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2 LIRMM, Université de Montpellier, France

3 GREYC, Université de Caen, France
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Résumé

Comme l’ont montré [19, 18], les réseaux de fonc-
tions de coût (ou CSP pondérés) peuvent bénéficier de
l’introduction de fonctions de coût globales, amenant
à la construction d’outils de “Programmation par Fonc-
tions de Coût”, généralisant la“Programmation par Con-
traintes”. Dans cet article, nous explorons la possibilité
de décomposer des fonctions de coût globales de façon
à ce que l’établissement de cohérence locales souples sur
la décomposition garantisse qu’un certain niveau de ser-
vice soit également établi sur la fonction de coût globale
d’origine. Nous montrons que la cohérence d’arc direc-
tionnelle ainsi que la cohérence d’arc virtuelle permettent
d’offrir de telles garanties. Nous concluons par différentes
expérimentations sur des fonctions de coûts globales qui
montrent que de telles décompositions sont fort utiles
pour intégrer de façon très simple des fonctions de coût,
efficacement traitées, dans les outils de résolution.

Abstract

As [19, 18] have shown, weighted constraint sat-
isfaction problems can benefit from the introduction of
global cost functions, leading to a new Cost Function
Programming paradigm. In this paper, we explore the
possibility of decomposing global cost functions in such
a way that enforcing soft local consistencies on the de-
composition offers guarantees on the level of consistency
enforced on the original global cost function. We show
that directional arc consistency and virtual arc consis-
tency offer such guarantees. We conclude by experiments
on decomposable cost functions showing that decompo-
sitions may be very useful to easily integrate efficient
global cost functions in solvers.

1 Introduction

Graphical model processing is a central problem in
artificial intelligence. The optimization of the com-
bined cost of local cost functions, central in the val-
ued/weighted constraint satisfaction problem frame-
works [24] federates a variety of famous problems
including CSP, SAT, Max-SAT, but also the Maxi-
mum A posteriori Problem (MAP) in Random Markov
fields, the Maximum Probability Explanation (MPE)
problem in Bayes nets [14] and polynomial pseudo-
Boolean optimization [6]. It has applications in re-
source allocation or bioinformatics.

The main approach to solve such problems in the
most general situation relies on Branch and Bound
combined with dedicated lower bounds for pruning.
Such lower bounds can be provided by enforcing soft
local consistencies [7], as in Constraint Programming
(CP) solvers. CP solvers are also equipped with global
constraints which are crucial for solving large difficult
problems. Dedicated algorithms for filtering such con-
straints have been introduced. For some global con-
straints such as Regular, Contiguity, Among, it
has been shown that a decomposition into a Berge-
acyclic network of fixed arity constraints can lead to
simpler implementation, without any loss in efficiency
or effectiveness in filtering [2, 4].

The notion of global constraints has been recently
extended to weighted CSP, defining Global Cost Func-
tions [27, 19, 18] with associated efficient filtering algo-
rithms. In this paper, after some preliminaries, we de-
fine cost function decomposition and show how decom-
posable global constraints can be softened in families
of decomposable global cost functions with the same



decomposition structure. For Berge-acyclic decompos-
able global cost functions, we show that enforcing di-
rectional arc consistency or virtual arc consistency on
the decomposition is essentially equivalent to a direct
application on the original global cost function. Fi-
nally, we experimentally compare the efficiency of de-
composed and monolithic versions of different global
cost functions and observe important speedups using
decompositions.

2 Preliminaries

2.0.1 Cost function network.

A Cost Function Network (CFN) is a pair (X,W )
where X = {1, . . . , n} is a set of n variables and W
is a set of cost functions. Each variable i ∈ X has a
finite domain Di of values that can be assigned to it. A
value a in Di is denoted (i, a). The maximum domain
size is d. For a set of variables S ⊆ X, DS denotes
the Cartesian product of the domains of the variables
in S. For a given tuple of values t, t[S] denotes the
projection of t over S. A cost function wS ∈ W , with
scope S ⊆ X, is a function wS : DS 7→ [0, k] where
k is a maximum integer cost (finite or not) used to
represent forbidden assignments (expressing hard con-
straints). To faithfully capture hard constraints, costs
are combined using the bounded addition defined by
α⊕β = max(k, α+β). In this paper, a hard constraint
is therefore represented as a cost function using only
costs in {0, k}. If ∀t ∈ DS , zS(t) ≤ wS(t), we say that
the cost function zS is a relaxation of wS , denoted by
zS ≤ wS . A cost β may be subtracted from a larger
cost α using the operation 	 where α 	 β is (α − β)
if α 6= k and k otherwise. Without loss of generality,
we assume that every network contains one unary cost
function wi per variable and a 0-arity (constant) cost
function w∅.

The central problem in CFN is to find an optimal
solution : a complete assignment tminimizing the com-
bined cost function

⊕
wS∈W wS(t[S]). This optimiza-

tion problem has an associated NP-complete decision
problem and restrictions to Boolean variables and bi-
nary constraints are known to be APX-hard [20].

A Constraint Network (CN) is a CFN where all cost
functions are hard constraints (i.e., only using costs
in {0, k}). Such cost functions are simply called con-
straints.

2.0.2 Local consistency.

Algorithms searching for solutions in CNs usually
enforce local consistency properties to reduce the
search space. In CNs, the standard level of local con-
sistency is generalized arc consistency (GAC). A con-

straint cS is GAC iff every value in the domain of ev-
ery variable in S has a support on cS , where a support
on cS is a tuple t ∈ DS such that cS(t) = 0. En-
forcing GAC on cS will often be called filtering cS .
General exact methods for solving the minimization
problem in CFNs usually rely on branch and bound
algorithms equipped with dedicated lower bounds. We
consider here the incremental lower bounds provided
by maintaining soft local consistencies such as directed
arc consistency (DAC) [8, 17] and virtual arc consis-
tency (VAC) [7].

2.0.3 Global cost function.

A global constraint c(S, θ) is a family of constraints
with a precise semantics parameterized by the set of
variables S involved and possible extra parameters
represented as θ. Global constraints usually have effi-
cient associated local consistency enforcing algorithm
(compared to generic filtering algorithms). Global con-
straints have been extended to define soft global con-
straints such as SoftAllDiff(S) [22] or SoftRegu-
lar(S,A, d) [26]). These “soft” global constraints are
hard global constraints defined over a set of variables
including a dedicated “cost” variable representing the
cost of the assignment of the remaining variables un-
der the given softened global constraint semantics. For
several such constraints, efficient dedicated algorithms
for enforcing GAC have been proposed.

Recently, different papers [27, 19, 18] have shown
that it is possible to define soft global constraints as
parameterized cost functions z(S, θ) directly providing
the cost of an assignment. This approach allows to di-
rectly enforce soft local consistencies with dedicated
algorithms providing stronger lower bounds. Indeed,
compared to the previous cost variable based approach
using constraints and GAC, cost functions and soft
local consistencies offer improved filtering, thanks to
the enhanced communication between cost functions
enabled by the use of Equivalence Preserving Trans-
formations [9].

2.0.4 Hypergraph.

The hypergraph of a CFN (or CN) (X,W ) has one
vertex per variable i ∈ X and one hyperedge per scope
S such that ∃wS ∈ W . We consider CFNs with con-
nected hypergraphs. The incidence graph of an hy-
pergraph (X,E) is a graph G = (X ∪ E,EH) where
{xi, ej} ∈ EH iff xi ∈ X, ej ∈ E and xi belongs to the
hyperedge ej . An hypergraph (X,E) is Berge acyclic
iff its incidence graph is acyclic.



3 Decomposing Global Cost Functions

Some global constraints may be efficiently decom-
posed into a logically equivalent subnetwork of con-
straints of bounded arities [5, 3]. Similarly, global cost
functions may be decomposed into a set of bounded ar-
ity cost functions. Notice that the definition below ap-
plies to any cost function, including constraints (cost
functions using only costs in {0, k}).

Definition 1 A decomposition of a global cost func-
tion z(T, θ) is a polynomial transformation δk (k being
an integer) that returns a CFN δk(T, θ) = (T ∪ E,F )
such that ∀wS ∈ F, |S| ≤ k and ∀t ∈ DT , z(T, θ)(t) =
mint′∈DT∪E ,t′[T ]=t

⊕
wS∈F wS(t′[S]).

We assume, w.l.o.g, that every extra-variable i ∈ E
is involved in at least two cost functions in the de-
composition. 1 Clearly, if z(T, θ) appears in a CFN
P = (X,W ) and decomposes into (T ∪ E,F ), then
the optimal solutions of P can directly be obtained
by projecting the optimal solutions of the CFN P ′ =
(X ∪ E,W \ {z(T, θ)} ∪ F ) on X.

Example Consider the AllDiff(S) constraint and
its associated softened variant SoftAllDiff(S, dec)
using the decomposition measure [22] where the cost
of an assignment is the number of pairs of variables
taking the same value. It is well known that AllD-

iff decomposes in a set of n.(n−1)
2 binary difference

constraints. Similarly, the SoftAllDiff(S, dec) cost

functioncan be decomposed in a set of n.(n−1)2 soft dif-
ference cost functions. A soft difference cost function
takes cost 1 iff the two involved variables have the same
value and 0 otherwise. In these cases, no extra variable
is required. Notice that the two decompositions have
the same hypergraph structure.

3.1 Softening Decomposable Global Constraints

We now show that there is a systematic way of deriv-
ing decomposable cost functions as specific relaxations
of existing decomposable global constraints.

As the previous AllDiff example showed, if we
consider a decomposable global constraint, it is possi-
ble to define a softened decomposable global cost func-
tion by relaxing every constraint in the decomposition.

Theorem 1 Let c(T, θ) be a global constraint that de-
composes in a constraint network (T ∪ E,C) and fθ
a function that maps every cS ∈ C to a cost function
wS such that wS ≤ cS. Then the global cost function

1. Otherwise, such a variable can be removed by variable
elimination : remove i from E and replace the wS involving i
by the cost function mini wS on S \ {i}. This preserves Berge-
acyclicity.

w(T, fθ)(t) = mint′∈DT∪E ,t′[T ]=t

⊕
cS∈C fθ(cS)(t′[S])

is a relaxation of c(T, θ).

Proof For any tuple t ∈ DT , if c(T, θ)(t) = 0,
then mint′∈DT∪E ,t′[T ]=t

⊕
cS∈C cS(t′[S]) = 0 because

(T ∪E,C) is a decomposition of c(T, θ). Let t′ ∈ DT∪E

be the tuple where this minimum is reached. This im-
plies that ∀cS ∈ C, cS(t′[S]) = 0. Since fθ(cS) is a re-
laxation of cS , this implies that fθ(cS)(t′[S]) = 0 too.
Therefore

⊕
cS∈C fθ(cS)(t′[S]) = 0 and w(T, fθ)(t) =

0. �

By definition, the global cost function w(T, fθ) is
decomposable in (T ∪ E,W ) where W is obtained by
mapping fθ on every element of C. Notice that, since
fθ preserves scopes, the hypergraph of the decomposi-
tion is preserved.

This results allows to immediately derive a long
list of decompositions for global cost functions from
existing decompositions of global constraints such as
AllDiff, Regular, Grammar, Among, Stretch.
The parameterization through fθ allows a lot of flexi-
bility.

Consider the AllDiff(V ) constraint decomposed
into a clique of binary differences. From a graph G =
(V,E), one can define a relaxation function fG that
preserves difference constraints i 6= j when (i, j) ∈ E
but otherwise relaxes them to a constant cost function
that is always equal to zero. This gives rise to a global
cost function w(V, fG) that captures the graph color-
ing problem on G, an NP-hard problem. Thus, enforc-
ing DAC or VAC on that single global cost function
will be intractable as well, whereas enforcing DAC or
VAC on its decomposition into binary cost functions
will obviously be polynomial but will hinder the level
of filtering achieved.

Consider the Regular({X1, . . . , Xn},A) global
constraint, defined by a finite automaton A =
(Q,Σ, δ, q0, F ) where Q is a set of states, Σ the emis-
sion alphabet, δ a transition function from Σ × Q →
2Q, q0 the initial state and F the set of final states.
As shown in [4], this constraint decomposes into a
constraint network ({X1, . . . , Xn} ∪ {Q0, . . . , Qn}, C)
where the extra variables Qi have Q as their domain.
The set of constraints C in the decomposition contains
two unary constraints restricting Q0 to {q0} and Qn
to F and a sequence of identical ternary constraints
c{Qi,Xi+1,Qi+1} which authorizes a triple (q, s, q′) iff
q′ ∈ δ(q, s), thus capturing δ. An arbitrary relaxation
of this decomposition may relax each of these con-
straints. The unary constraints on Q0 and Qn would
be replaced by unary cost functions λQ0

and ρQn
stat-

ing the cost for using every state as either an initial or
final state while the ternary constraints would be re-
laxed to ternary cost functions σ{Qi,Xi+1,Qi+1} stating



the cost for using any (q, s, q′) transition. This relax-
ation precisely corresponds to the use of a weighted
automaton A = (Q,Σ, λ, σ, ρ) [11]. The cost of an as-
signment in the decomposition is equal, by definition,
to the cost of an optimal parse of the assignment by the
weighted automaton. This defines a WeightedRegu-
lar({X1, . . . , Xn},A) global cost function. As shown
in [13], a weighted automaton can encode the Ham-
ming and Edit distances to the language of a classical
automaton. Contrarily to the AllDiff example, we
will see that WeightedRegular decomposition can
be handled efficiently and effectively by soft local con-
sistencies.

4 Local Consistency and Decompositions

The use of decompositions instead of their mono-
lithic variant has both advantages and drawbacks.
Thanks to local reasoning, a decomposition may be
filtered more efficiently but this may also hinder the
level of filtering achieved. In classical CSP, it is known
that if the decomposition is Berge-acyclic, then en-
forcing GAC on the decomposition enforces GAC on
the global constraint itself [1]. We show that a similar
result can be obtained for cost functions using either
DAC or VAC.

DAC has been originally introduced on binary cost
functions using the notion of full support [7]. For a
cost function wS , a tuple t ∈ DS is a full support for
a value (i, a) of i ∈ S iff wi(a) = wS(t)

⊕
j∈S wj(t[j]).

Notice that either wi(a) = k and (i, a) does not par-
ticipate in any solution or wi(a) < k and therefore
wS(t)

⊕
j∈S,j 6=i wj(t[j]) = 0. DAC has been extended

to non binary cost functions in [23] and [19] with differ-
ent definitions that coincide on binary cost functions.
In this paper, we use a simple extension called T-DAC
(for terminal DAC). Given a total order≺ on variables,
a CFN is said to be T-DAC w.r.t. ≺ iff for any cost
function wS , any value (i, a) of the maximum variable
i ∈ S according to ≺ has a full support on wS .

VAC is a more recent local consistency property that
establishes a link between a CFN P = (X,W ) and a
constraint network denoted as Bool(P ) with the same
set X of domain variables and which contains, for ev-
ery cost function wS ∈W, |S| > 0, a constraint cS with
the same scope which forbids any tuple t ∈ DS such
that wS(t) 6= 0. A CFN P is said to be VAC iff the arc
consistent closure of the constraint network Bool(P )
is non empty [7].

4.1 Enforcing soft local consistencies

Enforcing such soft local consistencies relies on arc
level Equivalence Preserving Transformations (EPTs)

which apply to one cost function wS [9]. Instead of
deleting domain values, EPTs shift costs between wS
and the unary constraints wi, i ∈ S and therefore oper-
ate on a sub-network of P defined by wS and denoted
as NP (wS) = (S, {wS} ∪ {wi}i∈S). The main EPT is
described as Algorithm 1. This EPT shifts an amount
of cost |α| between the unary cost function wi and the
cost function wS . The direction of the cost move is
given by the sign of α. The precondition guarantees
that costs remain non negative in the resulting equiv-
alent network.

Algorithm 1: A cost shifting EPT used to enforce
soft arc consistencies. The ⊕,	 operations are ex-
tended to handle possibly negative costs as follows :
for non negative costs α, β, we have α	 (−β) = α⊕ β
and for β ≤ α, α⊕ (−β) = α	 β.

Precondition : −wi(a) ≤ α ≤ mint∈DS ,t[i]=a wS(t);1

Procedure Project(wS , i, a, α)2

wi(a)← wi(a)⊕ α;3

foreach (t ∈ DS such that t[i] = a) do4

wS(t)← wS(t)	 α;5

To enforce T-DAC on a cost function wS , it
suffices to first shift the cost of every unary
cost function wi, i ∈ S inside wS by applying
Project(wS , i, a,−wi(a)) for every value a ∈ Di. Let j
be the maximum variable in S according to ≺, one can
then apply Project(wS , j, b, α) for every value (j, b) and
α = mint∈DS ,t[j]=b wS(t). Let t be a tuple where this
minimum is reached. t is then a full support for (j, b) :
wj(b) = wS(t)

⊕
i∈S wi(t[i]). This support can only be

broken if for some unary cost functions wi, i ∈ S, i 6= j,
wi(a) increases for some value (i, a).

To enforce T-DAC on a complete CFN (X,W ), one
can simply sort W according to ≺ and apply the
previous process on each cost function, successively.
When a cost function wS is processed, all the cost
functions whose maximum variable appears before the
maximum variable of S have already been processed
which guarantees that none of the established full sup-
ports will be broken in the future. Enforcing T-DAC
is therefore in O(edr) in time, where e = |W | and
r = maxwS∈W |S| . Using the ∆ data-structures intro-
duced in [7], space can be reduced to O(edr).

The most efficient algorithms for enforcing VAC en-
forces an approximation of VAC called VACε with a
time complexity in O( ekd

r

ε ) and a space complexity in
O(edr). Alternatively, optimal soft arc consistency can
be used to enforce VAC in O(e6.5d(3r+3.5) logM) time
(where M is the maximum finite cost in the network).



4.2 Berge acyclicity and directional arc consistency

In this section, we show that enforcing T-DAC on
a Berge-acyclic decomposition of a cost function or on
the original global cost function yields the same cost
distribution on the last variable and therefore the same
lower bound (obtained by node consistency [16]).

Theorem 2 If a global cost function z(T, θ) decom-
poses into a Berge-acyclic CFN N = (T ∪ E,F ) then
there is an ordering on T ∪E such that the unary cost
function win on the last variable in produced by enforc-
ing T-DAC on the sub-network (T, {z(T, θ)}∪{wi}i∈T )
is identical to the unary cost function w′in produced
by enforcing T-DAC on the decomposition N = (T ∪
E,F ∪ {wi}i∈T ).

Proof Consider the decomposed network N and IN =
(T ∪E ∪F,EI) its incidence graph. We know that IN
is a tree whose vertices are the variables and the cost
functions of N . We root IN in a variable of T . The
neighbors (parent and sons, if any) of a cost functions
wS are the variables in S. The neighbors of a variable i
are the cost functions involving i. Consider any topo-
logical ordering of the vertices of IN . This ordering
induces a variable ordering (i1, . . . , in), in ∈ T which
is used to enforce T-DAC on N . Notice that for any
cost function wS ∈ F , the parent variable of wS in IN
appears after all the other variables of S.

Consider a value (in, a) of the root. If win(a) = k,
then any complete assignment extending this value has
cost win(a). Otherwise, win(a) < k. Let wS , be any
son of in and tS a full support of (in, a) on wS . We
have win(a) = wS(t)

⊕
i∈S wi(t[i]) which proves that

wS(t) = 0 and ∀i ∈ S, i 6= in, wi(t[i]) = 0. IN being
a tree, we can inductively apply the same argument
on all the descendants of in until leaves are reached,
proving that the assignment (in, a) can be extended
to a complete assignment with cost win(a) in N . In
either cases, win(a) is the cost of an optimal extension
of (in, a) in N .

Suppose now that we enforce T-DAC using the pre-
vious variable ordering on the undecomposed sub-
network (T, {z(T, θ)} ∪ {wi}i∈T ). Let t be a full sup-
port of (in, a) on z(T, θ). By definition win(a) =
z(T, θ)

⊕
i∈T wi(t[i]) which proves that win(a) is the

cost of an optimal extension of (in, a) on (T, {z(T, θ)}∪
{wi}i∈T ). By definition of decomposition, and since
in 6∈ E, this is equal to the cost of an optimal exten-
sion of (in, a) in N . �

T-DAC has therefore enough power to handle Berge-
acyclic decompositions without losing any filtering
strength, provided a correct order is used for apply-
ing EPTs.

4.3 Berge acyclicity and virtual arc consistency

Virtual Arc Consistency offers a simple and direct
link between CNs and CFNs which allows to directly
lift classical CNs properties to CFNs, under simple
conditions.

Theorem 3 In a CFN, if a global cost function
z(T, θ) decomposes into a Berge-acyclic CFN N =
(T∪E,F ) then enforcing VAC on either (T, {z(T, θ)}∪
{wi}i∈T ) or on (T ∪ E,F ∪ {wi}i∈T ) yields the same
lower bound w∅.

Proof Enforcing VAC on the CFN P = (T ∪ E,F ∪
{wi}i∈T ) does not modify the set of scopes and yields
an equivalent problem P ′ such that Bool(P ′) is Berge-
acyclic, a situation where arc consistency is a decision
procedure. We can directly make use of Proposition
10.5 of [7] which states that if a CFN P is VAC and if
Bool(P ) is in a class of CSPs for which arc consistency
is a decision procedure, then P has an optimal solution
of cost w∅.

Similarly, the network Q = (T, {z(T, θ)} ∪ {wi}i∈T )
contains just one cost function with arity strictly above
1 and Bool(Q) will be decided by arc consistency. En-
forcing VAC will therefore provide a CFN which also
has an optimal solution of cost w∅. The networks P
and Q having the same optimal cost by definition of a
decomposition. �

5 Experimental Results

In this section, we intend to evaluate the practical
interest of global cost function decompositions. Com-
pared to the monolithic cost function filtering algo-
rithm, these decompositions allow for a simple imple-
mentation and will provide effective filtering. But their
actual performance needs to be evaluated.

All problems were solved using the CFN solver toul-
bar2 0.9.5 2 with pre-processing off (option line -o -

e: -f: -dec: -h: -c: -d: -q:), and a variable assign-
ment and DAC ordering compatible with the Berge-
acyclic structure of the decompositions. The dynamic
value ordering chooses the existential EAC value
first [15]. No initial upper bound is used. The same
level of local consistency (namely (weak) EDGAC*,
stronger than T-DAC and which therefore will pro-
duce an optimal w∅ for every global cost function)
was used in all cases. All the experiments were run us-
ing several 2.66 Ghz Intel Xeon CPU cores with 64GB
RAM.

2. https ://mulcyber.toulouse.inra.fr/projects/toulbar2.



5.1 Random WeightedRegular

Following [21], we generated random automata with
|Q| states and |Σ| symbols. We randomly selected 30%
of all possible pairs (s, qi) ∈ Σ×Q and randomly chose
a state qj ∈ Q to form a transition δ(s, qi) = qj for
each such pair. The set of final states F is obtained
by randomly selecting 50% of states in Q. Random
sampling uses a uniform distribution.

From each automaton, we built two CFNs : one us-
ing a monolithic SoftRegular cost function using
Hamming distance [19] and another using the Berge-
acyclic decomposition of an equivalent Weighte-
dRegular global cost functions. To make the situ-
ation more realistic, we added to each of these prob-
lems the same set of random unary constraints (one
per non-extra variable, unary costs randomly chosen
between 0 and 9). We measured two times : (1) time
for loading and filtering the initial problem and (2)
total time for solving the CFN (including the previ-
ous time). The first time is informative on the filtering
complexity while the second emphasizes the incremen-
tality of the filtering algorithms. Times were averaged
on 100 runs and samples reaching the time limit of one
hour were counted as such.

n |Σ| |Q| Monolithic Decomposed
filter solve filter solve

25 5 10 0.12 0.51 0.00 0.00
80 2.03 9.10 0.08 0.08

25 10 10 0.64 2.56 0.01 0.01
80 10.64 43.52 0.54 0.56

25 20 10 3.60 13.06 0.03 0.03
80 45.94 177.5 1.51 1.55

50 5 10 0.45 3.54 0.00 0.00
80 11.85 101.2 0.17 0.17

50 10 10 3.22 20.97 0.02 0.02
80 51.07 380.5 1.27 1.31

50 20 10 15.91 100.7 0.06 0.07
80 186.2 1,339 3.38 3.47

Looking just to filtering time, it is clear that de-
composition offers impressive improvements despite a
much simpler implementation. Solving times show that
it also inherits the excellent incrementality of usual
consistency enforcing algorithms for free.

5.2 Nonograms

(prob012 in the CSPLib) are NP-complete logic puz-
zles in which cells in a grid have to be colored in such
a way that a given description for each row and col-
umn, giving the lengths of distinct colored segments,
is adhered to.

A n × n nonogram can be represented using n2

Boolean variables xij specifying the color of the square
at position (i, j). The restrictions on the lengths of

segments in each row or column can be captured by
a Regular constraint. In order to evaluate the inter-
est of filtering decomposable cost functions, we have
performed two types of experiments on nonograms.

Softened nonograms : can be built from classical
nonograms by relaxing the strict adherence to the in-
dicated lengths of colored segments. For this, we re-
lax the Regular constraints on each row and column
in the softened version using the Hamming distance.
The associated cost indicates how many cells need to
be modified to satisfy the attached description. This
problem contains 2n WeightedRegular cost func-
tions, with intersecting scopes. In order to be able to
apply Theorem 2 on each of these global cost func-
tions, one must buid a global variable order which
is a topological ordering for each of these cost func-
tions. Although this requirement seems hard to meet
in general, it is easy to produce in this specific case.
The xij variables can, for example, be ordered in lex-
icographic order, from top left to bottom right and
extra-variables inserted anywhere between their flank-
ing original variables. Global cost function scopes are
usually expressed to capture properties defined on time
(as in rostering problems) or space (as in nonograms,
or text processing problems). In those cases, the global
order defined by time or space defines a global variable
ordering that will often satisfy the conditions of The-
orem 2.

Random n×n nonogram instances are generated by
uniformly sampling the number of segments in each
row/column between 1 and bn3 c. The length of each
segment is uniformly and iteratively sampled from 1 to
the maximum length that allows remaining segments
to be placed (considering a minimum length of 1).

We solved these problems with toulbar2 as before
and measured the percentage of problems solved as
well as the mean cpu-time (unsolved problems are
counted for one hour) on samples of 100 problems.

Size Monolithic Decomposed
Solved Time Solved Time

6× 6 100% 1.98 100% 0.00
8× 8 96% 358 100% 0.52

10× 10 44% 2,941 100% 30.2
12× 12 2% 3,556 82% 1,228
14× 14 0% 3,600 14% 3,316

In this more realistic setting, involving different in-
teracting global cost functions, decomposition is again
the most efficient approach with orders of magnitude
speedups.

White noise images : a random solution grid, with
each cell colored with probability 0.5, is generated. A



nonogram problem instance is created from the lengths
of the segments observed in this random grid. These
problems usually have several solutions, among which
the original grid. We associate random unary costs,
uniformly sampled betwen 0 and 99, with each cell.
These costs represent the price to color the cell. A
solution with minimum cost is sought. This problem
has been modeled in choco (rel. 2.1.3, default options)
and toulbar2 (-h: option) using 2n Regular global
constraints. In the choco model, a Scalar constraint
involving all variables is used to define the criteria to
optimize. In toulbar2, coloring costs are captured by
unary cost functions and the Regular constraints
are represented by WeightedRegular cost func-
tions with weights in {0, k}. The monolithic version
has been tried but gave very poor results.

We measured the percentage of problems solved as
well as the mean cpu-time (unsolved problems are
counted for 1

2 hour, the time-limit used) on samples
of 50 problems.

Size choco toulbar2

Solved Time Solved Time

20× 20 100% 1.88 100% 0.93
25× 25 100% 14.78 100% 3.84
30× 30 96% 143.6 96% 99.01
35× 35 80% 459.9 94% 218.2
40× 40 46% 1,148 66% 760.8
45× 45 14% 1,627 32% 1.321

On this problem, enforcing soft filtering on decom-
posed global constraints is preferable to traditional
bound/GAC filtering of a pure CP model with cost
variables. Using decomposition, the direct use of soft
filtering such as EDAC, which subsumes T-DAC, pro-
vides a better exploitation of costs, with minimal im-
plementation efforts.

6 Beyond decomposable cost functions

In some cases, problems may contain global cost
functions which are not decomposable just because
the bounded arity cost function decomposition is not
polynomial in size. However, if the network is Berge-
acyclic, Theorem 2 still applies. With exponential size
networks, filtering will take exponential time but may
yield strong lower bounds. The linear equation global
constraint

∑n
i=1 aixi = b (a and b being small integer

coefficients) can be easily decomposed introducing n−
3 intermediate sum variables qi and ternary sum con-
straints of the form qi−1 + aixi = qi with i ∈ [3, n− 2]
and a1x1 + a2x2 = q2, qn−2 + an−1xn−1 + anxn = b.
The extra variables qi have b values which is exponen-
tial in the representation of b. We consider the Market
Split problem defined in [10, 25]. The goal is to min-
imize

∑n
i=1 oixi such that

∑n
i=1 ai,jxi = bj for each

j ∈ [1,m] and xi are Boolean variables in {0, 1} (o, a
and b being positive integer coefficients). We compared
the Berge-acyclic decomposition in toulbar2 with a di-
rect application of the Integer Linear Programming
solver cplex (version 12.2.0.0). We generated random
instances with random integer coefficients in [0, 99] for
o and a, and bj = b 12

∑n
i=1 ai,jc. We used a sam-

ple of 50 problems with m = 4, n = 30 leading to
max bj = 918. The mean number of nodes developed
in cplex is 50% higher than in toulbar2. But cplex

was on average 6 times faster than toulbar2 on these
problems. 0/1 knapsack problems probably represent
a worst case situation for toulbar2 given that cplex

embeds much of what is known about 0/1 knapsacks
(and only part of these extend to more complicated do-
mains). Possible avenues to improve toulbar2 results
in this unfavorable situation would be to use a combi-
nation of the m knapsack constraints into one as sug-
gested in [25]and a direct exploitation of the properties
of the ternary linear constraints for more compact rep-
resentation and more efficient filtering.

7 Related works

It should be pointed out that T-DAC is closely re-
lated to mini-buckets [12] and Theorem 2 can easily
be adapted to this scheme. Mini-buckets perform a
weakened form of variable elimination : when a vari-
able x is eliminated, the cost functions linking x to the
remaining variables are partitioned into sets contain-
ing at most i variables in their scopes and at most m
functions. If we compute mini-buckets using the same
variable ordering, with m = 1 and unbounded i, we
will obtain the same marginal cost function as T-DAC
on the root variable r, with the same time complex-
ity. Mini-buckets can be used along two main recipes :
precomputed (static) mini-buckets do not require up-
date during search but restrict search to one static
variable ordering ; dynamic mini-buckets allow for dy-
namic variable ordering (DVO) but suffer from a lack
of incrementality. Soft local consistencies, being based
on EPTs, always yield equivalent problems, providing
incrementality during search and are compatible with
DVO. Soft arc consistencies also offer a space com-
plexity in O(edr) while mini-bucket may require space
exponential in i.

8 Conclusion

In this paper, we have extended constraint decom-
position to cost functions occurring in CFNs. For cost
functions having a Berge-acyclic decomposition, we
have shown that a simple filtering, at the directed arc
consistency level, provides a comparable filtering on



the decomposition or on the global cost function it-
self, provided a suitable variable ordering is used for
DAC enforcing. For the stronger Virtual AC filtering,
the same result is obtained, without any requirement.

The application of this result on the trivial class of
Berge-acyclic global cost functions defined by Berge-
acyclic decomposable global constraints is already sig-
nificant since it allows to enforce soft local consisten-
cies on networks containing Berge-acyclic decompos-
able global constraints such as Regular, Grammar,
Among,. . .

We have shown that these Berge-acyclic global con-
straints can also be relaxed into a Berge-acyclic global
cost function using a generalization of the usual “de-
composition” measure. This immediately provides a
long list of Berge-acyclic decomposable global cost
functions. Our experimental results based on the ap-
plication of DAC on the relaxation of the Regular
constraint into the WeightedRegular cost function
show that the decomposition approach offers impres-
sive speedups and cheap implementation compared to
the monolithic cost function algorithms.

To experimentally evaluate the practical interest of
the stronger result on VAC, a technically involved im-
plementation of VAC on non binary constraints would
be needed.

Although it is currently restricted to Berge-acyclic
decompositions, this work paves the way for a more
general form of “structural decompositions” of global
cost functions where global cost functions decompose
into an acyclic structure of local cost functions, with
bounded separator sizes (but not necessarily of car-
dinality 1). These global structurally decomposed cost
functions could then be filtered efficiently through ded-
icated incremental equivalence preserving transforma-
tions capturing non serial dynamic programming algo-
rithms.
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