Constraint \& Cost Function Networks:
 Feasibility, optimization and learning
 JFPC'2021

T. Schiex (AND plenty of colleagues)

Université Fédérale de Toulouse, ANITI, INRAE MIAT, Toulouse, France

June 22, 2021

A Constraint Network $\langle\boldsymbol{V}, \Phi\rangle$

- a sequence of discrete domain variables V
- a set Φ of e Boolean functions (or constraints)
- Each $\varphi_{S} \in \Phi$ is a truth function from $D^{S} \rightarrow\{t, f\}$

Joint truth function

The Constraint Satisfaction Problem (NP-complete)

A Constraint Network $\langle\boldsymbol{V}, \Phi\rangle$

- a sequence of discrete domain variables V
- a set Φ of e Boolean functions (or constraints)
- Each $\varphi_{S} \in \Phi$ is a truth function from $D^{S} \rightarrow\{t, f\}$

Joint truth function

The Constraint Satisfaction Problem (NP-complete)

A Constraint Network $\langle\boldsymbol{V}, \Phi\rangle$

- a sequence of discrete domain variables V
- a set Φ of e Boolean functions (or constraints)
- Each $\varphi_{S} \in \Phi$ is a truth function from $D^{S} \rightarrow\{t, f\}$

Joint truth function

The Constraint Satisfaction Problem (NP-complete)

A Constraint Network $\langle\boldsymbol{V}, \Phi\rangle$

- a sequence of discrete domain variables V
- a set Φ of e Boolean functions (or constraints)
- Each $\varphi_{S} \in \Phi$ is a truth function from $D^{S} \rightarrow\{t, f\}$

Joint truth function

$$
\Phi_{\mathcal{M}}=\bigwedge_{\varphi_{S} \in \Phi} \varphi_{S}
$$

The Constraint Satisfaction Problem (NP-complete)

- Is it nossible to make $\Phi_{M}=t$?

A Constraint Network $\langle\boldsymbol{V}, \Phi\rangle$

- a sequence of discrete domain variables V
- a set Φ of e Boolean functions (or constraints)
\square Each $\varphi_{S} \in \Phi$ is a truth function from $D^{S} \rightarrow\{t, f\}$

Joint truth function

$$
\Phi_{\mathcal{M}}=\bigwedge_{\varphi_{S} \in \Phi} \varphi_{S}
$$

The Constraint Satisfaction Problem (NP-complete)

- Is it possible to make $\Phi_{\mathcal{M}}=t$?

Languages for domains and constraints

- Constraint Networks: Boolean tables (tensors) for domains and constraints
- Constraint Programming: interval variables, specialized constraints, control

Tables (or tensors) for φ_{S}

- A multidimensional table with a Boolean for every tuple in D^{S}
- Says if it is authorized (t) or not (f)

Pairwise difference (3 values)

$$
\left[\begin{array}{lll}
f & t & t \\
t & f & t \\
t & t & f
\end{array}\right]
$$

Languages for domains and constraints

- Constraint Networks: Boolean tables (tensors) for domains and constraints
- Constraint Programming: interval variables, specialized constraints, control

Global constraints

- Names for specific (useful) constraints

Most famous
AllDifferents

Languages for domains and constraints

- Constraint Networks: Boolean tables (tensors) for domains and constraints
- Constraint Programming: interval variables, specialized constraints, control

Application domains: NP and beyond

Excel at the analysis of complex perfectly known systems
Digital circuit verification, scheduling and other resource management problems, planning, software verification, theorem proving,...

Biology?

Cost Function Network $\langle\boldsymbol{V}, \Phi, k\rangle$

- a sequence of discrete domain variables V
- a set Φ of e integer cost functions
- Each $\varphi_{S} \in \Phi$ is a numerical function bounded by k (finite or infinite)

Joint cost function using $a+{ }^{k} b=\min (a+b, k)$

$$
\Phi_{\mathcal{M}}=\sum_{\varphi_{S} \in \Phi}^{k} \varphi_{\boldsymbol{S}}
$$

The Weighted Constraint Satisfaction Problem (decision NP-complete)

Cost Function Network $\langle\boldsymbol{V}, \Phi, k\rangle$

- a sequence of discrete domain variables V
- a set Φ of e integer cost functions
- Each $\varphi_{S} \in \Phi$ is a numerical function bounded by k (finite or infinite)

Joint cost function using $a+^{k} b=\min (a+b, k)$

The Weighted Constraint Satisfaction Problem (decision NP-complete)

Cost Function Network $\langle\boldsymbol{V}, \Phi, k\rangle$

- a sequence of discrete domain variables V
- a set Φ of e integer cost functions
- Each $\varphi_{S} \in \Phi$ is a numerical function bounded by k (finite or infinite)

Joint cost function using $a+^{k} b=\min (a+b, k)$

The Weighted Constraint Satisfaction Problem (decision NP-complete)

Cost Function Network $\langle\boldsymbol{V}, \Phi, k\rangle$

- a sequence of discrete domain variables V
- a set Φ of e integer cost functions
- Each $\varphi_{S} \in \Phi$ is a numerical function bounded by k (finite or infinite)

Joint cost function using $a+{ }^{k} b=\min (a+b, k)$

$$
\Phi_{\mathcal{M}}=\sum_{\varphi_{S} \in \Phi}^{k} \varphi_{S}
$$

The Weighted Constraint Satisfaction Problem (decision NP-complete)

- What is the minimum of Φ_{M} ?

Cost Function Network $\langle\boldsymbol{V}, \Phi, k\rangle$

- a sequence of discrete domain variables V
- a set Φ of e integer cost functions
- Each $\varphi_{S} \in \Phi$ is a numerical function bounded by k (finite or infinite)

Joint cost function using $a+{ }^{k} b=\min (a+b, k)$

$$
\Phi_{\mathcal{M}}=\sum_{\varphi_{S} \in \Phi}^{k} \varphi_{S}
$$

The Weighted Constraint Satisfaction Problem (decision NP-complete)

- What is the minimum of $\Phi_{\mathcal{M}}$?

Tables (or tensors) for φ_{S}

- A multidimensional table with a number for every tuple in D^{S}

Global functions

- Names for snecific (useful) functions

Soft difference (3 values)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

A useful one

KNAPSACKS

Tables (or tensors) for φ_{S}
A multidimensional table with a number for every tuple in D^{S}

Global functions

- Names for specific (useful) functions

Soft difference (3 values)

A useful one
KNAPSACK $_{S}$

Costs and constraints

- We assume non negative integer costs
- A constraint is a cost function that maps to $\{0, k\}$
- $k=1$ defines a pure Constraint Network

Optimum preserving operations

- shifting: negative numbers and maximization ..

Extra assumptions inside the solver

- CFNs have all unary functions $\varphi_{i}, X_{i} \in V$
- CFNs have a constant function φ_{\varnothing}

Crucial property

φ_{\varnothing} is a lower bound of the joint function $\Phi_{\mathcal{M}}$

Example: Min-CUT

Graph $G=(\boldsymbol{V}, \boldsymbol{E})$ with edge weight function w

- A Boolean variable X_{i} per vertex $i \in V$
- A cost function per edge $e=(i, j) \in E: \varphi_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$

A simple graph

- vartices $\{1,2,3,4\}$
- cut weight 1 or $1.5(1,3)$
- edge (1, 2) hard

Example: Min-CUT

Graph $G=(\boldsymbol{V}, \boldsymbol{E})$ with edge weight function w

- A Boolean variable X_{i} per vertex $i \in V$
- A cost function per edge $e=(i, j) \in E: \varphi_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$

A simple graph

- vertices $\{1,2,3,4\}$
- cut weight 1 or $1.5(1,3)$
- edge $(1,2)$ hard

Example: Min-CUT

Graph $G=(\boldsymbol{V}, \boldsymbol{E})$ with edge weight function w

- A Boolean variable X_{i} per vertex $i \in V$
- A cost function per edge $e=(i, j) \in E: \varphi_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$

A simple graph

- vertices $\{1,2,3,4\}$
- cut weight 1 or $1.5(1,3)$
- edge $(1,2)$ hard

Min-CUT on 4 variables

\{
"problem" :\{"name": "MinCut", "mustbe": "<100.0"\}, variables: \{"x1": ["1"], "x2": ["1","r"], "x3": ["1","r"], "x4": ["r"]\} "functions": \{
"cut12": \{"scope": ["x1","x2"], "costs": [0.0, 100.0, 100.0, 0.0]\},
"cut13": \{"scope": ["x1","x3"], "costs": [0.0,1.5,1.5,0.0]\}, "cut23": \{"scope": ["x2","x3"], "costs": [0.0,1.0,1.0,0.0]\}, "cut34": \{"scope": ["x3","x4"], "costs": [0.0,1.0,1.0,0.0]\} \}

Min-CUT on 4 variables

```
import pytoulbar2
myCFN = pytoulbar2.CFN(100,1) # ub, resolution (optional)
for i in range(4):
    myCFN.AddVariable("x"+str(i+1),["l", "r"]) # returns an index
myCFN.AddFunction(["x1"], [0, 100])
myCFN.AddFunction(["x4"], [100,0])
myCFN.AddFunction(["x1","x3"], [0,1.5,1.5,0])
sol = myCFN.Solve() # returns a triple (sol, cost, _)
```


Definition

- Variables $X_{i j}$ for cell (i, j) has domain $\{1, \cdots, 9\}$
- Set R_{i} (resp. C_{j}) contains all variables of row i (resp. column j)
- Set S_{i} contains all variables in sub-cell i
- There is an All-Different constraint on each of these
- or a clique of pairwise DIFFERENT constraints

Example

Let's have a look at the pytoulbar2 code.

```
myCFN = pytoulbar2.CFN(1) # k = 1, so CSP
for i in range(9):
    for j in range(9):
        vIdx = myCFN.AddVariable("X"+str(i+1)+"."+str(j+1),range(1, 10))
        columns [j].append(vIdx)
        rows[i].append(vIdx)
        cells[(i//3)*3+(j//3)].append(vIdx)
for scope in rows+columns+cells:
    addCliqueAllDiff(myCFN,scope) # Adds a clique of pairwise difference
for v,h in enumerate(grid):
    if h: myCFN.AddFunction([v],[0 if i == h else 1 for i in range(1,10)])
```

The Boolean way

1. Assign the cell variable with the prediction
2. LeNet has 99.2% accuracy, SAT-Net dataset 36.2 hints (avg): 74.7\% max. accuracy

The Numbers way
Add 'LeNet output tensor (negated) as a cost function $\left(\min \sum-\log \right) \equiv(\max$ I) probabilities

The Boolean way

1. Assign the cell variable with the prediction
2. LeNet has 99.2% accuracy, SAT-Net dataset 36.2 hints (avg): 74.7\% max. accuracy

The Numbers way

1. Add LeNet output tensor (negated) as a cost function
2. $\left(\min \sum-\log \right) \equiv(\max \Pi)$ probabilities >99\% acc.
```
myCFN = pytoulbar2.CFN(1000000,6)
for i in range(9):
    for j in range(9):
        vIdx = myCFN.AddVariable("X"+str(i+1)+"."+str(j+1),range(1,10))
        columns[j].append(vIdx)
        rows[i] .append(vIdx)
        cells[(i//3)*3+(j//3)].append(vIdx)
for scope in rows+columns+cells:
    addCliqueAllDiff(myCFN,scope) # Adds a clique of pairwise difference
for v, h in enumerate(grid):
    if h: myCFN.AddFunction([v],-MNIST_output(csol,v,h))
```


CFN compared to a COP approach ${ }^{1}$

- COP (OR-Tools) + global All-Different
- CFN (toulbar2) + pairwise differences

Tight links with (I)LP

Let's look at the primal connection

[^0]
CFN compared to a COP approach ${ }^{1}$

- COP (OR-Tools) + global All-Different . 0.79"

■ CFN (toulbar2) + pairwise differences ...0.05"

Tight links with (I)LP

Let's look at the primal connection

[^1]
CFN compared to a COP approach ${ }^{1}$

■ COP (OR-Tools) + global All-Different . 0.79"
■ CFN (toulbar2) + pairwise differences .. . 0.05"

- 99.6% of all problems are solved backtrack-free by toulbar2

Tight links with (I)LP

Let's look at the primal connection

[^2]
CFN compared to a COP approach ${ }^{1}$

■ COP (OR-Tools) + global All-Different . 0.79"
■ CFN (toulbar2) + pairwise differences .. . 0.05"

- 99.6% of all problems are solved backtrack-free by toulbar2
- CFN bounds way tighter than COP bounds [LL12]

Tight links with (I)LP

Let's look at the primal connection

[^3]The "local polytope" [Sch76; Kos99; Wer07]

$$
\text { Minimize } \sum_{i, a} \varphi_{i}(a) \cdot x_{i a}+\sum_{\substack{\varphi_{i j} \in \Phi \\ a \in D^{i}, b \in D^{j}}} \varphi_{i j}(a, b) \cdot y_{i a j b} \text { such that }
$$

$$
\begin{array}{lr}
\sum_{a \in D^{i}} x_{i a}=1 & \forall i \in\{1, \ldots, n\} \\
\sum_{b \in D^{j}} y_{i a j b}=x_{i a} & \forall \varphi_{i j} \in \Phi, \forall a \in D^{i} \\
\sum_{a \in D^{i}} y_{i a j b}=x_{j b} & \forall \varphi_{i j} \in \Phi, \forall b \in D^{j} \\
x_{i a} \in\{0,1\} & \forall i \in\{1, \ldots, n\}
\end{array}
$$

$n d+e d^{2}$ variables, $n+2 e d$ constraints: a strong but expensive bound

1 Systematic search and local search
2 Pruning and Bounds
3 All Toulbar2 bells and whistles

4 WCSP solving has made huge progress
5 Learning CFN from data

- If all $\left|D^{X}\right|=1$ obvious minimum update k to $\Phi_{\mathcal{M}}(v)$
- Else choose $X \in V$ s.t. $\left|D^{X}\right|>1$ and $u \in D^{X}$ and reduce to

1. one query where we set $X=u$
2. one where u is removed from D^{X}

- Return the minimum
- If all $\left|D^{X}\right|=1$ obvious minimum
- Else choose $X \in V$ s.t. $\left|D^{X}\right|>1$ and $u \in D^{X}$ and reduce to

1. one query where we set $X=u$
2. one where u is removed from D^{X}

- Return the minimum

If the local lower bound reaches the global upper bound

Depth First (CP) or Best First (ILP)?

Hybrid Best First Search [All+15]
Anyspace

- Uses Depth-First Search for a bounded amount of backtracks
- Pending nodes are pushed onto a list of Open nodes
- The next DFS starts from the best Open node

Nice properties

- Good uppper bounds quickly (DFS)
- A constantly improving global lower bound (optimality gap)
- Implicit restarts, easy parallelization

Depth First (CP) or Best First (ILP)?

Hybrid Best First Search [All+15]
Anyspace

- Uses Depth-First Search for a bounded amount of backtracks
- Pending nodes are pushed onto a list of Open nodes
- The next DFS starts from the best Open node

Nice properties

- Good upper bounds quickly (DFS)
- A constantly improving global lower bound (optimality gap)
- Implicit restarts, easy parallelization

Depth First (CP) or Best First (ILP)?

Hybrid Best First Search [All+15]
Anyspace

- Uses Depth-First Search for a bounded amount of backtracks
- Pending nodes are pushed onto a list of Open nodes
- The next DFS starts from the best Open node

- Tree-decomposition friendly (BTD [Gsvoc]/AND-OR search [MDog])

Nice properties

- Cood' upper brounds quickly (DFS)
- A constantly improving global lower bound (optimality gap)
- Implicit restarts, easy parallelization

Depth First (CP) or Best First (ILP)?

- Uses Depth-First Search for a bounded amount of backtracks
- Pending nodes are pushed onto a list of Open nodes
- The next DFS starts from the best Open node
- Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

- Good' upper bounds quickly (DFS)
- A constantly improving global lower bound (optimality gap)
- Implicit restarts, easy parallelization

Depth First (CP) or Best First (ILP)?

- Uses Depth-First Search for a bounded amount of backtracks
- Pending nodes are pushed onto a list of Open nodes
- The next DFS starts from the best Open node
- Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

- Good upper bounds quickly (DFS)
- A constantly improving global lower bound (optimality gap)
- Implicit restarts, easy parallelization

Else: forget, set s to $s+1$

1 Systematic search and local search
2 Pruning and Bounds

3 All Toulbar2 bells and whistles

4 WCSP solving has made huge progress

5 Learning CFN from data

Filtering by Arc Consistency (support)

A value $u \in D^{i}$ with no value $v \in D^{j}$ such that $\varphi_{i j}(u, v)=0$ can be deleted, leaving the problem equivalent.

Properties

- Combine $\varphi_{i j}$ and φ_{j}
- Project on X
- Combine with φ_{i}
- Uninue fixnoint (monotonic), polynomial time

Filtering by Arc Consistency (support)

A value $u \in D^{i}$ with no value $v \in D^{j}$ such that $\varphi_{i j}(u, v)=0$ can be deleted, leaving the problem equivalent.

Properties

- Combine $\varphi_{i j}$ and φ_{j}
- Project on X_{i}
- Combine with φ_{i}
- Uninue fixnoint (monotonic), polynomial time

Filtering by Arc Consistency (support)

A value $u \in D^{i}$ with no value $v \in D^{j}$ such that $\varphi_{i j}(u, v)=0$ can be deleted, leaving the problem equivalent.

Properties

- Combine $\varphi_{i j}$ and φ_{j}
- Project on X_{i}
- Combine with φ_{i}
- Unique fixpoint (monotonic), polynomial time

Obvious issue
One cannot add functions to the CFN: loss of equivalence, meaningless result
\square
Equivalence Preserving Transformations with

- Add the projection to φ_{i} with $+^{k}$
- Subtract it from its source using - ${ }^{k}$

Obvious issue

One cannot add functions to the CFN: loss of equivalence, meaningless result

Equivalence Preserving Transformations with $-^{k}\left(\alpha-{ }^{k} \beta\right) \equiv((\alpha=k)$? $k: \alpha-\beta)$

- Add the projection to φ_{j} with $+^{k}$
- Subtract it from its source using $-^{k}$

(Loss of) properties
nreserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

(Loss of) properties
neeserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

(Loss of) properties
nreserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

(Loss of) properties
Dreserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)
m_{1}^{2}

$$
\begin{aligned}
& \Downarrow \\
& \varphi_{\varnothing}=1
\end{aligned}
$$

(Loss of) properties

Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

(Loss of) properties
Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

The many "soft ACs"

One paper to read: [Coo+10]

- NC+AC+DAC (FDAC): binary \& unary (+ direction)[Schoo; Laro2; Coo03]
- +Existential AC: EDAC, a star (variable incident functions) [Lar+05]
- +Virtual AC: any spanning tree [Coo+08; Coo+10]

Full Supports
EAC supports
VAC supports

Supports provide value ordering heuristics

- EAC: $\varphi_{i}^{\prime}(u)=0$ can be extended for free on X_{i} 's star
- VAC: $\varphi_{i}(u)=0$ can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10]

[^4]
The many "soft ACs"

One paper to read: [Coot 10]

- NC+AC+DAC (FDAC): binary \& unary (+ direction)[Schoo; Lar02; Cooo3]
- +Existential AC: EDAC, a star (variable incident functions) [Lar+05]
- +Virtual AC: any spanning tree [Coo+08; Coo+10]

Full Supports
EAC supports
VAC supports

Supports provide value ordering heuristics

EAC: $\varphi_{i}(u)=0$ can be extended for free on X_{i} 's star

- VAC: $\varphi_{i}(u)=0$ can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10]

NC provides reduced cost-based pruning (back-propagation)

$$
\text { If }\left(\varphi_{\varnothing}+\varphi_{i}(u)\right)=k, \text { NC deletes } u
$$

The many "soft ACs"

One paper to read: [Coo+10]

- NC+AC+DAC (FDAC): binary \& unary (+ direction)[Schoo; Laro2; Coo03]
- +Existential AC: EDAC, a star (variable incident functions) [Lar+05]
- +Virtual AC: any spanning tree [Coo+08; Coo+10]

Full Supports
EAC supports
VAC supports

Supports provide value ordering heuristics
EAC: $\varphi_{i}(u)=0$ can be extended for free on X_{i} 's star

- VAC: $\varphi_{i}(u)=0$ can be extended for free on any spanning tree [Kolo6; Coo+08; Coo+10]

NC provides reduced cost-based pruning (back-propagation)

$$
\text { If }\left(\varphi_{\varnothing}+\varphi_{i}(u)\right)=k, \text { NC deletes } u
$$

Properties

- Proper extension of classical NC/DAC or AC respectively
- Polynomial time, $O(e d)$ space (Generalized ACs)
- Incremental, strengthens φ_{\varnothing} $(\mathrm{NC} \leq \mathrm{AC} \leq \mathrm{FDAC} \leq \mathrm{EDAC} \leq \mathrm{VAC})$
- Stronger bounds than AC in COP [LL12]

Set of rational EPTs
Maximizing φ_{\varnothing} is in P (local polytope dual +AC for k)

Properties

- Proper extension of classical NC/DAC or AC respectively
- Polynomial time, $O(e d)$ space (Generalized ACs)
- Incremental, strengthens φ_{\varnothing}

$$
(\mathrm{NC} \leq \mathrm{AC} \leq \mathrm{FDAC} \leq \mathrm{EDAC} \leq \mathrm{VAC})
$$

- Stronger bounds than AC in COP [LL12]

Set of rational EPTs
Maximizing φ_{\varnothing} is in P (local polytope dual +AC for k)

Optimal Soft Arc Consistency (optimization alone)

Variables for a binary CFN, no constraints [Sch76; Kos99; CGS07; Wer07; Coo+10]

1. u_{i} : amount of cost shifted from φ_{i} to φ_{\varnothing}
2. $p_{i j a}$: amount of cost shifted from $\varphi_{i j}$ to $\varphi_{i}(a)$
3. $p_{j i b}$: amount of cost shifted from $\varphi_{i j}$ to $\varphi_{j}(b)$

OSAC

Optimal Soft Arc Consistency (optimization alone)

Variables for a binary CFN, no constraints [sch76; Kos99; CGS07; Wero7; Coot 10]

1. u_{i} : amount of cost shifted from φ_{i} to φ_{\varnothing}
2. $p_{i j a}$: amount of cost shifted from $\varphi_{i j}$ to $\varphi_{i}(a)$
3. $p_{j i b}$: amount of cost shifted from $\varphi_{i j}$ to $\varphi_{j}(b)$

OSAC

$$
\begin{array}{lr}
\text { Maximize } \sum_{i=1}^{n} u_{i} & \text { subject to } \\
\varphi_{i}(a)-u_{i}+\sum_{\left(\varphi_{i j} \in C\right)} p_{i j a} \geq 0 & \forall i \in\{1, \ldots, n\}, \forall a \in D^{i} \\
\varphi_{i j}(a, b)-p_{i j a}-p_{j i b} \geq 0 & \forall \varphi_{i j} \in C, \forall(a, b) \in D^{i j}
\end{array}
$$

Problems solved [Coo+10; KZ17]

- Tree-structured problems
- Permutated submodular problems

OSAC empirically too expensive compared to VAC

- CFN Arc consistencies nrovide fact annrovimate I P hounds
and deal with constraints seamlessly

CFN Local Consistencies

Enhance $C P$ with fast incremental approximate Linear Programming dual bounds

Problems solved [Coot10; KZ17]

- Tree-structured problems
- Permutated submodular problems

OSAC empirically too expensive compared to VAC

- CFN Arc consistencies provide fast approximate LP bounds
- and deal with constraints seamlessly

CFN Local Consistencies

Enhance CP with fast incremental approximate Linear Programming dual bounds

Problems solved [Coot10; KZ17]

- Tree-structured problems
- Permutated submodular problems

OSAC empirically too expensive compared to VAC

- CFN Arc consistencies provide fast approximate LP bounds
- and deal with constraints seamlessly

CFN Local Consistencies

Enhance CP with fast incremental approximate Linear Programming dual bounds

1 Systematic search and local search
2. Pruning and Bounds

3 All Toulbar2 bells and whistles

4 WCSP solving has made huge progress

5 Learning CFN from data

Additional algorithmic ingredients

- Value ordering (for free): existential or virtual supports
- Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]
- (On the fly) variable elimination [Laroo]

■ Dominance analysis (substitutability/DEE) [Fre91; Des+92; DPO13; All +14]

- Function decomposition [Fav+11]
- Some global cost functions (weighted Regular, All-Diff, Among...) [LL12; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Unified (Parallel) Decomposition Guided VNS/LDS (UPDGVNS [Oua+20])

More information

github.com/toulbar2/toulbar2 miat.inrae.fr/toulbar2

1 Systematic search and local search
2. Pruning and Bounds

3 All Toulbar2 bells and whistles

4 WCSP solving has made huge progress

5 Learning CFN from data

VAC vs. LP on Protein design problems

CPLEX V12.4.0.0

Problem '3e4h.LP' read.
Root relaxation solution time $=811.28 \mathrm{sec}$.

MIP - Integer optimal solution: Objective $=150023297067$
Solution time $=864.39 \mathrm{sec}$.

tb2 and VAC

loading CFN file: 3e4h.wcsp
Lb after VAC: 150023297067
Preprocessing time: 9.13 seconds.
Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.

Optimality gap of the Simulated annealing solution as problems get harder

[^5]
Quantum computing (DWave),Toulbar2 er SA [Mul+19]

DWave approximations

Kind words from Protein Designers ${ }^{3}$

The Toulbar[2] package for WCSPs significantly improved the state-of-the-art efficiency for protein design in the discrete pairwise model.

Kind words from OpenGM2 developpers (image processing)

"ToulBar2 variants were superior to CPI EX wariants in all our testc"

[^6]
Kind words from Protein Designers ${ }^{3}$

The Toulbar[2] package for WCSPs significantly improved the state-of-the-art efficiency for protein design in the discrete pairwise model.

Kind words from OpenGM2 developpers (image processing)
"ToulBar2 variants were superior to CPLEX variants in all our tests"4

[^7]Data mining, bioinformatics
Given a matrix of arbitrary real numbers, find a subset C of columns and R of rows such that the sum of numbers in the submatrix is maximized.

Dedicated global constraint

Dresented in [Den 17. Der:-101 dominates MILP and MIQCP

Data mining, bioinformatics
Given a matrix of arbitrary real numbers, find a subset C of columns and R of rows such that the sum of numbers in the submatrix is maximized.

Dedicated global constraint
Presented in [BSD17; Der+ 19], dominates MILP and MIQCP.
def generate_model(path):
$\mathrm{m}=$ pandas.read_csv(path, sep='\t', header=None)
r, $c=m$.shape
model = pytoulbar2.CFN(100000, 10, True)
for i in range(r):
model.AddVariable("R"+str(i), ["out", "in"])
for j in range(c):
model.AddVariable("C"+str(j), ["out", "in"])
for i in range(r):
for j in range (c):
model.AddFunction(["R"+str(i), "C"+str $(j)],[0.0,0.0,0.0,-m[j][i]])$ return model
(solution, , cost, _) = generate_model(sys.argv[1]). Solve()

The Global Constraint author

Je n'ai pas vraiment trouvé de cas [...] défavorable pour toulbar2.

- MRF: Probabilistic Inference Challenge 2011
- CVPR: Computer Vision \& Pattern Recognition OpenGM2
- CFN: Cost Function Library (CELAR, SPOT5, bioinformatics)
- MaxCSP: MaxCSP 2008 competition
- WPMS: Weighted Partial MaxSAT evaluation 2013
- CP: MiniZinc challenge 2012/13 (decomposable)

Benchmark	Nb.	UAI	WCsP	LP(direct)	LP(tuple)	wCNF(direct)	wCNF(tuple)	MINIZINC
MRF	319	187 MB	475 MB	2.4 G	2.0 GB	518 MB	2.9 GB	473 MB
CVPR	1461	430 MB	557 MB	9.8 GB	11 GB	3.0 GB	15 GB	$\mathrm{~N} / \mathrm{A}$
CFN	281	43 MB	122 MB	300 MB	3.5 GB	389 MB	5.7 GB	69 MB
MaxCSP	503	13 MB	24 MB	311 MB	660 MB	73 MB	999 MB	29 MB
WPMS	427	$\mathrm{~N} / \mathrm{A}$	387 MB	433 MB	N / A	717 MB	N / A	631 MB
CP	35	7.5 MB	597 MB	499 MB	1.2 GB	378 MB	1.9 GB	21 KB
Total	3026	0.68 G	2.2 G	14 G	18 G	5 G	27 G	1.2 G

| toulbar2 |
| :---: | :---: | :---: | :---: | :---: |
| cplex |
| UDGVNS |

NNITI
NRAO

1 Systematic search and local search
2. Pruning and Bounds

3 All Toulbar2 bells and whistles

4 WCSP solving has made huge progress

5 Learning CFN from data

Definition (Learning a pairwise CFN from high quality solutions)

Given:

- a set of variables V,
- a set of assignments \boldsymbol{E} i.i.d. from an unknown distribution of high-quality solutions Find a pairwise CFN \mathcal{M} that can be solved to produce high-quality solutions

We use the language of pairwise tensors/tables

- There are at most $\frac{n(n-1)}{2}$ pairwise functions

$$
\frac{81 \times 80}{2}=3240
$$

- Each with $\left|D^{i}\right| \times\left|D^{j}\right|$ costs in \mathbb{R} (differentiability)
- For the Sudoku, 262, 440 parameters to learn.

Maximum likelihood estimation

- E a set of i.i.d. assignments of V
- Interpret costs as energies ($\propto-\log$ (probabilities))
- Maximize the probability of observing the samples in E

Maximum loglikelihood \mathcal{M} on \mathcal{M}_{ℓ}

Maximum likelihood estimation

- E a set of i.i.d. assignments of V
- Interpret costs as energies ($\propto-\log$ (probabilities))
- Maximize the probability of observing the samples in E

Maximum loglikelihood \mathcal{M} on \mathcal{M}_{ℓ}

$$
\begin{aligned}
\mathcal{L}(\mathcal{M}, \boldsymbol{E}) & =\log \left(\prod_{v \in E} P_{\mathcal{M}}(v)\right)=\sum_{v \in \boldsymbol{E}} \log \left(P_{\mathcal{M}}(v)\right) \\
& =\sum_{v \in E} \log \left(\Phi_{\mathcal{M}}(v)\right)-\log \left(Z_{\mathcal{M}}\right) \\
& =\underbrace{\sum_{v \in E}\left(-C_{\mathcal{M}^{e}}(v)\right)}_{\text {-costs of } \boldsymbol{E} \text { samples }} \underbrace{-\log \left(\sum_{t \in \prod_{X \in V D^{X}}} \exp \left(-C_{\mathcal{M}^{e}}(t)\right)\right)}_{\text {Soft-Min of all assignment costs }}
\end{aligned}
$$

Learning how to solve the Sudoku

Algorithms and data-sets

- PE-MRF [Par+17] with L1-norm Regularization
- Validation set from the SAT-Net paper ${ }^{5}$ (36.2 hints)
- Validation set from the RRN paper ${ }^{6}$ with 17-34 hints.

[^8]

Learning from uncertain DL output is possible

- LeNet has 99.2% accuracy on handwritten digits
- Argmax decoding: 74.7\% of the learning data-set would be incorrect
- Important to accept probabilistic information as input (PE-MRF)

Comparing with SAT-Net
 - SAT-Net (9,000 samptes):
 - Toulbar $2+$ PE-MRF $(8,000+1,024$ samples $):$

Learning from uncertain DL output is possible

- LeNet has 99.2% accuracy on handwritten digits
- Argmax decoding: 74.7% of the learning data-set would be incorrect
- Important to accept probabilistic information as input (PE-MRF)

Comparing with SAT-Net

■ SAT-Net (9,000 samples): . 63.2\%

- Toulbar2+PE-MRF (8,000+1,024 samples):

See our CP2020 paper ${ }^{7}$
We show how it can learn user preferences and combine them with configuration constraints on Renault dataset (thanks to H. Fargier (IRIT)).

[^9]
CFN/WCSP solving has made important progress

- Fast approximate LP-bounds (tighter than COP) subsuming AC
- Free value ordering heuristics
- Reduced-cost-based filtering (cost backpropagation)
- Structure aware search with improving optimality gap

CFN can be learned from data and combined with constraints

- Shares with ILP the capacity of dealing with fine grained numerical information
- Tractable learning with probabilistic input (DL/ML connection)
- With the (adjustable) power of (exact) solvers

Directions for improvement

- Global cost function and non monotonicity
- Interval variables and "arithmetic" filtering
- Unify CFN and COP: cost variables, multiple criteria
- Stronger incremental bounds
- Parallel search, conflict learning
- Try to minimize average tardiness in scheduling
- Improve CFN learning (sample size, (global) constraints)
- ...

```
And to all CFN/toulbar2 contributors
```

S. de Givry (INRAE)
D. Allouche (INRAE)
M. Cooper (IRIT, Toulouse)
M. Sanchez (PostDoc)
G. Verfaillie (ONERA, ret.)

JP. Métivier (GREYC, Caen)
D. Simoncini (PostDoc, UT1)
P. Jégou (LSIS)
L. Loukil (GREYC)
M. Lemaître (CERT)
B. Neveu (INRIA, Sophia)
G. Katsirelos (INRAE)
M. Ruffini (PhD)
J. Larrosa (UPC, Spain)
E. Rollon (UPC, Spain)

JH. Lee (CU. Hong Kong)
S. Loudni (GREYC, Caen)
C. Viricel (PhD)
A. Ouali (GREYC)
P. Boizumault (GREYC)
L. Lobjois (CERT)
G. Trombettoni (INRIA)
M. Zytnicki (PhD, INRAE)
H. Nguyen (PhD)
F. Heras (UPC, Spain)
P. Meseguer (CSIC, Spain)
C. Bessiere (LIMM, Montpellier)
M. Fontaine (GREYC, Caen)
C. Terrioux (LSIS)
Y. Lebbah (GREYC)

Mario (CU. Hong-Kong)
B. Hurley (Insight)

Questions?

[ALL+ 14]
David Allouche et al. "Computational protein design as an optimization problem". In: Artificial Intelligence 212 (2014), pp. 59-79.
[All+15] David Allouche et al. "Anytime Hybrid Best-First Search with Tree Decomposition for Weighted CSP". In: Principles and Practice of Constraint Programming. Springer. 2015, pp. 12-29.
[All+16] David Allouche et al. "Tractability-preserving transformations of global cost functions". In: Artificial Intelligence 238 (2016), pp. 166-189.
[BdS20] Céline Brouard, Simon de Givry, and Thomas Schiex. "Pushing data into CP models using Graphical Model Learning and Solving". In: Principles and Practice of Constraint Programming-CP 2020. Springer, 2020.
[BGS20] Céline Brouard, Simon de Givry, and Thomas Schiex. "Pushing data into CP models using Graphical Model Learning and Solving". In: LNCS 4204 (2020).
[Bou+04] Frédéric Boussemart et al. "Boosting systematic search by weighting constraints". In: ECAI. Vol. 16. 2004, p. 146.
[BSD17] Vincent Branders, Pierre Schaus, and Pierre Dupont. "Mining a sub-matrix of maximal sum". In: Proceedings of the 6th International Workshop on New Frontiers in Mining Complex Patterns in conjunction with ECML-PKDD 2017. 2017.
[CGS07]
M C. Cooper, S. de Givry, and T. Schiex. "Optimal soft arc consistency". In: Proc. of IJCAI'2007. Hyderabad, India, Jan. 2007, pp. 68-73.
[Coo+08] Martin C Cooper et al. "Virtual Arc Consistency for Weighted CSP". In: AAAI. Vol. 8. 2008, pp. 253-258.
[Coo+10] M. Cooper et al. "Soft arc consistency revisited". In: Artificial Intelligence 174 (2010), pp. 449-478.
[Coo03] M C. Cooper. "Reduction operations in fuzzy or valued constraint satisfaction". In: Fuzzy Sets and Systems 134.3 (2003), pp. 311-342.
[Coo07] M C. Cooper. "On the minimization of locally-defined submodular functions". In: Constraints (2007). To appear.
[CS04] M C. Cooper and T. Schiex. "Arc consistency for soft constraints". In: Artificial Intelligence 154.1-2 (2004), pp. 199-227.
[Der+19] Guillaume Derval et al. "The maximum weighted submatrix coverage problem: A CP approach". In: International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research. Springer. 2019, pp. 258-274.
[Des+92] Johan Desmet et al. "The dead-end elimination theorem and its use in protein side-chain positioning". In: Nature 356.6369 (1992), pp. 539-542.
[DPO13]
Simon De Givry, Steven D Prestwich, and Barry O’Sullivan. "Dead-end elimination for weighted CSP". In: Principles and Practice of Constraint Programming. Springer. 2013, pp. 263-272.
[FAv+11] A. Favier et al. "Pairwise decomposition for combinatorial optimization in graphical models". In: Proc. of IJCAI'11. Barcelona, Spain, 2011.
[Fre91] Eugene C. Freuder. "Eliminating Interchangeable Values in Constraint Satisfaction Problems". In: Proc. of AAAl'91. Anaheim, CA, 1991, pp. 227-233.
[GSV06] S. de Givry, T. Schiex, and G. Verfaillie. "Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP". In: Proc. of the National Conference on Artificial Intelligence, AAAI-2006. 2006, pp. 22-27.
[HD19] Mark A Hallen and Bruce R Donald. "Protein design by provable algorithms". In: Communications of the ACM 62.10 (2019), pp. 76-84.
[HSS18] Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. "Exact MAP-Inference by Confining Combinatorial Search with LP Relaxation". In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
[Hur+16] Barry Hurley et al. "Multi-language evaluation of exact solvers in graphical model discrete optimization". In: Constraints (2016), pp. 1-22.

Vladimir Kolmogorov. "Convergent tree-reweighted message passing for energy minimization". In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 28.10 (2006), pp. 1568-1583.
[Kos99] A M C A. Koster. "Frequency assignment: Models and Algorithms". Available at www.zib.de/koster/thesis.html. PhD thesis. The Netherlands: University of Maastricht, Nov. 1999.
[KZ17] Andrei A. Krokhin and Stanislav Zivny."The Complexity of Valued CSPs". In: The Constraint Satisfaction Problem: Complexity and Approximability. Ed. by Andrei A. Krokhin and Stanislav Zivny. Vol. 7. Dagstuhl Follow-Ups. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, pp. 233-266. ISBN: 978-3-95977-003-3. DOI: 10.4230/DFU.Vol7. 15301.9. URL: https://doi.org/10.4230/DFU.Vol7.15301.9.
[LAR+05] J. Larrosa et al. "Existential arc consistency: getting closer to full arc consistency in weighted CSPs". In: Proc. of the $19^{\text {th }}$ IJCAI. Edinburgh, Scotland, Aug. 2005, pp. 84-89.
[LAR00] J. Larrosa. "Boosting search with variable elimination". In: Principles and Practice of Constraint Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 291-305.
[Lar02]
J. Larrosa. "On Arc and Node Consistency in weighted CSP". In: Proc. AAAI'02. Edmondton, (CA), 2002, pp. 48-53.
[Lec+09] C. Lecoutre et al. "Reasoning from last conflict(s) in constraint programming". In: Artificial Intelligence 173 (2009), pp. 1592, 1614.
[LL12] Jimmy Ho-Man Lee and Ka Lun Leung. "Consistency techniques for flow-based projection-safe global cost functions in weighted constraint satisfaction". In: Journal of Artificial Intelligence Research 43.1 (2012), pp. 257-292.
[LS03] J. Larrosa and T. Schiex. "In the quest of the best form of local consistency for Weighted CSP". In: Proc. of the $18^{\text {th }}$ IJCAI. Acapulco, Mexico, Aug. 2003, pp. 239-244.
[LS04] Javier Larrosa and Thomas Schiex. "Solving weighted CSP by maintaining arc consistency". In: Artif. Intell. 159.1-2 (2004), pp. 1-26.
[LW66] Eugene L Lawler and David E Wood. "Branch-and-bound methods: A survey". In: Operations research 14.4 (1966), pp. 699-719.
[MD09] Radu Marinescu and Rina Dechter. "AND/OR branch-and-bound search for combinatorial optimization in graphical models". In: Artificial Intelligence 173.16-17 (2009), pp. 1457-1491.
[Mul+19] Vikram Khipple Mulligan et al. "Designing Peptides on a Quantum Computer". In: bioRxiv (2019), p. 752485.
[Mul+20] Maxime Mulamba et al. "Hybrid Classification and Reasoning for Image-based Constraint Solving". In: Proc. of CPAIOR'20, also in arXiv preprint arXiv:2003.11001. 2020, pp. 364-380.
[OuA+17] Abdelkader Ouali et al. "Iterative decomposition guided variable neighborhood search for graphical model energy minimization". In: Conference on Uncertainty in Artificial Intelligence, UAI'17. Sydney, Australia, 2017.
[OuA+20] Abdelkader Ouali et al. "Variable neighborhood search for graphical model energy minimization". In: Artificial Intelligence 278 (2020), p. 103194.
[PAR+17] Youngsuk Park et al. "Learning the network structure of heterogeneous data via pairwise exponential Markov random fields". In: Proceedings of machine learning research 54 (2017), p. 1302.
[PPW18] Rasmus Palm, Ulrich Paquet, and Ole Winther. "Recurrent relational networks". In: Advances in Neural Information Processing Systems. 2018, pp. 3368-3378.
[RuF+19] Manon Ruffini et al. "Guaranteed Diversity \& Quality for the Weighted CSP". In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). IEEE. 2019, pp. 18-25.
T. Schiex. "Arc consistency for soft constraints". In: Principles and Practice of Constraint Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411-424.
[Sch76] M.I. Schlesinger. "Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (Syntactic analysis of two-dimensional visual signals in noisy conditions)". In: Kibernetika 4 (1976), pp. 113-130.
[Sim+15] David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: Journal of Chemical Theory and Computation 11.12 (2015), pp. 5980-5989. Dol: 10.1021/acs. jctc. 5b00594.
[TGK20] Fulya Trösser, Simon de Givry, and George Katsirelos. "VAC integrality based variable heuristics and initial upper-bounding (vacint and rasps): Relaxation-Aware Heuristics for Exact Optimization in Graphical Models". In: Proc. of CPAIOR-20. 2020.
[WAN+19] Po-Wei Wang et al. "SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver". In: ICML'19 proceedings, arXiv preprint arXiv:1905.12149. 2019.
T. Werner. "A Linear Programming Approach to Max-sum Problem: A Review.". In: IEEE Trans. on Pattern Recognition and Machine Intelligence 29.7 (July 2007), pp. 1165-1179. URL: http://dx.doi.org/10.1109/TPAMI . 2007.1036.

[^0]: ${ }^{1}$ Maxime Mulamba et al. "Hybrid Classification and Reasoning for Image-based Constraint Solving". In: Proc. of CPAIOR'20, also in arXiv preprint arXiv:2003.11001. 2020, pp. 364-380.

[^1]: ${ }^{1}$ Maxime Mulamba et al. "Hybrid Classification and Reasoning for Image-based Constraint Solving". In: Proc. of CPAIOR'20, also in arXiv preprint arXiv:2003.11001. 2020, pp. 364-380.

[^2]: ${ }^{1}$ Maxime Mulamba et al. "Hybrid Classification and Reasoning for Image-based Constraint Solving". In: Proc. of CPAIOR'20, also in arXiv preprint arXiv:2003.11001. 2020, pp. 364-380.

[^3]: ${ }^{1}$ Maxime Mulamba et al. "Hybrid Classification and Reasoning for Image-based Constraint Solving". In: Proc. of CPAIOR'20, also in arXiv preprint arXiv:2003.11001. 2020, pp. 364-380.

[^4]: NC provides reduced cost-based pruning (back-propagation)

 $$
 \text { If }\left(\rho_{x} \not{ }^{k} \omega_{i}(u)\right)=k \text { NC deletes } u .
 $$

[^5]: ${ }^{2}$ David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: Journal of Chemical Theory and Computation 11.12 (2015), pp. 5980-5989. DoI: 10.1021/acs . jctc.5b00594.

[^6]: ${ }^{3}$ Mark A Hallen and Bruce R Donald. "Protein design by provable algorithms". In: Communications of the $A C M$ 62.10 (2019), pp. 76-84.

 Search with LP Relaxation". In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[^7]: ${ }^{3}$ Mark A Hallen and Bruce R Donald. "Protein design by provable algorithms". In: Communications of the ACM 62.10 (2019), pp. 76-84.
 ${ }^{4}$ Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. "Exact MAP-Inference by Confining Combinatorial Search with LP Relaxation". In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[^8]: ${ }^{5}$ Po-Wei Wang et al. "SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver". In: ICML'19 proceedings, arXiv preprint arXiv:1905.12149. 2019.
 ${ }^{6}$ Rasmus Palm, Ulrich Paquet, and Ole Winther. "Recurrent relational networks". In: Advances in Neural Information Processing Systems. 2018, pp. 3368-3378.

[^9]: ${ }^{7}$ Céline Brouard, Simon de Givry, and Thomas Schiex. "Pushing data into CP models using Graphical Model Learning and Solving". In: Principles and Practice of Constraint Programming-CP 2020. Springer, 2020.

