
Constraint & Cost Function Networks:
Feasibility, optimization and learning

JFPC’2021

T. Schiex (and plenty of colleagues)

Université Fédérale de Toulouse, ANITI, INRAE MIAT, Toulouse, France

June 22, 2021

Where it starts

A Constraint Network 〈V ,Φ〉

a sequence of discrete domain variables V

a set Φ of e Boolean functions (or constraints)

Each ϕS ∈ Φ is a truth function from DS → {t, f}

Joint truth function

ΦM =
∧

ϕS∈Φ

ϕS

The Constraint Satisfaction Problem (NP-complete)

Is it possible to make ΦM = t ?

1 54

Where it starts

A Constraint Network 〈V ,Φ〉

a sequence of discrete domain variables V

a set Φ of e Boolean functions (or constraints)

Each ϕS ∈ Φ is a truth function from DS → {t, f}

Joint truth function

ΦM =
∧

ϕS∈Φ

ϕS

The Constraint Satisfaction Problem (NP-complete)

Is it possible to make ΦM = t ?

1 54

Where it starts

A Constraint Network 〈V ,Φ〉

a sequence of discrete domain variables V

a set Φ of e Boolean functions (or constraints)

Each ϕS ∈ Φ is a truth function from DS → {t, f}

Joint truth function

ΦM =
∧

ϕS∈Φ

ϕS

The Constraint Satisfaction Problem (NP-complete)

Is it possible to make ΦM = t ?

1 54

Where it starts

A Constraint Network 〈V ,Φ〉

a sequence of discrete domain variables V

a set Φ of e Boolean functions (or constraints)

Each ϕS ∈ Φ is a truth function from DS → {t, f}

Joint truth function

ΦM =
∧

ϕS∈Φ

ϕS

The Constraint Satisfaction Problem (NP-complete)

Is it possible to make ΦM = t ?

1 54

Where it starts

A Constraint Network 〈V ,Φ〉

a sequence of discrete domain variables V

a set Φ of e Boolean functions (or constraints)

Each ϕS ∈ Φ is a truth function from DS → {t, f}

Joint truth function

ΦM =
∧

ϕS∈Φ

ϕS

The Constraint Satisfaction Problem (NP-complete)

Is it possible to make ΦM = t ?

1 54

From CSP to CP

Languages for domains and constraints

Constraint Networks: Boolean tables (tensors) for domains and constraints

Constraint Programming: interval variables, specialized constraints, control

Tables (or tensors) for ϕS

A multidimensional table with a Boolean for
every tuple in DS

Says if it is authorized (t) or not (f)

Pairwise di�erence (3 values)

 f t t
t f t
t t f

2 54

From CSP to CP

Languages for domains and constraints

Constraint Networks: Boolean tables (tensors) for domains and constraints

Constraint Programming: interval variables, specialized constraints, control

Global constraints

Names for specific (useful) constraints

Most famous
AllDifferentS

2 54

From CSP to CP

Languages for domains and constraints

Constraint Networks: Boolean tables (tensors) for domains and constraints

Constraint Programming: interval variables, specialized constraints, control

Application domains: NP and beyond

Excel at the analysis of complex perfectly known systems

Digital circuit verification, scheduling and other resource management problems, planning,
so�ware verification, theorem proving,. . .

Biology?

2 54

Merging Booleans with numbers

Cost Function Network 〈V ,Φ, k〉

a sequence of discrete domain variables V

a set Φ of e integer cost functions

Each ϕS ∈ Φ is a numerical function bounded by k (finite or infinite)

Joint cost function using a+k b = min(a+ b, k)

ΦM =
∑
ϕS∈Φ

k
ϕS

The Weighted Constraint Satisfaction Problem (decision NP-complete)

What is the minimum of ΦM ?

3 54

Merging Booleans with numbers

Cost Function Network 〈V ,Φ, k〉

a sequence of discrete domain variables V

a set Φ of e integer cost functions

Each ϕS ∈ Φ is a numerical function bounded by k (finite or infinite)

Joint cost function using a+k b = min(a+ b, k)

ΦM =
∑
ϕS∈Φ

k
ϕS

The Weighted Constraint Satisfaction Problem (decision NP-complete)

What is the minimum of ΦM ?

3 54

Merging Booleans with numbers

Cost Function Network 〈V ,Φ, k〉

a sequence of discrete domain variables V

a set Φ of e integer cost functions

Each ϕS ∈ Φ is a numerical function bounded by k (finite or infinite)

Joint cost function using a+k b = min(a+ b, k)

ΦM =
∑
ϕS∈Φ

k
ϕS

The Weighted Constraint Satisfaction Problem (decision NP-complete)

What is the minimum of ΦM ?

3 54

Merging Booleans with numbers

Cost Function Network 〈V ,Φ, k〉

a sequence of discrete domain variables V

a set Φ of e integer cost functions

Each ϕS ∈ Φ is a numerical function bounded by k (finite or infinite)

Joint cost function using a+k b = min(a+ b, k)

ΦM =
∑
ϕS∈Φ

k
ϕS

The Weighted Constraint Satisfaction Problem (decision NP-complete)

What is the minimum of ΦM ?

3 54

Merging Booleans with numbers

Cost Function Network 〈V ,Φ, k〉

a sequence of discrete domain variables V

a set Φ of e integer cost functions

Each ϕS ∈ Φ is a numerical function bounded by k (finite or infinite)

Joint cost function using a+k b = min(a+ b, k)

ΦM =
∑
ϕS∈Φ

k
ϕS

The Weighted Constraint Satisfaction Problem (decision NP-complete)

What is the minimum of ΦM ?

3 54

Revisiting language

Tables (or tensors) for ϕS

A multidimensional table with a number for
every tuple in DS

Global functions

Names for specific (useful) functions

So� di�erence (3 values)

 1 0 0
0 1 0
0 0 1

A useful one
KnapsackS

4 54

Revisiting language

Tables (or tensors) for ϕS

A multidimensional table with a number for
every tuple in DS

Global functions

Names for specific (useful) functions

So� di�erence (3 values)

 1 0 0
0 1 0
0 0 1

A useful one
KnapsackS

4 54

Numbers and Logic together

Costs and constraints

We assume non negative integer costs

A constraint is a cost function that maps to {0, k}
k = 1 defines a pure Constraint Network

Optimum preserving operations

scaling: 263 ≈ 19 digits. Fixed decimal point numbers . ok

shi�ing: negative numbers and maximization . ok

5 54

Solver friendly Cost Function Networks

Extra assumptions inside the solver w/o l.o.g.

CFNs have all unary functions ϕi, Xi ∈ V (domains)

CFNs have a constant function ϕ∅

Crucial property

ϕ∅ is a lower bound of the joint function ΦM

6 54

Example: Min-CUT

Graph G = (V ,E) with edge weight function w

A Boolean variable Xi per vertex i ∈ V

A cost function per edge e = (i, j) ∈ E : ϕij = w(i, j)× 1[xi 6= xj]

A simple graph

vertices {1, 2, 3, 4}
cut weight 1 or 1.5 (1, 3)

edge (1, 2) hard

7 54

Example: Min-CUT

Graph G = (V ,E) with edge weight function w

A Boolean variable Xi per vertex i ∈ V

A cost function per edge e = (i, j) ∈ E : ϕij = w(i, j)× 1[xi 6= xj]

A simple graph

vertices {1, 2, 3, 4}
cut weight 1 or 1.5 (1, 3)

edge (1, 2) hard

7 54

Example: Min-CUT

Graph G = (V ,E) with edge weight function w

A Boolean variable Xi per vertex i ∈ V

A cost function per edge e = (i, j) ∈ E : ϕij = w(i, j)× 1[xi 6= xj]

A simple graph

vertices {1, 2, 3, 4}
cut weight 1 or 1.5 (1, 3)

edge (1, 2) hard

7 54

toulbar2 input file https://github.com/toulbar2/toulbar2

Min-CUT on 4 variables

{

"problem" :{"name": "MinCut", "mustbe": "<100.0"},

variables: {"x1": ["l"], "x2": ["l","r"],

"x3": ["l","r"], "x4": ["r"]}

"functions": {

"cut12": {"scope": ["x1","x2"], "costs": [0.0, 100.0, 100.0, 0.0]},

"cut13": {"scope": ["x1","x3"], "costs": [0.0,1.5,1.5,0.0]},

"cut23": {"scope": ["x2","x3"], "costs": [0.0,1.0,1.0,0.0]},

"cut34": {"scope": ["x3","x4"], "costs": [0.0,1.0,1.0,0.0]}

}

8 54

The same in Python pip install pytoulbar2

Min-CUT on 4 variables

import pytoulbar2

myCFN = pytoulbar2.CFN(100,1) # ub, resolution (optional)

for i in range(4):

myCFN.AddVariable("x"+str(i+1),["l", "r"]) # returns an index

myCFN.AddFunction(["x1"],[0,100])

myCFN.AddFunction(["x4"],[100,0])

myCFN.AddFunction(["x1","x3"], [0,1.5,1.5,0])

...

sol = myCFN.Solve() # returns a triple (sol, cost, _)

9 54

The classical 9× 9-Sudoku problem

Definition

Variables Xij for cell (i, j) has domain {1, · · · , 9}
Set Ri (resp. Cj) contains all variables of row i (resp. column j)

Set Si contains all variables in sub-cell i

There is an All-Different constraint on each of these

or a clique of pairwise different constraints

Example

Let’s have a look at the pytoulbar2 code.

10 54

Sudoku in pytoulbar2

myCFN = pytoulbar2.CFN(1) # k = 1, so CSP

for i in range(9):

for j in range(9):

vIdx = myCFN.AddVariable("X"+str(i+1)+"."+str(j+1),range(1,10))

columns[j].append(vIdx)

rows[i].append(vIdx)

cells[(i//3)*3+(j//3)].append(vIdx)

for scope in rows+columns+cells:

addCliqueAllDiff(myCFN,scope) # Adds a clique of pairwise difference

for v,h in enumerate(grid):

if h: myCFN.AddFunction([v],[0 if i == h else 1 for i in range(1,10)])

11 54

Numbers: interfacing with DL

The Boolean way Thanks to Tias Gun for the picture above

1. Assign the cell variable with the prediction

2. LeNet has 99.2% accuracy, SAT-Net dataset 36.2 hints (avg): 74.7% max. accuracy

The Numbers way

1. Add LeNet output tensor (negated) as a cost function

2. (min
∑
− log) ≡ (max

∏
) probabilities . >99% acc.

12 54

Numbers: interfacing with DL

The Boolean way Thanks to Tias Gun for the picture above

1. Assign the cell variable with the prediction

2. LeNet has 99.2% accuracy, SAT-Net dataset 36.2 hints (avg): 74.7% max. accuracy

The Numbers way

1. Add LeNet output tensor (negated) as a cost function

2. (min
∑
− log) ≡ (max

∏
) probabilities . >99% acc.

12 54

Sudoku from images in pytoulbar2

myCFN = pytoulbar2.CFN(1000000,6)

for i in range(9):

for j in range(9):

vIdx = myCFN.AddVariable("X"+str(i+1)+"."+str(j+1),range(1,10))

columns[j].append(vIdx)

rows[i].append(vIdx)

cells[(i//3)*3+(j//3)].append(vIdx)

for scope in rows+columns+cells:

addCliqueAllDiff(myCFN,scope) # Adds a clique of pairwise difference

for v, h in enumerate(grid):

if h: myCFN.AddFunction([v],-MNIST_output(csol,v,h))

13 54

So...

CFN compared to a COP approach1

COP (OR-Tools) + global All-Di�erent

CFN (toulbar2) + pairwise di�erences

99.6% of all problems are solved backtrack-free by toulbar2

CFN bounds way tighter than COP bounds [LL12]

Tight links with (I)LP

Let’s look at the primal connection

1Maxime Mulamba et al. “Hybrid Classification and Reasoning for Image-based Constraint Solving”. In: Proc.
of CPAIOR’20, also in arXiv preprint arXiv:2003.11001. 2020, pp. 364–380.

14 54

So...

CFN compared to a COP approach1

COP (OR-Tools) + global All-Di�erent . 0.79"

CFN (toulbar2) + pairwise di�erences . 0.05"

99.6% of all problems are solved backtrack-free by toulbar2

CFN bounds way tighter than COP bounds [LL12]

Tight links with (I)LP

Let’s look at the primal connection

1Maxime Mulamba et al. “Hybrid Classification and Reasoning for Image-based Constraint Solving”. In: Proc.
of CPAIOR’20, also in arXiv preprint arXiv:2003.11001. 2020, pp. 364–380.

14 54

So...

CFN compared to a COP approach1

COP (OR-Tools) + global All-Di�erent . 0.79"

CFN (toulbar2) + pairwise di�erences . 0.05"

99.6% of all problems are solved backtrack-free by toulbar2

CFN bounds way tighter than COP bounds [LL12]

Tight links with (I)LP

Let’s look at the primal connection

1Maxime Mulamba et al. “Hybrid Classification and Reasoning for Image-based Constraint Solving”. In: Proc.
of CPAIOR’20, also in arXiv preprint arXiv:2003.11001. 2020, pp. 364–380.

14 54

So...

CFN compared to a COP approach1

COP (OR-Tools) + global All-Di�erent . 0.79"

CFN (toulbar2) + pairwise di�erences . 0.05"

99.6% of all problems are solved backtrack-free by toulbar2

CFN bounds way tighter than COP bounds [LL12]

Tight links with (I)LP

Let’s look at the primal connection

1Maxime Mulamba et al. “Hybrid Classification and Reasoning for Image-based Constraint Solving”. In: Proc.
of CPAIOR’20, also in arXiv preprint arXiv:2003.11001. 2020, pp. 364–380.

14 54

Unconstrained optimization: k =∞ + finite costs as 01LP

The “local polytope” [Sch76; Kos99; Wer07] (without eq. (1))

Minimize
∑
i,a

ϕi(a) · xia +
∑
ϕij∈Φ

a∈Di,b∈Dj

ϕij(a, b) · yiajb such that

∑
a∈Di

xia = 1 ∀i ∈ {1, . . . , n}

∑
b∈Dj

yiajb = xia ∀ϕij ∈ Φ,∀a ∈ Di

∑
a∈Di

yiajb = xjb ∀ϕij ∈ Φ,∀b ∈ Dj

xia ∈ {0, 1} ∀i ∈ {1, . . . , n} (1)

nd + ed2 variables, n + 2ed constraints: a strong but expensive bound

15 54

Presentation Outline

1 Systematic search and local search

2 Pruning and Bounds

3 All Toulbar2 bells and whistles

4 WCSP solving has made huge progress

5 Learning CFN from data

16 54

Tree search

Systematic tree search Time O(dn), linear space

If all |DX | = 1 obvious minimum update k to ΦM(v)

Else choose X ∈ V s.t. |DX | > 1 and u ∈ DX and reduce to
1. one query where we set X = u
2. one where u is removed from DX

Return the minimum

Optimization Branch and Bound [LW66]

If the local lower bound︸ ︷︷ ︸
ϕ∅

reaches the global upper bound︸ ︷︷ ︸
k

Prune!

17 54

Tree search

Systematic tree search Time O(dn), linear space

If all |DX | = 1 obvious minimum update k to ΦM(v)

Else choose X ∈ V s.t. |DX | > 1 and u ∈ DX and reduce to
1. one query where we set X = u
2. one where u is removed from DX

Return the minimum

Optimization Branch and Bound [LW66]

If the local lower bound︸ ︷︷ ︸
ϕ∅

reaches the global upper bound︸ ︷︷ ︸
k

Prune!

17 54

Depth First (CP) or Best First (ILP)?

Hybrid Best First Search [All+15] Anyspace

Uses Depth-First Search for a bounded amount of backtracks

Pending nodes are pushed onto a list of Open nodes

The next DFS starts from the best Open node

Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

Good upper bounds quickly (DFS)

A constantly improving global lower bound (optimality gap)

Implicit restarts, easy parallelization

18 54

Depth First (CP) or Best First (ILP)?

Hybrid Best First Search [All+15] Anyspace

Uses Depth-First Search for a bounded amount of backtracks

Pending nodes are pushed onto a list of Open nodes

The next DFS starts from the best Open node

Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

Good upper bounds quickly (DFS)

A constantly improving global lower bound (optimality gap)

Implicit restarts, easy parallelization

18 54

Depth First (CP) or Best First (ILP)?

Hybrid Best First Search [All+15] Anyspace

Uses Depth-First Search for a bounded amount of backtracks

Pending nodes are pushed onto a list of Open nodes

The next DFS starts from the best Open node

Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

Good upper bounds quickly (DFS)

A constantly improving global lower bound (optimality gap)

Implicit restarts, easy parallelization

18 54

Depth First (CP) or Best First (ILP)?

Hybrid Best First Search [All+15] Anyspace

Uses Depth-First Search for a bounded amount of backtracks

Pending nodes are pushed onto a list of Open nodes

The next DFS starts from the best Open node

Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

Good upper bounds quickly (DFS)

A constantly improving global lower bound (optimality gap)

Implicit restarts, easy parallelization

18 54

Depth First (CP) or Best First (ILP)?

Hybrid Best First Search [All+15] Anyspace

Uses Depth-First Search for a bounded amount of backtracks

Pending nodes are pushed onto a list of Open nodes

The next DFS starts from the best Open node

Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

Good upper bounds quickly (DFS)

A constantly improving global lower bound (optimality gap)

Implicit restarts, easy parallelization

18 54

Also local search of course (VNS here)

19 54

Presentation Outline

1 Systematic search and local search

2 Pruning and Bounds

3 All Toulbar2 bells and whistles

4 WCSP solving has made huge progress

5 Learning CFN from data

20 54

Good old Arc consistency (Constraint Networks)

Filtering by Arc Consistency (support)

A value u ∈ Di with no value v ∈ Dj such that ϕij(u, v) = 0
can be deleted, leaving the problem equivalent. x

Properties

Combine ϕij and ϕj

Project on Xi

Combine with ϕi

Unique fixpoint (monotonic), polynomial time (inconsistency detection)

21 54

Good old Arc consistency (Constraint Networks)

Filtering by Arc Consistency (support)

A value u ∈ Di with no value v ∈ Dj such that ϕij(u, v) = 0
can be deleted, leaving the problem equivalent. x

x

Properties

Combine ϕij and ϕj

Project on Xi

Combine with ϕi

Unique fixpoint (monotonic), polynomial time (inconsistency detection)

21 54

Good old Arc consistency (Constraint Networks)

Filtering by Arc Consistency (support)

A value u ∈ Di with no value v ∈ Dj such that ϕij(u, v) = 0
can be deleted, leaving the problem equivalent.

Properties

Combine ϕij and ϕj

Project on Xi

Combine with ϕi

Unique fixpoint (monotonic), polynomial time (inconsistency detection)

21 54

General CFN case [Sch00; LS03; LS04; CS04; Coo+10]

Obvious issue
One cannot add functions to the CFN: loss of equivalence, meaningless result

Equivalence Preserving Transformations with −k (α−k β) ≡ ((α = k) ? k : α− β)

Add the projection to ϕj with +k

Subtract it from its source using −k

22 54

General CFN case [Sch00; LS03; LS04; CS04; Coo+10]

Obvious issue
One cannot add functions to the CFN: loss of equivalence, meaningless result

Equivalence Preserving Transformations with −k (α−k β) ≡ ((α = k) ? k : α− β)

Add the projection to ϕj with +k

Subtract it from its source using −k

22 54

Example with k > 1

m2
1 m1

2

← →

X1 X2

←
−m1

2⇓ m1
∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

23 54

Example with k > 1

m2
1

m1
2

←

→
X1 X2

←
−m1

2⇓ m1
∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

23 54

Example with k > 1

m2
1

m1
2

←

→
X1 X2

←
−m1

2

⇓ m1
∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

23 54

Example with k > 1

m2
1

m1
2

←

→

X1 X2

←
−m1

2⇓ m1
∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

23 54

Example with k > 1

m2
1

m1
2

←

→

X1 X2

←
−m1

2

⇓ m1
∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

23 54

Example with k > 1

m2
1

m1
2

←

→

X1 X2

←
−m1

2

⇓ m1
∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

23 54

Many way to avoid loops (enforce fixpoint existence)

The many “so� ACs” One paper to read: [Coo+10]

NC+AC+DAC (FDAC): binary & unary (+ direction)[Sch00; Lar02; Coo03] Full Supports

+Existential AC: EDAC, a star (variable incident functions) [Lar+05] EAC supports

+Virtual AC: any spanning tree [Coo+08; Coo+10] VAC supports

Supports provide value ordering heuristics

EAC: ϕi(u) = 0 can be extended for free on Xi’s star

VAC: ϕi(u) = 0 can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10]

NC provides reduced cost-based pruning (back-propagation)

If (ϕ∅ +k ϕi(u)) = k, NC deletes u

24 54

Many way to avoid loops (enforce fixpoint existence)

The many “so� ACs” One paper to read: [Coo+10]

NC+AC+DAC (FDAC): binary & unary (+ direction)[Sch00; Lar02; Coo03] Full Supports

+Existential AC: EDAC, a star (variable incident functions) [Lar+05] EAC supports

+Virtual AC: any spanning tree [Coo+08; Coo+10] VAC supports

Supports provide value ordering heuristics

EAC: ϕi(u) = 0 can be extended for free on Xi’s star

VAC: ϕi(u) = 0 can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10]

NC provides reduced cost-based pruning (back-propagation)

If (ϕ∅ +k ϕi(u)) = k, NC deletes u

24 54

Many way to avoid loops (enforce fixpoint existence)

The many “so� ACs” One paper to read: [Coo+10]

NC+AC+DAC (FDAC): binary & unary (+ direction)[Sch00; Lar02; Coo03] Full Supports

+Existential AC: EDAC, a star (variable incident functions) [Lar+05] EAC supports

+Virtual AC: any spanning tree [Coo+08; Coo+10] VAC supports

Supports provide value ordering heuristics

EAC: ϕi(u) = 0 can be extended for free on Xi’s star

VAC: ϕi(u) = 0 can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10]

NC provides reduced cost-based pruning (back-propagation)

If (ϕ∅ +k ϕi(u)) = k, NC deletes u

24 54

Properties

Properties

Proper extension of classical NC/DAC or AC respectively (k = 1)

Polynomial time, O(ed) space (Generalized ACs)

Incremental, strengthens ϕ∅ (NC ≤ AC ≤ FDAC ≤ EDAC≤ VAC)

Stronger bounds than AC in COP [LL12]

Set of rational EPTs OSAC [Sch76; Coo07; Wer07; Coo+10]

Maximizing ϕ∅ is in P (local polytope dual + AC for k)

25 54

Properties

Properties

Proper extension of classical NC/DAC or AC respectively (k = 1)

Polynomial time, O(ed) space (Generalized ACs)

Incremental, strengthens ϕ∅ (NC ≤ AC ≤ FDAC ≤ EDAC≤ VAC)

Stronger bounds than AC in COP [LL12]

Set of rational EPTs OSAC [Sch76; Coo07; Wer07; Coo+10]

Maximizing ϕ∅ is in P (local polytope dual + AC for k)

25 54

Optimal Soft Arc Consistency (optimization alone)

Variables for a binary CFN, no constraints [Sch76; Kos99; CGS07; Wer07; Coo+10]

1. ui: amount of cost shi�ed from ϕi to ϕ∅

2. pija: amount of cost shi�ed from ϕij to ϕi(a)

3. pjib: amount of cost shi�ed from ϕij to ϕj(b)

OSAC

Maximize
n∑

i=1

ui subject to

ϕi(a)− ui +
∑

(ϕij∈C)

pija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ Di

ϕij(a, b)− pija − pjib ≥ 0 ∀ϕij ∈ C,∀(a, b) ∈ Dij

26 54

Optimal Soft Arc Consistency (optimization alone)

Variables for a binary CFN, no constraints [Sch76; Kos99; CGS07; Wer07; Coo+10]

1. ui: amount of cost shi�ed from ϕi to ϕ∅

2. pija: amount of cost shi�ed from ϕij to ϕi(a)

3. pjib: amount of cost shi�ed from ϕij to ϕj(b)

OSAC

Maximize
n∑

i=1

ui subject to

ϕi(a)− ui +
∑

(ϕij∈C)

pija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ Di

ϕij(a, b)− pija − pjib ≥ 0 ∀ϕij ∈ C,∀(a, b) ∈ Dij

26 54

The power of VAC and OSAC

Problems solved [Coo+10; KZ17]

Tree-structured problems

Permutated submodular problems (e.g. Min-Cut)

OSAC empirically too expensive compared to VAC

CFN Arc consistencies provide fast approximate LP bounds

and deal with constraints seamlessly

CFN Local Consistencies
Enhance CP with fast incremental approximate Linear Programming dual bounds

27 54

The power of VAC and OSAC

Problems solved [Coo+10; KZ17]

Tree-structured problems

Permutated submodular problems (e.g. Min-Cut)

OSAC empirically too expensive compared to VAC

CFN Arc consistencies provide fast approximate LP bounds

and deal with constraints seamlessly

CFN Local Consistencies
Enhance CP with fast incremental approximate Linear Programming dual bounds

27 54

The power of VAC and OSAC

Problems solved [Coo+10; KZ17]

Tree-structured problems

Permutated submodular problems (e.g. Min-Cut)

OSAC empirically too expensive compared to VAC

CFN Arc consistencies provide fast approximate LP bounds

and deal with constraints seamlessly

CFN Local Consistencies
Enhance CP with fast incremental approximate Linear Programming dual bounds

27 54

Presentation Outline

1 Systematic search and local search

2 Pruning and Bounds

3 All Toulbar2 bells and whistles

4 WCSP solving has made huge progress

5 Learning CFN from data

28 54

Toulbar2

Additional algorithmic ingredients

Value ordering (for free): existential or virtual supports

Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

(On the fly) variable elimination [Lar00]

Dominance analysis (substitutability/DEE) [Fre91; Des+92; DPO13; All+14]

Function decomposition [Fav+11]

Some global cost functions (weighted Regular, All-Di�, Among. . .) [LL12; All+16]

Incremental solving, guaranteed diverse solutions [Ruf+19]

Unified (Parallel) Decomposition Guided VNS/LDS (UPDGVNS [Oua+20])

More information
github.com/toulbar2/toulbar2 miat.inrae.fr/toulbar2

29 54

https://github.com/toulbar2/toulbar2
https://miat.inrae.fr/toulbar2

Presentation Outline

1 Systematic search and local search

2 Pruning and Bounds

3 All Toulbar2 bells and whistles

4 WCSP solving has made huge progress

5 Learning CFN from data

30 54

VAC vs. LP on Protein design problems

CPLEX V12.4.0.0

Problem '3e4h.LP' read.

Root relaxation solution time = 811.28 sec.

...

MIP - Integer optimal solution: Objective = 150023297067

Solution time = 864.39 sec.

tb2 and VAC (AC3 based)

loading CFN file: 3e4h.wcsp

Lb after VAC: 150023297067

Preprocessing time: 9.13 seconds.

Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.

31 54

Comparison with Rosetta’s Simulated annealing2

Optimality gap of the Simulated annealing solution as problems get harder

2David Simoncini et al. “Guaranteed Discrete Energy Optimization on Large Protein Design Problems”. In:
Journal of Chemical Theory and Computation 11.12 (2015), pp. 5980–5989. doi: 10.1021/acs.jctc.5b00594.

32 54

https://doi.org/10.1021/acs.jctc.5b00594

Quantum computing (DWave),Toulbar2 & SA [Mul+19]

DWave approximations kcal/mol

gap > 1.16 90% of the time > 4.35, 50% of the time > 8.45, 10% of the time

33 54

On Toulbar2 performances

Kind words from Protein Designers3

The Toulbar[2] package for WCSPs significantly improved the state-of-the-art e�iciency for
protein design in the discrete pairwise model.

Kind words from OpenGM2 developpers (image processing)

“ToulBar2 variants were superior to CPLEX variants in all our tests”4

3Mark A Hallen and Bruce R Donald. “Protein design by provable algorithms”. In: Communications of the ACM
62.10 (2019), pp. 76–84.

4Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. “Exact MAP-Inference by Confining Combinatorial
Search with LP Relaxation”. In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

34 54

On Toulbar2 performances

Kind words from Protein Designers3

The Toulbar[2] package for WCSPs significantly improved the state-of-the-art e�iciency for
protein design in the discrete pairwise model.

Kind words from OpenGM2 developpers (image processing)

“ToulBar2 variants were superior to CPLEX variants in all our tests”4

3Mark A Hallen and Bruce R Donald. “Protein design by provable algorithms”. In: Communications of the ACM
62.10 (2019), pp. 76–84.

4Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. “Exact MAP-Inference by Confining Combinatorial
Search with LP Relaxation”. In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

34 54

MaxSum Submatrix Problem

Data mining, bioinformatics

Given a matrix of arbitrary real numbers, find a subset C of columns and R of rows such that
the sum of numbers in the submatrix is maximized.

Dedicated global constraint

Presented in [BSD17; Der+19], dominates MILP and MIQCP.

35 54

MaxSum Submatrix Problem

Data mining, bioinformatics

Given a matrix of arbitrary real numbers, find a subset C of columns and R of rows such that
the sum of numbers in the submatrix is maximized.

Dedicated global constraint

Presented in [BSD17; Der+19], dominates MILP and MIQCP.

35 54

Pytoulbar2 code

def generate_model(path):

m = pandas.read_csv(path, sep='\t', header=None)

r, c = m.shape

model = pytoulbar2.CFN(100000, 10, True)

for i in range(r):

model.AddVariable("R"+str(i), ["out", "in"])

for j in range(c):

model.AddVariable("C"+str(j), ["out", "in"])

for i in range(r):

for j in range(c):

model.AddFunction(["R"+str(i), "C"+str(j)], [0.0, 0.0, 0.0, -m[j][i]])

return model

(solution,, cost, _) = generate_model(sys.argv[1]).Solve()

36 54

Comparison to a 2020 updated Global Constraint

The Global Constraint author
Je n’ai pas vraiment trouvé de cas [...] défavorable pour toulbar2.

37 54

Benchmarking [Hur+16]

3026 instances of various origins genoweb.toulouse.inra.fr/˜degivry/evalgm

MRF: Probabilistic Inference Challenge 2011

CVPR: Computer Vision & Pa�ern Recognition OpenGM2

CFN: Cost Function Library (CELAR, SPOT5, bioinformatics)

MaxCSP: MaxCSP 2008 competition

WPMS: Weighted Partial MaxSAT evaluation 2013

CP: MiniZinc challenge 2012/13 (decomposable)

38 54

http://genoweb.toulouse.inra.fr/~degivry/evalgm

HBFS - Normalized lb and ub profiles (hard problems) [Hur+16]

39 54

Unified Decomposition Guided VNS [Oua+20; Oua+17]

40 54

UDGVNS - Number of solved problems [Oua+17]

41 54

UDGVNS - Upper bound profiles[Oua+17]

42 54

UPDGVNS - Upper bound profiles[Oua+20]

43 54

Presentation Outline

1 Systematic search and local search

2 Pruning and Bounds

3 All Toulbar2 bells and whistles

4 WCSP solving has made huge progress

5 Learning CFN from data

44 54

Learning from historical solutions [BGS20]

Definition (Learning a pairwise CFN from high quality solutions)

Given:

a set of variables V ,

a set of assignments E i.i.d. from an unknown distribution of high-quality solutions

Find a pairwise CFNM that can be solved to produce high-quality solutions

45 54

What does learning a CFN means exactly?

We use the language of pairwise tensors/tables

There are at most n(n−1)
2 pairwise functions 81×80

2 = 3240

Each with |Di| × |Dj | costs in R (di�erentiability) 81

For the Sudoku, 262, 440 parameters to learn.

46 54

Maximum loglikelihood creates contrast

Maximum likelihood estimation

E a set of i.i.d. assignments of V

Interpret costs as energies (∝ − log(probabilities))

Maximize the probability of observing the samples in E

Maximum loglikelihoodM onM`

L(M,E) = log(
∏

v∈E PM(v)) =
∑

v∈E log(PM(v))
=

∑
v∈E log(ΦM(v))− log(ZM)

=
∑
v∈E

(−CM`(v))︸ ︷︷ ︸
-costs of E samples

− log(
∑

t∈
∏

X∈V DX

exp(−CM`(t)))

︸ ︷︷ ︸
Soft-Min of all assignment costs

47 54

Maximum loglikelihood creates contrast

Maximum likelihood estimation

E a set of i.i.d. assignments of V

Interpret costs as energies (∝ − log(probabilities))

Maximize the probability of observing the samples in E

Maximum loglikelihoodM onM`

L(M,E) = log(
∏

v∈E PM(v)) =
∑

v∈E log(PM(v))
=

∑
v∈E log(ΦM(v))− log(ZM)

=
∑
v∈E

(−CM`(v))︸ ︷︷ ︸
-costs of E samples

− log(
∑

t∈
∏

X∈V DX

exp(−CM`(t)))

︸ ︷︷ ︸
Soft-Min of all assignment costs

47 54

Learning how to solve the Sudoku

Algorithms and data-sets

PE-MRF [Par+17] with L1-norm Regularization

Validation set from the SAT-Net paper5 (36.2 hints)

Validation set from the RRN paper6 with 17-34 hints.

5Po-Wei Wang et al. “SATNet: Bridging deep learning and logical reasoning using a di�erentiable satisfiability
solver”. In: ICML’19 proceedings, arXiv preprint arXiv:1905.12149. 2019.

6Rasmus Palm, Ulrich Paquet, and Ole Winther. “Recurrent relational networks”. In: Advances in Neural
Information Processing Systems. 2018, pp. 3368–3378.

48 54

Learning how to solve the Sudoku

49 54

Learning how to solve the Sudoku

49 54

Learning how to solve the Sudoku

49 54

Learning from images by connecting with PyTorch as before

Learning from uncertain DL output is possible

LeNet has 99.2% accuracy on handwri�en digits

Argmax decoding: 74.7% of the learning data-set would be incorrect

Important to accept probabilistic information as input (PE-MRF)

Comparing with SAT-Net

SAT-Net (9,000 samples): . 63.2%

Toulbar2+PE-MRF (8,000+1,024 samples): . 76.3%

50 54

Learning from images by connecting with PyTorch as before

Learning from uncertain DL output is possible

LeNet has 99.2% accuracy on handwri�en digits

Argmax decoding: 74.7% of the learning data-set would be incorrect

Important to accept probabilistic information as input (PE-MRF)

Comparing with SAT-Net

SAT-Net (9,000 samples): . 63.2%

Toulbar2+PE-MRF (8,000+1,024 samples): . 76.3%

50 54

Not only Sudokus of course. . .

See our CP2020 paper7

We show how it can learn user preferences and combine them with configuration constraints
on Renault dataset (thanks to H. Fargier (IRIT)).

7Céline Brouard, Simon de Givry, and Thomas Schiex. “Pushing data into CP models using Graphical Model
Learning and Solving”. In: Principles and Practice of Constraint Programming–CP 2020. Springer, 2020.

51 54

A conclusion

CFN/WCSP solving has made important progress

Fast approximate LP-bounds (tighter than COP) subsuming AC

Free value ordering heuristics

Reduced-cost-based filtering (cost backpropagation)

Structure aware search with improving optimality gap

CFN can be learned from data and combined with constraints

Shares with ILP the capacity of dealing with fine grained numerical information

Tractable learning with probabilistic input (DL/ML connection)

With the (adjustable) power of (exact) solvers

52 54

A lot remains to be done

Directions for improvement

Global cost function and non monotonicity

Interval variables and “arithmetic” filtering

Unify CFN and COP: cost variables, multiple criteria

Stronger incremental bounds

Parallel search, conflict learning

Try to minimize average tardiness in scheduling

Improve CFN learning (sample size, (global) constraints)

. . .

53 54

Thank you all for your attention!

And to all CFN/toulbar2 contributors
S. de Givry (INRAE) G. Katsirelos (INRAE) M. Zytnicki (PhD, INRAE)
D. Allouche (INRAE) M. Ru�ini (PhD) H. Nguyen (PhD)
M. Cooper (IRIT, Toulouse) J. Larrosa (UPC, Spain) F. Heras (UPC, Spain)
M. Sanchez (PostDoc) E. Rollon (UPC, Spain) P. Meseguer (CSIC, Spain)
G. Verfaillie (ONERA, ret.) JH. Lee (CU. Hong Kong) C. Bessiere (LIMM, Montpellier)
JP. Métivier (GREYC, Caen) S. Loudni (GREYC, Caen) M. Fontaine (GREYC, Caen)
D. Simoncini (PostDoc, UT1) C. Viricel (PhD) C. Terrioux (LSIS)
P. Jégou (LSIS) A. Ouali (GREYC) Y. Lebbah (GREYC)
L. Loukil (GREYC) P. Boizumault (GREYC) Mario (CU. Hong-Kong)
M. Lemaître (CERT) L. Lobjois (CERT) B. Hurley (Insight)
B. Neveu (INRIA, Sophia) G. Trombe�oni (INRIA) . . .

�estions?

54 / 54

[All+14] David Allouche et al. “Computational protein design as an optimization
problem”. In: Artificial Intelligence 212 (2014), pp. 59–79.

[All+15] David Allouche et al. “Anytime Hybrid Best-First Search with Tree
Decomposition for Weighted CSP”. In: Principles and Practice of Constraint
Programming. Springer. 2015, pp. 12–29.

[All+16] David Allouche et al. “Tractability-preserving transformations of global cost
functions”. In: Artificial Intelligence 238 (2016), pp. 166–189.

[BdS20] Céline Brouard, Simon de Givry, and Thomas Schiex. “Pushing data into CP
models using Graphical Model Learning and Solving”. In: Principles and Practice
of Constraint Programming–CP 2020. Springer, 2020.

[BGS20] Céline Brouard, Simon de Givry, and Thomas Schiex. “Pushing data into CP
models using Graphical Model Learning and Solving”. In: LNCS 4204 (2020).

[Bou+04] Frédéric Boussemart et al. “Boosting systematic search by weighting
constraints”. In: ECAI. Vol. 16. 2004, p. 146.

[BSD17] Vincent Branders, Pierre Schaus, and Pierre Dupont. “Mining a sub-matrix of
maximal sum”. In: Proceedings of the 6th International Workshop on New Frontiers
in Mining Complex Pa�erns in conjunction with ECML-PKDD 2017. 2017.

54 / 54

[CGS07] M C. Cooper, S. de Givry, and T. Schiex. “Optimal so� arc consistency”. In: Proc.
of IJCAI’2007. Hyderabad, India, Jan. 2007, pp. 68–73.

[Coo+08] Martin C Cooper et al. “Virtual Arc Consistency for Weighted CSP”. In: AAAI.
Vol. 8. 2008, pp. 253–258.

[Coo+10] M. Cooper et al. “So� arc consistency revisited”. In: Artificial Intelligence 174
(2010), pp. 449–478.

[Coo03] M C. Cooper. “Reduction operations in fuzzy or valued constraint satisfaction”.
In: Fuzzy Sets and Systems 134.3 (2003), pp. 311–342.

[Coo07] M C. Cooper. “On the minimization of locally-defined submodular functions”. In:
Constraints (2007). To appear.

[CS04] M C. Cooper and T. Schiex. “Arc consistency for so� constraints”. In: Artificial
Intelligence 154.1-2 (2004), pp. 199–227.

[Der+19] Guillaume Derval et al. “The maximum weighted submatrix coverage problem: A
CP approach”. In: International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research. Springer. 2019,
pp. 258–274.

[Des+92] Johan Desmet et al. “The dead-end elimination theorem and its use in protein
side-chain positioning”. In: Nature 356.6369 (1992), pp. 539–542.

54 / 54

[DPO13] Simon De Givry, Steven D Prestwich, and Barry O’Sullivan. “Dead-end
elimination for weighted CSP”. In: Principles and Practice of Constraint
Programming. Springer. 2013, pp. 263–272.

[Fav+11] A. Favier et al. “Pairwise decomposition for combinatorial optimization in
graphical models”. In: Proc. of IJCAI’11. Barcelona, Spain, 2011.

[Fre91] Eugene C. Freuder. “Eliminating Interchangeable Values in Constraint
Satisfaction Problems”. In: Proc. of AAAI’91. Anaheim, CA, 1991, pp. 227–233.

[GSV06] S. de Givry, T. Schiex, and G. Verfaillie. “Exploiting Tree Decomposition and So�
Local Consistency in Weighted CSP”. In: Proc. of the National Conference on
Artificial Intelligence, AAAI-2006. 2006, pp. 22–27.

[HD19] Mark A Hallen and Bruce R Donald. “Protein design by provable algorithms”. In:
Communications of the ACM 62.10 (2019), pp. 76–84.

[HSS18] Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. “Exact MAP-Inference
by Confining Combinatorial Search with LP Relaxation”. In: Thirty-Second AAAI
Conference on Artificial Intelligence. 2018.

[Hur+16] Barry Hurley et al. “Multi-language evaluation of exact solvers in graphical
model discrete optimization”. In: Constraints (2016), pp. 1–22.

54 / 54

[Kol06] Vladimir Kolmogorov. “Convergent tree-reweighted message passing for energy
minimization”. In: Pa�ern Analysis and Machine Intelligence, IEEE Transactions on
28.10 (2006), pp. 1568–1583.

[Kos99] A M C A. Koster. “Frequency assignment: Models and Algorithms”. Available at
www.zib.de/koster/thesis.html. PhD thesis. The Netherlands: University of
Maastricht, Nov. 1999.

[KZ17] Andrei A. Krokhin and Stanislav Zivny. “The Complexity of Valued CSPs”. In:
The Constraint Satisfaction Problem: Complexity and Approximability. Ed. by
Andrei A. Krokhin and Stanislav Zivny. Vol. 7. Dagstuhl Follow-Ups. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, pp. 233–266. isbn:
978-3-95977-003-3. doi: 10.4230/DFU.Vol7.15301.9. url:
https://doi.org/10.4230/DFU.Vol7.15301.9.

[Lar+05] J. Larrosa et al. “Existential arc consistency: ge�ing closer to full arc consistency
in weighted CSPs”. In: Proc. of the 19th IJCAI. Edinburgh, Scotland, Aug. 2005,
pp. 84–89.

[Lar00] J. Larrosa. “Boosting search with variable elimination”. In: Principles and Practice
of Constraint Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000,
pp. 291–305.

54 / 54

https://doi.org/10.4230/DFU.Vol7.15301.9
https://doi.org/10.4230/DFU.Vol7.15301.9

[Lar02] J. Larrosa. “On Arc and Node Consistency in weighted CSP”. In: Proc. AAAI’02.
Edmondton, (CA), 2002, pp. 48–53.

[Lec+09] C. Lecoutre et al. “Reasoning from last conflict(s) in constraint programming”. In:
Artificial Intelligence 173 (2009), pp. 1592, 1614.

[LL12] Jimmy Ho-Man Lee and Ka Lun Leung. “Consistency techniques for flow-based
projection-safe global cost functions in weighted constraint satisfaction”. In:
Journal of Artificial Intelligence Research 43.1 (2012), pp. 257–292.

[LS03] J. Larrosa and T. Schiex. “In the quest of the best form of local consistency for
Weighted CSP”. In: Proc. of the 18th IJCAI. Acapulco, Mexico, Aug. 2003,
pp. 239–244.

[LS04] Javier Larrosa and Thomas Schiex. “Solving weighted CSP by maintaining arc
consistency”. In: Artif. Intell. 159.1-2 (2004), pp. 1–26.

[LW66] Eugene L Lawler and David E Wood. “Branch-and-bound methods: A survey”. In:
Operations research 14.4 (1966), pp. 699–719.

[MD09] Radu Marinescu and Rina Dechter. “AND/OR branch-and-bound search for
combinatorial optimization in graphical models”. In: Artificial Intelligence
173.16-17 (2009), pp. 1457–1491.

54 / 54

[Mul+19] Vikram Khipple Mulligan et al. “Designing Peptides on a �antum Computer”.
In: bioRxiv (2019), p. 752485.

[Mul+20] Maxime Mulamba et al. “Hybrid Classification and Reasoning for Image-based
Constraint Solving”. In: Proc. of CPAIOR’20, also in arXiv preprint arXiv:2003.11001.
2020, pp. 364–380.

[Oua+17] Abdelkader Ouali et al. “Iterative decomposition guided variable neighborhood
search for graphical model energy minimization”. In: Conference on Uncertainty
in Artificial Intelligence, UAI’17. Sydney, Australia, 2017.

[Oua+20] Abdelkader Ouali et al. “Variable neighborhood search for graphical model
energy minimization”. In: Artificial Intelligence 278 (2020), p. 103194.

[Par+17] Youngsuk Park et al. “Learning the network structure of heterogeneous data via
pairwise exponential Markov random fields”. In: Proceedings of machine learning
research 54 (2017), p. 1302.

[PPW18] Rasmus Palm, Ulrich Paquet, and Ole Winther. “Recurrent relational networks”.
In: Advances in Neural Information Processing Systems. 2018, pp. 3368–3378.

[Ruf+19] Manon Ru�ini et al. “Guaranteed Diversity & �ality for the Weighted CSP”. In:
2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI).
IEEE. 2019, pp. 18–25.

54 / 54

[Sch00] T. Schiex. “Arc consistency for so� constraints”. In: Principles and Practice of
Constraint Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000,
pp. 411–424.

[Sch76] M.I. Schlesinger. “Sintaksicheskiy analiz dvumernykh zritelnikh signalov v
usloviyakh pomekh (Syntactic analysis of two-dimensional visual signals in
noisy conditions)”. In: Kibernetika 4 (1976), pp. 113–130.

[Sim+15] David Simoncini et al. “Guaranteed Discrete Energy Optimization on Large
Protein Design Problems”. In: Journal of Chemical Theory and Computation 11.12
(2015), pp. 5980–5989. doi: 10.1021/acs.jctc.5b00594.

[TGK20] Fulya Trösser, Simon de Givry, and George Katsirelos. “VAC integrality based
variable heuristics and initial upper-bounding (vacint and rasps):
Relaxation-Aware Heuristics for Exact Optimization in Graphical Models”. In:
Proc. of CPAIOR-20. 2020.

[Wan+19] Po-Wei Wang et al. “SATNet: Bridging deep learning and logical reasoning using
a di�erentiable satisfiability solver”. In: ICML’19 proceedings, arXiv preprint
arXiv:1905.12149. 2019.

54 / 54

https://doi.org/10.1021/acs.jctc.5b00594

[Wer07] T. Werner. “A Linear Programming Approach to Max-sum Problem: A Review.”.
In: IEEE Trans. on Pa�ern Recognition and Machine Intelligence 29.7 (July 2007),
pp. 1165–1179. url: http://dx.doi.org/10.1109/TPAMI.2007.1036.

54 / 54

http://dx.doi.org/10.1109/TPAMI.2007.1036

	Systematic search and local search
	Pruning and Bounds
	All Toulbar2 bells and whistles
	WCSP solving has made huge progress
	Learning CFN from data
	References
	References

