Decomposition of Graphs:

Upper bounds, Lower bounds, and
Exact methods to compute Treewidth

SOFT'06
25 September 2006, Nantes

2 Arie Koster Zuse Institute Berlin (ZIB), Germany

koster@zib.de http://www.zib.de/koster/

ZAB

Overview

Introduction

Tree Decompositions

Computing Treewidth

Using Treewidth

Back in 1997 ...

= Minimum Interference Frequency Assignment

NLT L= M 1 Slr = Sl il

300 ke IHe 32 bz 200 MHz 3 0Hz

T Eneyelopastia b tanmica, |

= Good upper bounds,
neither lower bounds nor optimal solutions

- 4= Integer linear programming does not work
ZIBl 5 \What to do next?

Arie Koster

Properties of 2G
wireless communication

Transmitter o Receiver

detects
oscillations

Quality of the received signal:
Signal-to-noise ratio
Poor signal-to-noise ratio:
interference of the signal
Obijective: Frequency plan without interference or, second

best, with minimum interference

emits electromagnetic
oscillations at a frequency

Interference

Level of interference depends on
= distance between transmitters, geographical position,
= power of the signals, direction in which signals are transmitted,
= weather conditions

= assigned frequencies
= co-channel interference
= adjacent-channel interference

|:> Interference is measured between pairs of transmitters
Zi B

Arie Koster

Separation

Frequencies assigned to the same location
(site) have to be separated

Blocked channels

Whole spectrum is not allowed at every
location:
= government regulations,

= agreements with operators in neighbori
regions,

= requirements military forces, etc.

Arie Koster

Modeling MI-FAP

= Interference graph

= Vertices represent transmitters;
Domain of assignable frequencies

= Edges represent constraints/interference
Matrix with penalties for combination of frequenciesg

2 |:> Partial Constraint Satisfaction Problem (with binary relations)

| More frequency assignment: http://fap.zib.de |

Related problems
- Vertex Coloring

Integer Programming suffers from symmetry;
linear relaxation not strong at all

What to do next?

Coloring of Western-Europe does not depend on Eastern-Europe,
only on Central-Europe

Coloring of Iberian peninsula only depends on color of France

10

Graph Decomposition

|:> Coloring of rest of Europe only depends on France

e e

= First 3 solutions equivalent for rest of problem

= 3rd solution has lowest humber of colors: preferred
= 4th solution is not equivalent for rest of problem
= Only #colors non-equivalent solutions exist

Does there exist (polynomial-time) algorithms that use this
information?

11

Independent Set
on trees

= Repeatedly
= Select a (all) leaf(s) of the tree in IS
= Remove it (them) and its (their) neighbors

12

Weighted Independent Set
on trees

= Root tree at arbitrary vertex, T(v) subtree rooted at v
= A(v) = max weighted IS in T(v)

= B(v) = max weighted IS in T(v) not containing v

c For leafs v:
= A(v)=c(v); B(v)=0

3 For v with children x;,...,X,
= B(V)=A(X))+...+A(X,)
= A(v)=max{c(v)+B(x,)+...+B(x,),B(v)}

B(France)=3+2+5, A(France)=9+0+0+5

13

Beyond trees:
series-parallel graphs

81 = 82

{79

t1 =1ta

t2
Parallel composition Series composition

SP-tree: binary tree representing parallel and
series composition of series-parallel graph

leafs ~ edges

hg
S-nodes for series bf \-\
- li E

P-nodes for parallel “
qﬂ P qf f(’ (l”!“d

Subtrees correspond to SP-graphs {
ab 1:*

14

Weighted Independent Set
on series-parallel graphs

= (G,s,t) defines SP-graph, G(i) SP-graph for subtree rooted at i

= AA(i) = max WIS containing both s and t
AB(i) = max WIS containing s but not t
BA(i) = max WIS containing t but not s
BB(i) = max WIS containing neither s nor t

= Leafs: AA(i)=-00, AB(i)=c(s), BA(i)=c(t), BB(i)=0
= Internal S-node i with children j and k (s’ terminal between j,k):
AA(i) 1= max{ AA()+AA(k)-c(s"), AB(j)+BA(k) }
AB(i) := max{ AA(j)+AB(k)-c(s"), AB(3)+BB(Kk) }, ...
= Internal P-node i with children j and k:
AA(I) := AAQG)+AA(K)-c(s)-c(t)
AB(i) := AB(j)+AB(k)-c(s), ...

Generalization beyond series-parallel graphs?

15

Overview

Introduction

= Tree Decompositions

Computing Treewidth

Using Treewidth

16

Tree Decomposition

= A tree decomposition:

associated with every
node

= For all edges {v,w}:
there is a set

= For every v: the nodes
that contain v form a
connected subtree

= Tree with a vertex set b

containing both v and @ @ @ @
w

7
Tree Decomposition

= A tree decomposition:

= Tree with a vertex set b< ¢
associated with every
node

= For all edges {v,w}:
there is a set

containing both v and @ @ @ @
W

= For every v: the nodes @
that contain v form a

connected subtree

z
Tree Decomposition

= A tree decomposition: a 9
* Tree with a vertex set b< ¢
associated with every e f
node

= For all edges {v,w}:
there is a set

containing both v and @ @
w

= For every v: the nodes
that contain v form a
connected subtree

5

Treewidth
= Width of tree decomposition:
a 9 h
max, | X; [-1 b<c f

| maximum bag size - 1 |

» Treewidth of graph G: tw(G)= minimum
width over all tree decompositions of G.

a0 N (D
o &)

20

First observations

: @HeD-(eo

(@]
-

Each clique has to be part of at least one node

Cligue number - 1 is a lower bound for treewidth

later more lower bounds ...

Trees have treewidth 1

10

21

Graphs of bounded treewidth

= Graphs of bounded treewidth generalize both
trees and series-parallel graphs

= Trees have treewidth 1 v.v.

= Series-parallel graphs have treewidth at most 2

= Treewidth measures the tree-likeness of graphs

= Concept introduced by Robertson & Seymour in
1980s in their work on graph minor theorem

Algorithms using tree

decompositions

= Step 1: Find tree decomposition of width bounded by some small 4.
= Heuristics.
= O(f(K)n) in theory.
= Fast O(n) algorithms for k=2, k=3.
= By construction, e.g., for trees, series-parallel-graphs.

= Step 2: Use dynamic programming, bottom-up on the tree.
= Root tree (I,F)
= Let Y;=0X; over all descendants of i0I

= Compute optimal solution in G[Y;] for each set S O X;, based on
the solutions for the children

11

y Weighted Independent Set

on graphs with treewidth k

» For node /in tree decomposition, S0 X, write

= R(4) = maximum weight of IS Sof G[Y,] with Sn X;= S, — w0 if
such Sdoes not exist

= Compute for each node / a table with all values R(j, ...).

» Each such table can be computed in O(2%) time when
treewidth at most 4.

= Gives O(n) algorithm when treewidth is (small) constant.

|:> Many problems can be solved in polynomial time given a graph of
bounded treewidth

a
Treewidth results

= Arnborg, Lagergren and Seese (1991), based upon the work of
Courcelle (1990), showed that many NP-complete problems
modeled on graphs with bounded branchwidth or treewidth can be
solved in polynomial time using a branch decomposition or tree
decomposition of the graph.

= NP-complete problems modeled on graphs:

» Traveling Salesman Problem

Disjoint Paths Problem

Maximum Planar Subgraph

General Minor Containment

(Partial) Constraint Satisfaction Problems

25

Branchwidth, Treewidth, Pathwidth

Robertson and Seymour [106]: For a graph G =(V,E),
max{ bw(G), 2 } < tw(G) + 1 < max{[3/2 bw(G)], 2 }

Graphs with bounded treewidth have bounded branchwidth and
vice versa

Given a branch decomposition, we can construct a tree
decomposition with TD-width at most 3/2 times the BD-width

Trees do not have bounded pathwidth

|:> Pathwidth: T is restricted to be a path; tw(G) < pw(G)

26

Overview

Introduction

Tree Decompositions

Computing Treewidth

Using Treewidth

13

27

Computing Treewidth in Theory

TREEWIDTH:
Given k = 0 and G a graph, is the treewidth of G< k ?

|:> Computing TREEWIDTH is NP-hard ~ Arnborg et al.[13]

Linear time algorithm for TREEWIDTH if k not part of the input
Bodlaender [25]

= Exponential in k
= Not practical, even for k as small as 4

Several exponential time algorithms

= O(2" poly(n)) time Arnborg et al.[13]
= O(1.9601" poly(n)) time Fomin et al.[57]
= O(2.9512" poly(n)) time, O(poly(n)) space [ESA2006]
= poly(n) denotes a polynomial in n
References refer to INFORMS Tutorials 2005 chapter

28

Computing Treewidth in Practice

Reconsider our first observation:

|:> Each (maximal) clique has to be part of at least one node

Simplicial vertex:
A vertex is simplicial if all its neighbors are mutually adjacent

iy

A simplicial vertex is part of only one maximal clique

A simplicial vertex has to occur in only one TD-node

14

=
A first algorithm:

Assumption: G has a simplicial vertex, and after ist removal
there is again and again a simplicial vertex

Repeatedly remove a simplicial vertex of G: vy,...,v,
For i = n down to 1 do

Construct a TD-node with v; and all its neighbors in G[v,,...,v,]

Attach node to a node containing all neighbors of v; in G[v,,...,v,]

Return tree decomposition

Arie Koster

Arie Koster

15

31

If the assumption holds:

0l

Width of returned TD equals maximum clique minus 1

|:> Tree Decompoisition is optimal !!!
Which graphs satisfy the assumption ?

Perfect Elimination Scheme o = [v;,...,v,]:
An ordering of the vertices such that for all i, v; is a simplicial
vertex of the induced graph Glv,,...,v,]

Chordal graph:
Every cycle of size at least 4 contains a chord

G is chordal iff there exists a perfect elimination scheme [59,64]

Optimal algorithm for chordal graphs!

32

Non-chordal graphs

What to do with non-chordal graphs ?

Gavril [59]: A graph G =(V,E) is chordal if and only if there
exists a tree 7=(Z F) such that one can associate with each
vertex vOVa subtree 7,=(/,F,) of 7, such that viw OEif and
only if I,n 7, 0.

|:> There exists a chordalization A =(V,£UF) of Gwith maximum
clique size k+1 if and only if the treewidth of Gis &

o= [blalcldlglhlelflilkljll]

16

=
Chordalization Algorithms

|:> Find chordalization of G with small maximum clique size

= Adapt algorithms to test if a graph is chordal
= Algorithms for related MIN-FILL-IN problem

Dirac, 1961: Every non-complete triangulated graph has two
nonadjacent simplicial vertices

|:> Without loss of generality an arbitrary vertex can be put at the
end of the elimination scheme

Linear time algorithms to test graph chordality:

= Lexicographic Breadth First Search (LEX_M & LEX_P)
= Rose, Tarjan & Lueker [111]

= Maximum Cardinality Search (MCS & MCS_M)
= Tarjan & Yannakakis [120], Heggernes et al. [84]

Z
Maximum Cardinality Search

"M QL]
= Repeatedly select vertex with
largest number of labeled
neighbors

Step 0: [,/
Step 1: [.,.,.,-,@]
Step 2: [.,.,.,b,a]
Step 3: [.,.,¢,b,a]
Step 4: [.,d,c,b,a]
Step 5: [e,d,c,b,a]

=
Minimum Fill-In problem

MINIMUM FILL-IN:
min{ |F| : (V,E+F) is chordal }

|:> Computing MINIMUM FILL-IN is NP-hard

Heuristics:
= Greedy Fill-In
= repeatedly select vertex that introduces least number
of edges to be simplicial
= remove vertex, add fill-in edges
= Minimum Degree Fill-In
= repeatedly select vertex with smallest degree
= remove vertex, add fill-in edges

e
Further algorithms

->Minimum separating set heuristic [83]

—>Sparse Fill-In [unpublished; work in progress]

= Combination of Greedy and Minimum Degree Fill-In algorithms

—->Metaheuristics
= Tabu Search [45]
» Simulated Annealing [79]
= Genetic algorithm [92]

= Minimal Chordalization

= Turns chordalization into a minimal one

18

Z
Upper bounds by example
D
250
&
23
& ’%\&‘5\
1225 *
B ®
2 &
200
8
=] S
175 e(’
N &
K
150 7% v *
©
04»3\ ¢ & X
125 < &
100 T T T T
1 10 100 1000 10000 100000
CPU time (s) -
| Upper bounds for pignet2-pp (1002 vertices, 3730 edges) |

38

Computing Treewidth

39

| reoviihpreprcessng|
Two types of preprocessing

= Reduction rules (Simplification) [39]
= Rules that change G into a smaller "equivalent’ graph
» Maintains a lower bound variable for treewidth /ow

= Safe separators (Divide and Conguer) [32]

= Splits the graph into two or more smaller parts with
help of a separator that is made to a clique

40

-
Reduction

Preprocessing

Reduced Graph H
rules

’ Input Graph G ‘

Compute
Treewidth

Compute
Treewidth

for G for H

for G for H

preprocessing

[Tree decomposition } Undo [Tree decomposition}

= Safe rules that
= Make Gsmaller
= Maintain optimality...

= Use for preprocessing graphs when computing treewidth

20

41

Reduction rules

= Uses and generalizes ideas and rules from algorithm to recognize

= Example: Series rule: remove a vertex of degree 2 and connect its

Y = Safe for graphs of treewidth > 2

graphs of treewidth < 3 from Arnborg and Proskurowski

neighbors

Series rule

Original Graph Reduced Graph

42

Treewidth preprocessing

> X
f e f e f
g

I Reduce

Undo reductions

21

&
Type of rules

= Variable: low (integer, lower bound on treewidth)
= Graph G

» Invariant: value of max(low, treewidth(G))

» Rules

= Locally rewrite G to a graph with fewer vertices
= Possibly update or check low

= We say a rule is safe, when it maintains the invariant.
= Use only safe rules.

w
Rule 1: Simplicial rule
= Let vbe a simplicial vertex in G —
Simplicial =
* Remove v. Neighbors form a clique
= Set /ow = max (low, degree(v))
Simplicial rule

m ~ W

Original Graph Reduced Graph
= Simplicial rule is safe.

o = Special cases: islet rule (singletons), twig rule (degree(v) = 1)

45

= Let v be a almost simplicial vertex
in Gand low > degreg(V)

= Remove v,

= turn neighbors into clique

Rule 2: Almost Simplicial rule

Treewidth preprocessing

Almost Simplicial =
Neighbors except one
form a clique

Original Graph

Almost Simplicial rule

Reduced Graph

N
ZIBY - Almost Simplicial rule is safe.

Arie Koster

46

Example Jow = 3

23

g
Increasing /ow further

|:> Further rules: buddy/buddies rule, (extended) cube rule

Arnborg and Proskurowski [12]:

= tw(G)=1 if and only if G is reduced to the empty graph by islet
rule (vertices of degree 0) and twig rule (vertices of degree 1)

» tw(G)=2 if and only if G is reduced to the empty graph by islet,
twig, and series rule (vertices of degree 2)

= tw(G)=3 if and only if G is reduced to the empty graph by islet,
twig, series, triangle, buddy, and cube rule

Low can be increased to 2, 3, and 4 respectively if these rules
cannot be applied anymore and graph is not empty yet.

.
B

Arie Koster

"
Results for probabilistic networks

original preprocessed original preprocessed

instance | |V] | |E] | |V] | |E]| [low instance | |V]| | |E] | |V] | |E] | low
alarm 37 65 0 0 4 oesoca+ 67| 208 14 75 9
barley 48| 126 26 78 4 oesoca 39 67 0 0 3
boblo 221| 328 0 0 3 oesoca42 42 72 0 0 3
diabetes 413| 819| 116| 276 4 oow-bas 27 54 0 0 4
link 724| 1738| 308| 1158 4 oow-solo 40 87 27 63 4
mildew 35| 80 0 0 4 oow-trad 33] 72| 23 54 4
muninl 189| 366| 66| 188 4 pignet2 3032| 7264| 1002| 3730 4
munin2 1003| 1662 165/ 451 4 pigs 441| 806| 48| 137 4
munin3 1044| 1745 96| 313 4 ship-ship 50| 114 24 65 4
munin4 1041| 1843| 215 642 4 vsd 38 62 0 0 4
munin-kgo | 1066| 1730 0 0 5 water 32| 123 22 96 5

wilson 21 27 0 0 3

- Some cases could be solved with preprocessing to optimality
- Often substantial reductions obtained

- Time needed for preprocessing is small (never more than a few
seconds)

Arie Koster

49

Graph separators

Arie Koster

= S0OVis a separator of G, if G-Shas more than one connected
component

= Sis a minimal separator, if Sis a separator and .S does not contain
another separator as proper subset

50

Safe separator

Arie Koster

S'is safe for treewidth, or a safe separator if and only if the treewidth
of Gequals the maximum over the treewidth of all graphs obtained by

= Taking a connected component Wof G-S
= Take the graph, induced by wWQOS
= Make Sinto a clique in that graph

Original Graph Components

25

51

Using safe separators

Splitting the graph for divide and conquer preprocessing

Until no safe separators can be found

Slower but more powerful compared to reduction

= Most or all reduction rules can be obtained as special cases of
the use of safe separators

Look for sufficient conditions for separators to be safe

52

Lemmal

Let Sbe a separator in G. The treewidth of Gis at most the
maximum over all connected components W of G of the treewidth of
G[WOS] + clique(S)

26

=
Lemma 2

Let Sbe a separator. If for all components Wof G-S, G
[WDS] contains a clique on Sas a minor, then Sis safe.

-5 H

/ Contraction of

bold edges
- Clique separators are safe
- Separators of size 0 and 1 are safe
=

Safeness of
minimal almost clique separators

Sis almost
cligue when S-v
is a clique for
some vertex v

= If one component is contracted to the red vertex, the separator
turns into a clique: minimal almost clique separators are safe!

- Minimal Separators of size 2 are safe
- "Almost all’ minimal separators of size 3 are safe
= only 3 independent vertices can be non-safe

g = Minimal separators of size 3 that split off at least two vertices are
safe

27

55

A safe separator in Europe ...

Arie Koster

5
Results for probabilistic networks
size separators output
almost-

instance [V] |[E] |clique| cligue | size 3 |# graphs|# cligues # To Do| low
barley-pp 26 78 0 7 0 8 7 1 5
diabetes-pp 116| 276 0 85 0 86 84 2 4
link-pp 308| 1158 0 0 0 1 0 1 4
munini-pp 66| 188 0 2 0 3 2 1 4
munin2-pp 165| 451 6 13 4 24 12 12 4
munin3-pp 96| 313 2 2 2 7 4 3 4
munin4-pp 215 642 3 4 0 8 2 6 4
oesoca+-pp 14 75 0 0 0 1 0 1 9
oow-trad-pp 23 54 0 0 1 2 1 1 4
oow-solo-pp 27 63 0 0 1 2 0 2 4
pathfinder-pp 12 43 0 5 0 6 6 0 6
pignet2-pp 1002| 3730 0 0 0 1 0 1 4
pigs-pp 48| 137 0 1 0 2 1 1 5
ship-ship-pp 24 65 0 0 0 1 0 1 4
water-pp 22 96 0 1 0 2 1 1 6

7
Why Lower Bounds?

= Benchmark quality of constructed tree decompositions (upper bounds)
= Speed up of branch & bound methods (e.g. Gogate & Dechter [63])
= Indicates expected performance of dynamic programming algorithms

=
=

Very dense areas in graphs contribute to treewidth

Grid structures contribute to treewidth

tw(G)=min(n,m)

=
Induced subgraphs

Theorem T7he treewidth of a graph can not increase by taking

subgraphs
H subgraph of G
tw(H) < tw(G)
LB(H) < tw(G)
LB(G) < tw(G)

Corollary If the LB can increase by taking subgraphs, an
improved lower bound can be found by taking the maximum
over all subgraphs:

max LB(H) <tw(G)

29

59

Foundations 11

Theorem T7he treewidth of a graph can not increase by taking
minors

H minor of G
tw(H) < tw(G) LB(H) < tw(G)
LB(G) < tw(G)

Corollary If the LB can increase by taking minors, an
improved lower bound can be found by taking the maximum
over all minors:

max LB(H) <tw(G)

60

[Trceitn overSouncs |
Degree-Based Lower Bounds I

Lemma 7he minimum degree of a graph is a lower bound for
treewidth

3(G) < tw(G)

Corollary 7he degeneracy of a graph is a lower bound for
treewidth

D(G) = max 5(H) < tw(G)

Corollary 7he contraction degeneracy of a graph is a lower
bound for treewidth

&C(G) = max 5(H) < tw(G)

30

61

Relationships

| —— = less than or equal |

3,D(G) < D(G) +1
5,C(G) < &C(G) +1

¥<D(G) < 26,D(G)
¥:C(G) < 25,C(G)

Treewidth Lower Bounds

62

Complexity

Polynomial time

Treewidth Lower Bounds

31

63 Treewidth Lower Bounds

75
@o\
’&X
1 70 \',V
o
c
3 e © <
X
- " QD &\ @&
. P & N —~
&)

— PP &+ %\@\3’ A%

55 \)

%\@&
N
50 Y Qg
N S
® SR & {)& @*&g\
Q N O \ N
<>%§\ 0\‘3’$ X &é
400.01 0.1 1 10 100 1000 10000
CPU time (s) -
Lower bounds for graph queen15-15
Z

Planar Graphs

| Theorem Planarity is closed under taking minors |
Gplanar, Hminor of G

JC(G) < tw(G)

X(G) <5

3(H)<5

| Theorem 7he genus of G cannot increase by taking minors |

G graph of genus k, A minor of G

IC(G) < tw(G)
IC(G) <5+k
3(H) <5+k

|:> Alternative lower bound by Brambles [36, ESA2005]

=
Brambles

= tw(nxngrid) =n
= Search for n x n grids as minor of G

= Two different algorithms

= General graphs:
BFS + connectivity closure; max disjoint paths
= Planar graphs:
Partition outer face; max disjoint paths in north-south, west-east

= Robertson, Seymour, Thomas '94: every planar graph of
treewidth k has a ck x ck grid as minor

5 2nd algorithm gives a constant approximation for treewidth on
I planar graphs!
2 B

Arie Koster

g
Lower bounds by obstruction

Assume:
k neighbors
tw(G)<k-2

Clique of k+2 vertices: width>k+1
Edge {v,w} must be in chordalization

Lower bound by Clautiaux et al.:
Compute initial LB

Repeat
Assume tw(G) < LB; Add edges by argument above
Compute new LB’
If LB’ > LB, LB := LB+1

Until LB" < LB; return LB

Arie Koster

67

Exact methods

N |:> Select best /and compute maximum clique size!

Branch-and-Bound algorithm Gogate and Dechter [63]
O(2k+2)) algorithm Shoikhet and Geiger [117]

|:> O(2" poly(n)) time+memory algorithm [ESA 2006]

|:> Experiments with integer programming formulation (B&C)

| Let H(G) be the set of all chordalizations of G. |

tW(G)=HrDQi(r(13)co(H)—1

68

Chordalization polytope

Chordalization polytope:
Convex hull of all chordalizations H of G.

_[1 ifvwOEOF and n(v) < n(w)
" ~10 otherwise

[Existence of edges |
You ¥t Yoo =1 VWOE

You ¥ Yoo €1 VWOE

[Simplicity of vertices|
yUV+yUWS1+ va+ywv u|V|WDV

34

69

Chordalization polytope

[Ordering of vertices |

o
{Zl‘, yp(i)p(i+1)J+ Yoo <IC[=1 OCOV,|C[23,p:{1,...[C} -~ C

o(H) = max|Nyy, ()] +1

=1,.,nt "t

[Treewidth [

mln{nvga}x;vva:yDC

}\ Chordalization polytope

Treewidth Exact

70

Objectives

[Treewidth [
min z

st. zz)'y,, vOV
W#V

Fill-in |
min f
st. f= Z(ywv"‘ Yon)
wWwiE
[Weighted Treewidth|
mn w
st. w=log(c,)+ Y log(c,)y,, vOV

W#V

VARIOER Chordalization polytope

Treewidth Exact

35

71

| eowih bac|
Separation of ordering inequalities

‘ |:> Separation by shortest path computation in auxiliary digraph

g2
{Z:l: yP(i)P(i+1)J+ Yoo SIC=1 OCOV,|C[23,p:{1,...[C} -~ C

|:> Inequality for every subset & every order of the subset

Implicit consideration by separation

cl-1
(; (yp(i)P(i+1) _1)J + (yp(‘c‘)p(l) -1)S -1

cl2

X =1= Yo :> (Zl Xp(i)p(i+1)] X epoy 21

72

-
Cliques

|:> Ordering represents a chordal graph

Dirac (1961): Every non-complete chordal graph has two
nonadjacent simplicial vertices

|:> Without loss of generality, we can put an arbitrary vertex at the
end of the ordering

Tarjan & Yannakakis (1984): Ordering can be build from
the back, selecting recursively vertex with highest number of
ordered neighbors

|:> Without loss of generality, we can put a (maximal/maximum)
clique in G at the end of the ordering

36

73

Petersen graph

Objective | Strategy CPU time (s) | B&C nodes | Gap (%)

Treewidth | none 449.18 278018 0

Treewidth | maximum 0.43 57 0
clique

Fill-in none >3600 >886765 41.18

Fill-in maximum 1.27 379 0
clique

ol

Maximum clique breaks symmetries(?); simplifies computation

Fill-in more difficult than treewidth???

Treewidth Exact

74

Instances

= Generate k-tree

= Randomly remove p% of the edges

->treewidth at most k
->n=100, k=10, p=30/40/50

|:> Randomly generated partial-k-trees (Shoiket&Geiger,1998)

|:> Instances from frequency assignment, probabilistic networks, ...

Computational framework

” |:> SCIP (http://scip.zib.de/) with CPLEX 10.0 as LP solver

Treewidth Exact

37

=
Results partial k-trees: treewidth

[Treewidth [

|:> 30%: 4 out of 10 solved within 1 hour CPU time
40%: 1 out of 10 solved within 1 hour CPU time

1010 10.20
10.00 10.00
980
990
9.60
/ —
9.40 /.\W
om0 \/\/
9.20 .\
960
900
40%
30% o
940
1 2 3 4 5 6 7 8 9 10 860
1 2 3 4 5 6 7 8 9 10
——LP —=—end of root —+—LP —=—end of root

|:> Very good lower bound, difficult to find optimal solution

Arie Koster

z
Results realistic instances

|:> minors of link-pp selected; w(G)=9, tw(G)=13

treewidth fill-in Combined
instance IVI | |[E] |fi(G) | CPU(s) | #nodes | CPU(s) | #nodes | CPU(s) | #nodes
link-pp-minor-020 [20 | 125 | 29 23.42 9680 0.86 2 4.88 1307
link-pp-minor-021 | 21 130 |35 29.91 7238 1.29 9 13.15 2767
link-pp-minor-022 | 22 | 137 | 38 37.82 5858 1.33 1 7.88 349
link-pp-minor-023 | 23 144 | 40 128.21 16131 2.25 2 15.22 986
link-pp-minor-024 | 24 151 |43 399.61 27125 1.93 2| 103.50 8568
link-pp-minor-025 | 25 | 156 |48 1875.24 | 94369 3.61 3| 133.67 6861

—]

mnz+—=—f

$n(n=1)-m+1

CPU time (s)

Arie Koster - treewidth fill-in —=combined

77

Overview

Introduction

Tree Decompositions

Computing Treewidth

Using Treewidth

z
Minimum Interference FAP

Graph G=(V,E)
= Vertices correspond to
bi-directional connections

= Edges indicate interference
between two connections

= For every vertex v, set of
frequency pairs D(v) is specified

= Interference quantified by edge penalties p(v,f ,w,g)
= Preferences for frequencies quantified by penalties q(v,f)

Obijective: Select for each vertex exactly one frequency,
such that the total penalty is minimized.

39

79

Dynamic Programming Algorithm

Contract vertices according to tree-decomposition.

80

Dynamic Programming Algorithm

Contract vertices according to tree-decomposition.

Dab = Dax Db

40

81

Dynamic Programming Algorithm

Contract vertices according to tree-decomposition.

X vertex b is not connected
Dabd D Dab Dd with rest of the graph.

82

Does it work in practice ?

= Only with (pre)processing techniques
= Graph reduction

= Vertices with degree 1 can be removed

= Vertices with degree 2 can be removed
» Domain reduction

= Upper bounding

= Dominance of domain elements

41

83 TD-based Algorithms

Computational Results
-
// \\ﬂ
VAV . A
® on ARV AV VYA
#fJ\W\/\ \// L\—/J \U\
UL i Vv Sz
z

Results Tree Decomposition

Instance |LP| QP | CSP | TreeDecomposition | Upper

Preprocessing DP Bound
CELARO6 5 -1 3389 0f 3389 3389
CELARO7 5 - - 0 - 343592
CELAROS8 - - - 0 - 262
CELARO9 -1 14969 - 11391| 15571 15571
CELAR10 - 31204 - 31516| Solved 31516

GRAPHO05 - - - 221| Solved 221

GRAPH06 - - - 4112 4123 4123
GRAPHO7 - - - 4324| Solved 4324
GRAPH11 - - - 2553 - 3080
GRAPH12 - - - 11496| 11827 11827
GRAPH13 - - - 8676 - 10110

Further results

= CALMA benchmarks:
= For 7 of the 11 instances optimal solution found

= For the other 4 instances lower bounds in the range
57.3% to 98.2% of the upper bound

= Tree Decomposition can be used to solve
optimization problems in practice

= Application to other optimization problems

85 TD-based Algorithms

86

Open problems

Is TREEWIDTH polynomial for planar graphs ?
Is TREEWIDTH NP-hard for planar graphs ?

Does there exist (practical) integer programming
formulations for computing treewidth?

How good can the contraction degeneracy be in
general graphs (as lower bound for tw(G)) ?

Do other heuristics than MCS have a lower-
bounding counter-part ?

43

87

Open problems

Which optimization problems
can be solved in practice with
Graph Decomposition-based algorithms

?

/ \
B

Arie Koster

Further reading

= Branch and Tree Decomposition Techniques for Discrete Optimization, INFORMS
TutORials in Operations Research Series, Chapter 1, 2005 (with Illya Hicks, E.
Kolotoglu)

= Combinatorial Optimisation on Graphs of bounded Treewidth, The Computer Journal,
2006, to appear (with H. Bodlaender)

= Solving Partial Constraint Satisfaction Problems with Tree Decomposition, Networks
40, 2002 (with S. van Hoesel, A. Kolen)

= Lower Bounds for Minimum Interference Frequency Assignment Problems, Ricerca
Operativa 30, 2000 (with S. van Hoesel, A. Kolen)

= Pre-processing rules for triangulation of probabilistic networks, Computational
Intelligence 21, 2005 (with H. Bodlaender, F. van den Eijkhof)

= Safe Separators for Treewidth, Discrete Mathematics 306, 2006 (with H. Bodlaender)

= Contraction and Treewidth Lower Bounds, Journal of Graph Algorithms and
Applications 10/ ESA 2004, LNCS 3221 (with H. Bodlaender, T. Wolle)

= Treewidth Lower Bounds with Brambles, ESA 2005, LNCS 3669 (with H. Bodlaender,
A. Grigoriev)

= On Exact Algorithms for Treewidth, ESA 2006, LNCS 4168 (with H. Bodlaender, F.
Fomin, D. Kratsch, D. Thilikos)

= On the Chordalization Polytope and Treewidth, in preparation

http://fap.zib.de http
D: . . ko

://W\A_/w.zib.de/koster/

Arie Koster

44

