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Why should we want to design proteins?

Eco-friendly chemical/structural nano-agents

New drugs for health (human, animals, plants)

New catalysts (environment, recycling, biofuels, food and feed, cosmetics…),

New components for nanotechnologies

Relying on inexpensive atomic level 3D-printers (bacterias, yeast, …)

20n sequences! Experimental techniques can only explore a very tiny fraction of it.
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The Computational Design Problem

Informal definition (globular proteins)

Produce a sequence s of amino-acids that spontaneously adopts a conformation X that performs
some function.



What defines a conformation ?

Conformation

backbone: dihedral angles φi, ψi

sequence: amino-acid choice si
side-chains: torsion angles χij

Challenging space to explore

very high dimensionality, continuous variables (φi, ψi, χij)

discrete set of possible sequences s (size 20n)
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Folding

Atomic forces and entropic effects

Chemical bonds geometries

Inter atomic forces (electrostatics, polar, van derWaals…)

Solvent effects

Thermodynamics2

The stability of a sequence s in a given conformation X can be estimated through a real
valued energy function E(s, X).

ps(X) ∝ e
− E(s,X)

kBT

intractable non convex E(s, X) (free energy, quantum mechanics)

Plus extra requirements for the function itself (sequence, geometry, flexibility…).
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Several brain.decades later

The“rigid backbone, discrete rotamers, pairwise decomposable energy”problem

1 (φi, ψi) are given (rigid backbone).

2 sequence s is discrete, so χij is discretized too.
3 a pairwise decomposable energy function E(s, X)

Rotamer libraries: Tuffery,28 Penultimate,15 Dunbrack25…

Catalog of (amino acid, side-chain conformations) pairs build from
the PDB (typically 400 or more rotamers)

We need to minimize (+ fitness) Precomputed tables

E(s, X) = E∅ +
n∑

i=1

Ei(ir) +
∑
(i,j)∈I

Eij(ir, js)
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It’s an ill-posed problem

Forgetting all approximations

Even if (s, χ)minimizes E on (φ, ψ), a better backbone configuration for s may exist.

Extra checks
1 Post-hoc continuous minimization of φ, ψ, χ (nicely dealt with by OSPREY7,10)
2 Molecular dynamics simulations (expensive).
3 Forward folding: predict the structure from s.

It works22

There are less than 2,000 known folds for many more sequences.

Secondary structure elements and hydrophobic packing constrain the space.

We are in control and can make designs very predictable (forward folding).
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Calmodulin-binding
peptide

[DeGrado et al. 1985]

Zinc Finger

[Dehiyat & Mayo 1997]

Novel Topology
(top7)

[Kuhlman et al. 2003]

Functional Enzyme

[Rothlisberger et al. 2008]

Enzyme for Multi-Step
Reaction 

[Jiang et al. 2008]
Longer Emission Wave
Length Fluorescence

[Chica et al. 2011]

Self-Assembling
Nanocage

[Hsia et al. 2016]

Auto-Assembling
Symmetrical Protein

[Niguchi et al. 2019]
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Minimizing E

NP-hard19 (intractable?) Precomputed tables

E(s, X) = E∅ +

n∑
i=1

Ei(ir) +
∑
(i,j)∈I

Eij(ir, js)

mostly solved by Monte-Carlo algorithms (Rosetta)14

NP-hard: standard excuse for approximate modeling or (meta)-heuristics.

Using Cost Function Network (CFN) algorithms github.com/toulbar2

Intense progress in AI on logical/Boolean reasoning (200TB theorem proof13)

CFN use automated reasoning algorithms extended to numerical functions.11

Can still handle logical information (constraints)

https://github.com/toulbar2/toulbar2
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Cost Function Network (a type of Graphical model)

Cost function network (X , E)

a sequence X of discrete variables xi , domain Di

a set E of cost functions expressed as tables (or dedicated functions)

eS ∈ E is a numerical function
∏

i∈S Di (possibly infinite costs)

a solution minimizes the joint cost E =
∑

eS∈E eS (WCSP, NP-complete)

Graphical models?

The interactions captured by the model can be represented as a graph

Variables are vertices

They are connected by an edge if they interact (participate together in a function)

Cost Function Networks are closely related to Markov Random Fields
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Exact vs. Stochastic search (See JFPC’21 slides)

Large input (> 1GB) NP-hard problem

Toulbar2 is able to…

provide a proven zero/bounded gap minimum energy solution27

exhaustively enumerate sequences close to it

provide sequence libraries with guaranteed diversity.20

in sequence-conformation spaces of size> 10400

Rosetta’s Monte Carlo Simulated Annealer increasingly fails to find the optimal sequencea

aDavid Simoncini et al. “Guaranteed Discrete Energy Optimization on Large Protein Design Problems”. In: Journal
of Chemical Theory and Computation 11.12 (2015), pp. 5980–5989. DOI: 10.1021/acs.jctc.5b00594.

https://miat.inrae.fr/schiex/Export/JFPC2021.pdf
https://doi.org/10.1021/acs.jctc.5b00594


Unbounded error

Asymptote: Size matters!

Asymptotic convergence can be arbitrarily slow…



Quantum computing (DWave),Toulbar2 & SA1

DWave approximations kcal/mol

gap> 1.16, 90% of the time > 4.35, 50% of the time > 8.45, 10% of the time

1Vikram Khipple Mulligan et al. “Designing Peptides on a Quantum Computer”. In: bioRxiv (2019), p. 752485.



Toulbar2 vs. CPLEX, MaxHS…(real instances)

# of instances solved (X ) within a per instance cpu-time limit (Y )



Designing a self-assembling β-propeller

Coll. A. Voet (KU Leuven), D. Simoncini17

Tako: (R)evolution + Rosetta/talaris14 8 fold

Ika: toulbar2 + talaris14 4 fold
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Using this new computational capacity for better modeling2

Capturing protein flexibility4 through Multi-state design

Find a sequence that stabilizes multiple structures at the same time

What for?

Bound and unbound conformations for enzymes, or binders

Conformational switches

All proteins are flexible!

Can be achieved using just constraints (no new algorithm)

2Jelena Vucinic et al. “Positive multistate protein design”. In: Bioinformatics 36.1 (2020), pp. 122–130.
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Find a sequence that stabilizes multiple structures at the same time

What for?

Bound and unbound conformations for enzymes, or binders

Conformational switches

All proteins are flexible!

Can be achieved using just constraints (no new algorithm)
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Same AA

2Jelena Vucinic et al. “Positive multistate protein design”. In: Bioinformatics 36.1 (2020), pp. 122–130.



Improves design quality at reasonable computational costs3

How correctly does it reconstruct natural proteins?

Native sequence recovery (NSR)

Improvement over traditional Single State Design

NMR X-ray
NSR + 15,6 % +8 %

3Jelena Vucinic et al. “Positive multistate protein design”. In: Bioinformatics 36.1 (2020), pp. 122–130.



Injecting Machine Learned information

Energy is imperfect

Approximations: solvent effect…

Ignored: polarisability, expressability…

Needs more information, extracted from data

Evolutionary information

Use a Multiple alignment of similar proteins (homologs)
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A multiple alignment with conserved positions

Used to force amino acid choice (constraint) at conserved positions.

or bias by ”Position Specific Score Matrices” (frequency / position)

Algorithms for contact-map predictions24 (MRF estimation)

Identifies how close residues prefer to co-vary

Combine this information with energy (linear combination)
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In Practice

Designing a new nanobody scaffold (coll. TBI, INSERM-CRCT)

Using Rosetta score function and rotamer library

Trying to satisfy several constraints (originality, composition…)

Multi-state design:29 multi-CDR loops compatible

MSA-extracted evolutionary preferences

Limited experimental power

Over 6 sequences designed without evolutionary information: 3 expressed

Over 3 sequences designed with evolutionary information: 3 expressed

Much more power in recent Science/PLOS papers21,23

Positive results on three environmental-friendly enzymes (coll. S. Barbe, TBI).
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CFNs bring ML and Automated reasoning together

With Cost Function Network algorithms, one can…

Model the problem as a CFN: knowledge (logic, energy)

Learn more CFNs from data (e.g. from natural sequences)5

Combine the models by scaling/adding/connecting them together

Add further design constraints/preferences: desired properties

Solve them with toulbar2 to get your new design (NP-hard)

Open source

https://github.com/toulbar2/toulbar2
https://github.com/toulbar2/CFN-learn

https://github.com/toulbar2/toulbar2
https://github.com/toulbar2/toulbar2
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Exciting DL revolution in Protein Design too

Rigid body DL design approaches8

Strongly inspired from NLP approaches (sequence, translation: transformers,…)

Enriched by 3D geometry: SE(3) equivariance

Coarse grained approches (backbone atoms only) mapping a backbone to a sequence

Learning P(si = AA|environment) for design1,12

Design requires to impose ’fitness’ constraints on the output

Non trivial for Deep Learning

Variational auto-encoders latent space interpolation6

Driven generative adversarial networks9
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Unleashing the power of DL-based structure prediction for design

Inverting DL Structure predictors (TrRosetta/RosettaFold3) α-Fold 2

These networks somehow capture the sequence/structure relationship

Back-propagation from a (sequence(s), structure) pair: symbolic sequence gradients

Seems to be able to fight the “ill-posed problem” issue18

Best performance obtained by injecting DL prediction as energy bias terms

These terms can also be swallowed by Cost Function Networks.



Conclusion

Designing new proteins with new functions can have strong real-world impact

Design requires to assemble knowledge, experience (data), and constraints on the output

Cost Function networks algorithms offer new capacities for CPD (NP-hard6= intractable)

They rigourously combine physical energy with design constraints

And can also swallow Machine/Deep Learned information

Deep Learning may contribute to solve the long standing issue of ‘alternative structures”

But still needs to improve its capacities to satisfy output constraints

We still need to get rid of plenty of assumptions: come and dive in the amazing world of
molecular design!



Thanks

AI/toulbar2

S. de Givry (INRA)
G. Katsirelos (INRA)
M. Zytnicki (PhD, INRA)
D. Allouche (INRA)
M. Ruffini (INRA)
H. Nguyen (PhD, INRA)
C. Brouard (ML, INRA)
M. Cooper (IRIT, Toulouse)
J. Larrosa (UPC, Spain)
F. Heras (UPC, Spain)
M. Sanchez (Spain)
E. Rollon (UPC, Spain)
P. Meseguer (CSIC, Spain)
G. Verfaillie (ONERA, ret.)
JH. Lee (CU. Hong Kong)
C. Bessiere (LIMM, Montpellier)
JP. Métivier (GREYC, Caen)
S. Loudni (GREYC, Caen)
M. Fontaine (GREYC, Caen),...

Protein Design

A. Voet (KU Leuven)
A. Olichon (INSERM)
D. Simoncini (UFT, Toulouse)
S. Barbe (INSA, Toulouse)
C. Dumont (INSA, Toulouse)
J. Vucinic (INRA/INSA)
S. Traoré (PhD, CEA)
C. Viricel (PhD)
K. Zhang (Riken, CBDR)
S. Tagami (Riken, CBDR)
RosettaCommons (U.Washington)
W. Sheffler (U.Washington)
V. Mulligan (Flatiron Institute)
PyRosetta (U. John Hopkins)
B. Donald (U. North Carolina)
K. Roberts (U. North Carolina)
T. Simonson (Polytechnique)
J. Cortes (LAAS/CNRS),…

My apologies to those missing in these lists. Even imperfect lists seem better than no list
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