorithms
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Open problems

� Is TREEWIDTH polynomial for planar graphs ?

� Is TREEWIDTH NP-hard for planar graphs ?

� Does there exist (practical) integer programming 

formulations for computing treewidth?

� How good can the contraction degeneracy be in 

general graphs (as lower bound for tw(G) ) ?

� Do other heuristics than MCS have a lower-

bounding counter-part ?
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Open problems

Which optimization problems
can be solved in practice with 

Graph Decomposition-based algorithms

?
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Further reading
� Branch and Tree Decomposition Techniques for Discrete Optimization, INFORMS 

TutORials in Operations Research Series, Chapter 1, 2005 (with Illya Hicks, E. 
Kolotoğlu)

� Combinatorial Optimisation on Graphs of bounded Treewidth, The Computer Journal, 
2006, to appear (with H. Bodlaender)

� Solving Partial Constraint Satisfaction Problems with Tree Decomposition, Networks 
40, 2002 (with S. van Hoesel, A. Kolen)

� Lower Bounds for Minimum Interference Frequency Assignment Problems, Ricerca
Operativa 30, 2000 (with S. van Hoesel, A. Kolen)

� Pre-processing rules for triangulation of probabilistic networks, Computational 
Intelligence 21, 2005 (with H. Bodlaender, F. van den Eijkhof)

� Safe Separators for Treewidth, Discrete Mathematics 306, 2006 (with H. Bodlaender)

� Contraction and Treewidth Lower Bounds, Journal of Graph Algorithms and 
Applications 10/ ESA 2004, LNCS 3221 (with H. Bodlaender, T. Wolle)

� Treewidth Lower Bounds with Brambles, ESA 2005, LNCS 3669 (with H. Bodlaender, 
A. Grigoriev)

� On Exact Algorithms for Treewidth, ESA 2006, LNCS 4168 (with H. Bodlaender, F. 
Fomin, D. Kratsch, D. Thilikos)

� On the Chordalization Polytope and Treewidth, in preparation

� http://fap.zib.de http://www.zib.de/koster/
http://www.cs.uu.nl/people/hansb/treewidthLIB/ koster@zib.de


