
Computational Protein Design as an Optimization
Problem

T. Schiex
D. Allouche, Isabelle André, Sophie Barbe, Jessica Davies, Simon de

Givry, George Katsirelos, Barry O’Sullivan, Steve Prestwich, David

Simoncini, Seydou Traoré

IRISA - INRIA Rennes - September 2015

What is a protein ? (Kudos to wikipedia)

Amino acids, proteins

Proteins are linear chains of amino-acids (20 natural AAs).

All AAs share a common “core” and have a variable
side-chain.

Side-chains are
flexible (ARG)

Protein Design

Why ?

Proteins have various functions in the cell: catalysis, signaling,
recognition, regulation. . .

Efficient, biodegrable, 106 to 1020 speedups

Some reactions / ligands miss enzymes / partners.

Medecine, cosmetics, food, bio-energies. . .

Nano-technologies (shape more than function).

Protein Design

Protein function linked to its 3D shape through its amino acid
composition.

Protein design’s aim

Identify sequences that have a suitable
function (shape).

Issue

There are 20n proteins of length n.
Impossible to synthesize and test all of
them.

Protein Design

Protein function linked to its 3D shape through its amino acid
composition.

Protein design’s aim

Identify sequences that have a suitable
function (shape).

Issue

There are 20n proteins of length n.
Impossible to synthesize and test all of
them.

The CPD problem - stability variant

Preparation

A backbone is chosen/built from a known protein/structure
(or de novo).

Positions are set as mutable, flexible or rigid

The aim is to find an AA sequence that folds, stably, in the
backbone.

Issues

CPD is a sort of inverse of folding.

But folding is far from being a solved problem

The CPD problem - stability variant

Preparation

A backbone is chosen/built from a known protein/structure
(or de novo).

Positions are set as mutable, flexible or rigid

The aim is to find an AA sequence that folds, stably, in the
backbone.

Issues

CPD is a sort of inverse of folding.

But folding is far from being a solved problem

Successes of Protein Design

The (basic) CPD problem: search space

Rigid backbone variant

1 Assume a rigid protein backbone.

2 Choose 1 AA among possible ones
at each mutable position.

3 Spatial conformation discretized in
rotamers.

4 Statistically frequent orientations.

5 Several 100’s rotamers per position.

Search Space

1 Fully discrete description, defined by a choice of rotamer (AA
× conformation) for each position.

2 Search space can be ≈ 250n

The (basic) CPD problem: search space

Rigid backbone variant

1 Assume a rigid protein backbone.

2 Choose 1 AA among possible ones
at each mutable position.

3 Spatial conformation discretized in
rotamers.

4 Statistically frequent orientations.

5 Several 100’s rotamers per position.

Search Space

1 Fully discrete description, defined by a choice of rotamer (AA
× conformation) for each position.

2 Search space can be ≈ 250n

Stable = minimum energy (GMEC, NP-hard [PW02])

Energy: interactions between atoms.

Electrostatic, van der Waals (Amber)

Dihedral torsion angles, Implicit Solvation (EEF1)

“Statistical terms” (Talaris)

Cutoff functions

Pairwise decomposable energy

backbone/backbone (constant)

backbone/rotamer (depends on rotamer)

rotamer/rotamer (depends on pairs of rotamers)

E (c) = E∅ +
n∑

i=1

E (ir) +
∑
i<j

E (ir , js)

Stable = minimum energy (GMEC, NP-hard [PW02])

Energy: interactions between atoms.

Electrostatic, van der Waals (Amber)

Dihedral torsion angles, Implicit Solvation (EEF1)

“Statistical terms” (Talaris)

Cutoff functions

Pairwise decomposable energy

backbone/backbone (constant)

backbone/rotamer (depends on rotamer)

rotamer/rotamer (depends on pairs of rotamers)

E (c) = E∅ +
n∑

i=1

E (ir) +
∑
i<j

E (ir , js)

Stable = minimum energy (GMEC, NP-hard [PW02])

Energy: interactions between atoms.

Electrostatic, van der Waals (Amber)

Dihedral torsion angles, Implicit Solvation (EEF1)

“Statistical terms” (Talaris)

Cutoff functions

Pairwise decomposable energy

backbone/backbone (constant)

backbone/rotamer (depends on rotamer)

rotamer/rotamer (depends on pairs of rotamers)

E (c) = E∅ +
n∑

i=1

E (ir) +
∑
i<j

E (ir , js)

Dedicated CPD Methods

Dominance / Sustitutability / Dead End Elimination [Des+92]

E (ia) +
n∑
j 6=i

min
c

E (ia, jc) > E (ib) +
n∑
j 6=i

E max
b

E (ib, jc)

Strengthened by [Gol94]

E (ia)− E (ib) +
n∑
j 6=i

min
c

[
E (ia, jc)− E (ib, jc)

]
> 0

Many further enhancements (splitting, pairs...). Polynomial time
pre-processing.

“(Soft) substitutability” [Coo97; LRD12]
Dominating 1-clause rule in MaxSAT [NR00].

Dedicated CPD Methods

Dominance / Sustitutability / Dead End Elimination [Des+92]

E (ia) +
n∑
j 6=i

min
c

E (ia, jc) > E (ib) +
n∑
j 6=i

E max
b

E (ib, jc)

Strengthened by [Gol94]

E (ia)− E (ib) +
n∑
j 6=i

min
c

[
E (ia, jc)− E (ib, jc)

]
> 0

Many further enhancements (splitting, pairs...). Polynomial time
pre-processing.

“(Soft) substitutability” [Coo97; LRD12]
Dominating 1-clause rule in MaxSAT [NR00].

Dedicated CPD Methods

Dominance / Sustitutability / Dead End Elimination [Des+92]

E (ia) +
n∑
j 6=i

min
c

E (ia, jc) > E (ib) +
n∑
j 6=i

E max
b

E (ib, jc)

Strengthened by [Gol94]

E (ia)− E (ib) +
n∑
j 6=i

min
c

[
E (ia, jc)− E (ib, jc)

]
> 0

Many further enhancements (splitting, pairs...). Polynomial time
pre-processing.

“(Soft) substitutability” [Coo97; LRD12]
Dominating 1-clause rule in MaxSAT [NR00].

Dedicated CPD Methods

Dominance / Sustitutability / Dead End Elimination [Des+92]

E (ia) +
n∑
j 6=i

min
c

E (ia, jc) > E (ib) +
n∑
j 6=i

E max
b

E (ib, jc)

Strengthened by [Gol94]

E (ia)− E (ib) +
n∑
j 6=i

min
c

[
E (ia, jc)− E (ib, jc)

]
> 0

Many further enhancements (splitting, pairs...). Polynomial time
pre-processing.

“(Soft) substitutability” [Coo97; LRD12]
Dominating 1-clause rule in MaxSAT [NR00].

DEE + A∗

polytime DEE, GMEC NP-hard

DEE cannot reduce all domains to singletons

Followed by A∗ best-first search using the following lower
bound (admissible heuristics) [GLD08]:

d∑
i=1

E (ir) +
d∑

j=i+1

E (ir , js)︸ ︷︷ ︸
Assigned

+
∑n

j=d+1

[
min
s

(E (js) +
d∑

i=1

E (ir , js)︸ ︷︷ ︸
Forward checking

+
n∑

k=j+1

min
u

E (js , ku)︸ ︷︷ ︸
DAC counts

)
]

Lower bound

Same as a lower bound introduced in AI (WCSP) in
1994 [Wal95].

Obsoleted by local consistencies.

T. Schiex. “Arc consistency for soft constraints”. In: Principles and Practice of Constraint Programming - CP
2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411–424

DEE + A∗

polytime DEE, GMEC NP-hard

DEE cannot reduce all domains to singletons

Followed by A∗ best-first search using the following lower
bound (admissible heuristics) [GLD08]:

d∑
i=1

E (ir) +
d∑

j=i+1

E (ir , js)︸ ︷︷ ︸
Assigned

+
∑n

j=d+1

[
min
s

(E (js) +
d∑

i=1

E (ir , js)︸ ︷︷ ︸
Forward checking

+
n∑

k=j+1

min
u

E (js , ku)︸ ︷︷ ︸
DAC counts

)
]

Lower bound

Same as a lower bound introduced in AI (WCSP) in
1994 [Wal95].

Obsoleted by local consistencies.

T. Schiex. “Arc consistency for soft constraints”. In: Principles and Practice of Constraint Programming - CP
2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411–424

Solving the Fixed Backbone CPD problem

Our targets [All+14]

Identify a most efficient model/solving technique for the rigid
backbone/rotamer based/pairwise energy CPD problem.

Do one of the first large spectrum comparison of NP-complete
optimization techniques (AI: CFN, CP, SAT, MRF and OR:
ILP, QP, QPBO) on one well defined, important optimization
problem.

Learn from it.

Cost Function Networks (aka WCSP or MRF)

Cost Function Network (X ,D,E)

1 X = (1, . . . , n), n variables (indices).

2 D = (D1, . . . ,Dn), n domains

3 C set of non negative integer cost functions cS .

4 cS : DS =
∏

D i ,i∈S → {0, . . . , k}

min
t∈DX

E (t) =
∑
cS∈C

cS(t[S])

k is an intolerable cost. May be finite or not.

Cost functions defined as tables, analytic formulas or
predicates (global cost functions).

Bounded addition, subtraction. c∅ is a lower bound.

Cost Function Networks (aka WCSP or MRF)

Cost Function Network (X ,D,E)

1 X = (1, . . . , n), n variables (indices).

2 D = (D1, . . . ,Dn), n domains

3 C set of non negative integer cost functions cS .

4 cS : DS =
∏

D i ,i∈S → {0, . . . , k}

min
t∈DX

E (t) =
∑
cS∈C

cS(t[S])

k is an intolerable cost. May be finite or not.

Cost functions defined as tables, analytic formulas or
predicates (global cost functions).

Bounded addition, subtraction. c∅ is a lower bound.

Solving techniques (CFN solver: toulbar2)

Inspired by Constraint Satisfaction

1 Backtrack becomes Branch and Bound (Depth First)

2 Local consistency reformulates the problem in a more explicit
equivalent problem (Equivalence Preserving Transformation).

3 Provides non naive c∅ (lb), incremental.

Pause pub

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDiff, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last conflict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the fly) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDiff, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last conflict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the fly) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDiff, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last conflict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the fly) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDiff, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last conflict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the fly) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDiff, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last conflict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the fly) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDiff, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last conflict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the fly) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDiff, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last conflict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the fly) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDiff, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last conflict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the fly) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDiff, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last conflict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the fly) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDiff, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last conflict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the fly) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDiff, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last conflict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the fly) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDiff, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last conflict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the fly) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

mulcyber.toulouse.inra.fr/projects/toulbar2

1 black box solver (à la SAT/01LP)

2 table cost functions (tables, lists)

3 global cost functions (Weighted AllDiff, GCC, Regular. . .)

4 (treewidth aware) DFBB and Hybrid BFS [All+15]

5 Updated Optimality gap (HBFS), anytime behavior

6 Default clever horizontal (value) ordering

7 Weighted degree + last conflict vertical ordering heuristics

8 Maintains NC, AC, DAC, FDAC, EDAC and VAC.

9 Maintains non-dominance (aka substitutability aka DEE)

10 (On the fly) Variable elimination (degree ≤ 3)

11 Local search upper bounding (INCOP [NT03])

12 Table cost function decomposition

13 Parallel VNS search [Oua+14]

https://mulcyber.toulouse.inra.fr/projects/toulbar2

Past successes...

1 First/second in approximate graphical model MRF/MAP
challenges (2010, 2012, 2014).

2 Bioinformatics: pedigree debugging [SGS08], Haplotyping
(QTLMap), structured RNA gene finding [ZGS08],
Computational Protein Design [Tra+13] (now in OSPREY)

3 RLFAP: closed all CELAR min-interference RLFAP
instances fap.zib.de/problems/CALMA

4 Inductive Logic Programming [AR07], Natural Langage
Processing (in hltdi-l3), Multi-agent and cost-based
planning [KZ10; CRR11], Model Abstraction [SFN11],
diagnostic [MJS11b], Music processing and Markov
Logic [PT12; PT13], Data mining [MLC13], Partially
observable Markov Decision Processes [Dib+13], Probabilistic
counting [Erm+13] and inference [MJS11a], . . .

http://fap.zib.de/problems/CALMA/
https://code.google.com/p/hltdi-l3

Equivalence Preserving Transformation

Arc EPT

A cost function cS , here cij .

EPT Project ({ij}, {i}, a, α) shifts cost α between ci (ia) and
the cost function cij .

projection (α ≥ 0), extension (α < 0).

Precondition: −ci (ia) ≤ α ≤ mint′∈D ij ,t′[i]=ia cij(t
′);

Procedure Project({i , j}, {i}, a, α)
ci (ia)← ci (ia)⊕ α;
foreach (t ′ ∈ D ij such that t ′[i] = ia) do

cij(t
′)← cij(t

′)	 α;
end

⊕ is m−bounded addition. Pseudo-inverse 	 (you can take
whatever you want from k).

Example

Project({1, 2}, {1}, b, 1) Project({1, 2}, {2}, a, 1)
← →

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Non confluent (multi fix-point). Not all as good in term of lb.
With integer costs, finding the best fix-point is NP-hard [CS04].

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Non confluent (multi fix-point). Not all as good in term of lb.
With integer costs, finding the best fix-point is NP-hard [CS04].

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→

←

Project({1, 2}, {1}, b,−1)

Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Non confluent (multi fix-point). Not all as good in term of lb.
With integer costs, finding the best fix-point is NP-hard [CS04].

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Non confluent (multi fix-point). Not all as good in term of lb.
With integer costs, finding the best fix-point is NP-hard [CS04].

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→

←

Project({1, 2}, {1}, b,−1)

Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Non confluent (multi fix-point). Not all as good in term of lb.
With integer costs, finding the best fix-point is NP-hard [CS04].

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Non confluent (multi fix-point). Not all as good in term of lb.
With integer costs, finding the best fix-point is NP-hard [CS04].

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Non confluent (multi fix-point). Not all as good in term of lb.
With integer costs, finding the best fix-point is NP-hard [CS04].

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Non confluent (multi fix-point). Not all as good in term of lb.
With integer costs, finding the best fix-point is NP-hard [CS04].

Local consistencies

Polynomial time filtering

Node consistency: at the variable level. Moves cost to c∅,
upper bounding (ci (a) + c∅ = k).

Arc consistency, directional AC, Full directional AC, EDAC,
VAC, OSAC (Optimal Soft Arc Consistency).

VAC and OSAC solve submodular subproblems.

T. Schiex. “Arc consistency for soft constraints”. In: Principles and Practice of Constraint Programming - CP
2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411–424

M. Cooper et al. “Soft arc consistency revisited”. In: Artificial Intelligence 174 (2010), pp. 449–478

Optimal Soft Arc Consistency

OSAC

An LP that identifies a set of EPTs (rational costs) that maximizes
the lower bound. After propagation of hard (k) costs using Arc
Consistency.

maximize
∑

i ui where

ui : amount of cost projected from ci to c∅

pSia : amount of cost projected from cS to ia

∀i ∈ X ,∀a ∈ di , ci (a)− ui +
∑

(cS∈C),(i∈S)

pSi ,a ≥ 0

∀cS ∈ C , |S | > 1,∀t ∈ `(S) cS(t)−
∑
i∈S

pSi ,t[{i}] ≥ 0

M C. Cooper, S. de Givry, and T. Schiex. “Optimal soft arc consistency”. In: Proc. of IJCAI’2007. Hyderabad,
India, Jan. 2007, pp. 68–73
M.I. Schlesinger. “Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (Syntactic analysis of
two-dimensional visual signals in noisy conditions)”. In: Kibernetika 4 (1976), pp. 113–130

M. Cooper et al. “Soft arc consistency revisited”. In: Artificial Intelligence 174 (2010), pp. 449–478

Optimal Soft Arc Consistency

OSAC

An LP that identifies a set of EPTs (rational costs) that maximizes
the lower bound. After propagation of hard (k) costs using Arc
Consistency.

maximize
∑

i ui where

ui : amount of cost projected from ci to c∅

pSia : amount of cost projected from cS to ia

∀i ∈ X ,∀a ∈ di , ci (a)− ui +
∑

(cS∈C),(i∈S)

pSi ,a ≥ 0

∀cS ∈ C , |S | > 1,∀t ∈ `(S) cS(t)−
∑
i∈S

pSi ,t[{i}] ≥ 0

M C. Cooper, S. de Givry, and T. Schiex. “Optimal soft arc consistency”. In: Proc. of IJCAI’2007. Hyderabad,
India, Jan. 2007, pp. 68–73
M.I. Schlesinger. “Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (Syntactic analysis of
two-dimensional visual signals in noisy conditions)”. In: Kibernetika 4 (1976), pp. 113–130

M. Cooper et al. “Soft arc consistency revisited”. In: Artificial Intelligence 174 (2010), pp. 449–478

ILP models

ILP for WCSP/CPD/MRF

1 Koster’s ILP model for WCSP [KHK99]. Used for CPD
in [KCS05]. Is the “local polytope” of MRF [Wer07]

2 One 0/1 variable per value and per pair (relaxable for pairs).

min
∑

i ,r E (ir).di ,r +
∑

i ,r ,j ,s E (ir , js).pi ,r ,j ,s

s.t.
∑

r di ,r = 1 (∀i)∑
s pi ,r ,j ,s = di ,r (∀i , r , j)

Relaxation = dual of OSAC LP

1 Arc consistencies: limited Block Coordinate Descent
algorithms for the dual of this specific LP.

2 Not so specific: any LP can be reduced to it in linear
time [PW15].

ILP models

ILP for WCSP/CPD/MRF

1 Koster’s ILP model for WCSP [KHK99]. Used for CPD
in [KCS05]. Is the “local polytope” of MRF [Wer07]

2 One 0/1 variable per value and per pair (relaxable for pairs).

min
∑

i ,r E (ir).di ,r +
∑

i ,r ,j ,s E (ir , js).pi ,r ,j ,s

s.t.
∑

r di ,r = 1 (∀i)∑
s pi ,r ,j ,s = di ,r (∀i , r , j)

Relaxation = dual of OSAC LP

1 Arc consistencies: limited Block Coordinate Descent
algorithms for the dual of this specific LP.

2 Not so specific: any LP can be reduced to it in linear
time [PW15].

As quadratic 0/1 programs

QP - Cplex

min
∑
i ,r

E (ir).dir +
∑
i,r,j,s
j>i

E (ir , js).dir .djs

s.t.
∑
r

dir =1 (∀i)

dir ∈ {0, 1} (∀i , r)

QPBO - MaxCut (BiqMac/SDP bound): Big M

min
∑
i ,r

(E (ir)− N).dir +
∑
i,r,j,s
j>i

(E (ir , js)− N).dir .djs +
∑
i,r,s
s>r

M.dir .dis

As quadratic 0/1 programs

QP - Cplex

min
∑
i ,r

E (ir).dir +
∑
i,r,j,s
j>i

E (ir , js).dir .djs

s.t.
∑
r

dir =1 (∀i)

dir ∈ {0, 1} (∀i , r)

QPBO - MaxCut (BiqMac/SDP bound): Big M

min
∑
i ,r

(E (ir)− N).dir +
∑
i,r,j,s
j>i

(E (ir , js)− N).dir .djs +
∑
i,r,s
s>r

M.dir .dis

MRF methods

daoopt [OD12]

1 won the UAI (PIC) approximate inference challenge in 2012.

2 lower bound based on “Mini-buckets” (dynamic programming
with bounded width).

3 tree-decomposition used in AND/OR search

MPLP [Son+12]

1 Dual relaxed solution (lower bound) provided by BCD
optimization.

2 Strengthens the Dual by including empty ternary cost
functions.

3 Heuristics for Primal.

4 Iterative, no search.

Partial Weighted maxSAT

PW MaxSAT

Boolean variables, litteral: variable or its negation

Weighted clauses: disjunction of litterals.

criteria: sum of weight of violated clauses.

B&B - Core solvers: MiniMaxSat [HLO08],akMaxSat [Kue10]
- bincd [HMM11],wpm1/2 [ABL09; ABL10],MaxHS [DB13]

Direct encoding

dia : use ia

∀ir , is , ir 6= is , (¬dir ∨ ¬dis) (AMO)

∀i , (
∨

r dir) (ALO)

(¬dir ,E (ir) and (¬dir ∨ ¬djs ,E (ir , js))

Partial Weighted maxSAT

PW MaxSAT

Boolean variables, litteral: variable or its negation

Weighted clauses: disjunction of litterals.

criteria: sum of weight of violated clauses.

B&B - Core solvers: MiniMaxSat [HLO08],akMaxSat [Kue10]
- bincd [HMM11],wpm1/2 [ABL09; ABL10],MaxHS [DB13]

Direct encoding

dia : use ia

∀ir , is , ir 6= is , (¬dir ∨ ¬dis) (AMO)

∀i , (
∨

r dir) (ALO)

(¬dir ,E (ir) and (¬dir ∨ ¬djs ,E (ir , js))

Tuple encoding

Property [Bac07]

In CSP, Unit Propagation on this encoding enforces AC on the
CSP. Close to the ILP model.

Direct encoding

dia + AMO + ALO.

pir js : pair ia, js is used.

∀ir , js : (dir ∨ ¬pir js) and (djs ∨ ¬pir js).

∀ir , j(¬dir ∨
∨

s pir js)

idem for E (ir), ∀ir , js(¬pir js ,E (ir , js))

Tuple encoding

Property [Bac07]

In CSP, Unit Propagation on this encoding enforces AC on the
CSP. Close to the ILP model.

Direct encoding

dia + AMO + ALO.

pir js : pair ia, js is used.

∀ir , js : (dir ∨ ¬pir js) and (djs ∨ ¬pir js).

∀ir , j(¬dir ∨
∨

s pir js)

idem for E (ir), ∀ir , js(¬pir js ,E (ir , js))

Pure CP - Soft as Hard model [PRB00]

General idea

1 add one “cost” variable to every cost function to make a
ternary constraint.

2 use a global “Sum” constraint on these new cost variables.

Can be expressed in MiniZinc [Mar+08]

1 GeCode (http://www.gecode.org/),

2 Mistral (Python numberjack interface,
http://numberjack.ucc.ie/),

3 Opturion/CPX http://www.opturion.com/cpx.html

http://www.gecode.org/
http://numberjack.ucc.ie/
http://www.opturion.com/cpx.html

Pure CP - Soft as Hard model [PRB00]

General idea

1 add one “cost” variable to every cost function to make a
ternary constraint.

2 use a global “Sum” constraint on these new cost variables.

Can be expressed in MiniZinc [Mar+08]

1 GeCode (http://www.gecode.org/),

2 Mistral (Python numberjack interface,
http://numberjack.ucc.ie/),

3 Opturion/CPX http://www.opturion.com/cpx.html

http://www.gecode.org/
http://numberjack.ucc.ie/
http://www.opturion.com/cpx.html

A realistic benchmark: 35+12 designs tested

The designs

1 Extracted from the litterature,

2 Good resolution of the PDB structures,

3 Structure preparation,

4 Domains assigned based on accessibility,

5 Amber + EEF1 + No cutoff (almost complete graphs)

6 Variable search space size, from 1026 to 10249

7 Largest solved has size 1098

Results - 9000 seconds

From failures. . .

Analysis

1 QP by Cplex: dense model, but weak and somewhat
expensive lb (very large node file, large gaps).

2 SDP based QPO: probably tight lower bound, but far too
expensive (few nodes explored after several hours). biqmac
library of MaxCut beasley instances size 100: solved in 1” by
tb2, 1’ by biqmac.

3 MaxSAT, direct: branch and bound solvers very fast (36k
nodes/sec, 100 times faster than tb2). found incumbent
solutions but never started the optimality proof. Weak lb
(root = 25% of optimum, tb2 always > 97%).

4 MaxSAT, tuple: b&b,strong lower bound (should be similar
to VAC for core based solvers). Still weaker than tb2 and very
slow (2 nodes before timeout at best for akmaxsat). No
incumbent. Core based better (maxHS, good lb).

From failures. . .

Analysis

1 QP by Cplex: dense model, but weak and somewhat
expensive lb (very large node file, large gaps).

2 SDP based QPO: probably tight lower bound, but far too
expensive (few nodes explored after several hours). biqmac
library of MaxCut beasley instances size 100: solved in 1” by
tb2, 1’ by biqmac.

3 MaxSAT, direct: branch and bound solvers very fast (36k
nodes/sec, 100 times faster than tb2). found incumbent
solutions but never started the optimality proof. Weak lb
(root = 25% of optimum, tb2 always > 97%).

4 MaxSAT, tuple: b&b,strong lower bound (should be similar
to VAC for core based solvers). Still weaker than tb2 and very
slow (2 nodes before timeout at best for akmaxsat). No
incumbent. Core based better (maxHS, good lb).

From failures. . .

Analysis

1 QP by Cplex: dense model, but weak and somewhat
expensive lb (very large node file, large gaps).

2 SDP based QPO: probably tight lower bound, but far too
expensive (few nodes explored after several hours). biqmac
library of MaxCut beasley instances size 100: solved in 1” by
tb2, 1’ by biqmac.

3 MaxSAT, direct: branch and bound solvers very fast (36k
nodes/sec, 100 times faster than tb2). found incumbent
solutions but never started the optimality proof. Weak lb
(root = 25% of optimum, tb2 always > 97%).

4 MaxSAT, tuple: b&b,strong lower bound (should be similar
to VAC for core based solvers). Still weaker than tb2 and very
slow (2 nodes before timeout at best for akmaxsat). No
incumbent. Core based better (maxHS, good lb).

From failures. . .

Analysis

1 QP by Cplex: dense model, but weak and somewhat
expensive lb (very large node file, large gaps).

2 SDP based QPO: probably tight lower bound, but far too
expensive (few nodes explored after several hours). biqmac
library of MaxCut beasley instances size 100: solved in 1” by
tb2, 1’ by biqmac.

3 MaxSAT, direct: branch and bound solvers very fast (36k
nodes/sec, 100 times faster than tb2). found incumbent
solutions but never started the optimality proof. Weak lb
(root = 25% of optimum, tb2 always > 97%).

4 MaxSAT, tuple: b&b,strong lower bound (should be similar
to VAC for core based solvers). Still weaker than tb2 and very
slow (2 nodes before timeout at best for akmaxsat). No
incumbent. Core based better (maxHS, good lb).

... to Successes

Analysis

1 Daoopt: almost complete graphs. Not ideal for tree
decomposition based methods.

2 DEE/A*: surprisingly good given the lower bound used. Very
strong preprocessing.

3 ILP - Cplex: LP bound similar to OSAC (dual). tb2 has
upper bounding. Similar number of nodes but tb2 much faster
(ILP: 1 to 40 nodes / minutes, tb2: 1 to 40 thousand).

4 MPLP: no branching but able to solve few more problems
than CPLEX.

A Lesson for (AI) Optimization

The lower bounding/search efforts compromise is not, AFAiK,
understood, nor exploited. But may be crucial.

... to Successes

Analysis

1 Daoopt: almost complete graphs. Not ideal for tree
decomposition based methods.

2 DEE/A*: surprisingly good given the lower bound used. Very
strong preprocessing.

3 ILP - Cplex: LP bound similar to OSAC (dual). tb2 has
upper bounding. Similar number of nodes but tb2 much faster
(ILP: 1 to 40 nodes / minutes, tb2: 1 to 40 thousand).

4 MPLP: no branching but able to solve few more problems
than CPLEX.

A Lesson for (AI) Optimization

The lower bounding/search efforts compromise is not, AFAiK,
understood, nor exploited. But may be crucial.

... to Successes

Analysis

1 Daoopt: almost complete graphs. Not ideal for tree
decomposition based methods.

2 DEE/A*: surprisingly good given the lower bound used. Very
strong preprocessing.

3 ILP - Cplex: LP bound similar to OSAC (dual). tb2 has
upper bounding. Similar number of nodes but tb2 much faster
(ILP: 1 to 40 nodes / minutes, tb2: 1 to 40 thousand).

4 MPLP: no branching but able to solve few more problems
than CPLEX.

A Lesson for (AI) Optimization

The lower bounding/search efforts compromise is not, AFAiK,
understood, nor exploited. But may be crucial.

... to Successes

Analysis

1 Daoopt: almost complete graphs. Not ideal for tree
decomposition based methods.

2 DEE/A*: surprisingly good given the lower bound used. Very
strong preprocessing.

3 ILP - Cplex: LP bound similar to OSAC (dual). tb2 has
upper bounding. Similar number of nodes but tb2 much faster
(ILP: 1 to 40 nodes / minutes, tb2: 1 to 40 thousand).

4 MPLP: no branching but able to solve few more problems
than CPLEX.

A Lesson for (AI) Optimization

The lower bounding/search efforts compromise is not, AFAiK,
understood, nor exploited. But may be crucial.

... to Successes

Analysis

1 Daoopt: almost complete graphs. Not ideal for tree
decomposition based methods.

2 DEE/A*: surprisingly good given the lower bound used. Very
strong preprocessing.

3 ILP - Cplex: LP bound similar to OSAC (dual). tb2 has
upper bounding. Similar number of nodes but tb2 much faster
(ILP: 1 to 40 nodes / minutes, tb2: 1 to 40 thousand).

4 MPLP: no branching but able to solve few more problems
than CPLEX.

A Lesson for (AI) Optimization

The lower bounding/search efforts compromise is not, AFAiK,
understood, nor exploited. But may be crucial.

Enumerating all suboptimal solutions on 35 designs

All within 2 kcal/mol of GMEC, 100 h, tb2 and DEE/A*

Enumeration feasible for 1 design only (DEE/A*)

Enumeration finished for all solved designs (CFN).

More than 1 billion sequence-conformations for one design.

May be useful for partition function estimation [Vir+15].
Additional progresses since.

Final note and Acknowledgments

This is all for a rigid backbone. Modern CPD increasingly uses
“flexible” representations (eg. with a backbone ensemble).

Thanks to. . .

Bruce Donald and Kyle Roberts (Duke Univ.) for the open
source software Osprey and helping us with it.

Hugo Bazille (ENS/INRIA): for testing ASP on the CP2012
instances.

Questions ?

References I

Carlos Ansótegui, Maŕıa Luisa Bonet, and Jordi Levy. “Solving
(weighted) partial MaxSAT through satisfiability testing”. In: Theory
and Applications of Satisfiability Testing-SAT 2009. Springer, 2009,
pp. 427–440.

Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. “A New

Algorithm for Weighted Partial MaxSAT.” In: Proceedings of 20th

National Conference on Artificial Intelligence (AAAI’10). 2010.

David Allouche et al. “Computational protein design as an
optimization problem”. In: Artificial Intelligence 212 (2014),
pp. 59–79.

David Allouche et al. “Anytime Hybrid Best-First Search with Tree
Decomposition for Weighted CSP”. In: Principles and Practice of
Constraint Programming. Springer. 2015, pp. 12–29.

Érick Alphonse and Céline Rouveirol. “Extension of the top-down
data-driven strategy to ILP”. In: Inductive Logic Programming.
Springer, 2007, pp. 49–63.

Fahiem Bacchus. “GAC via unit propagation”. In: Principles and
Practice of Constraint Programming–CP 2007. Springer, 2007,
pp. 133–147.

References II

M C. Cooper, S. de Givry, and T. Schiex. “Optimal soft arc
consistency”. In: Proc. of IJCAI’2007. Hyderabad, India, Jan. 2007,
pp. 68–73.

M. Cooper et al. “Soft arc consistency revisited”. In: Artificial
Intelligence 174 (2010), pp. 449–478.

M.C. Cooper. “Fundamental properties of neighbourhood substitution
in constraint satisfaction problems”. In: Artificial Intelligence 90.1-2
(1997), pp. 1–24.

Martin C Cooper, Marie de Roquemaurel, and Pierre Régnier. “A
weighted CSP approach to cost-optimal planning”. In: Ai
Communications 24.1 (2011), pp. 1–29.

M C. Cooper and T. Schiex. “Arc consistency for soft constraints”.
In: Artificial Intelligence 154.1-2 (2004), pp. 199–227.

Jessica Davies and Fahiem Bacchus. “Exploiting the Power of MIP
Solvers in MaxSAT”. In: Theory and Applications of Satisfiability
Testing–SAT 2013. Springer, 2013, pp. 166–181.

References III

J Desmet et al. “The dead-end elimination theorem and its use in
protein side-chain positioning.” In: Nature 356.6369 (Apr. 1992),
pp. 539–42. issn: 0028-0836. url:
http://www.ncbi.nlm.nih.gov/pubmed/21488406.

Jilles Steeve Dibangoye et al. “Optimally solving Dec-POMDPs as
continuous-state MDPs”. In: Proceedings of the Twenty-Third
international joint conference on Artificial Intelligence. AAAI Press.
2013, pp. 90–96.

Stefano Ermon et al. “Embed and project: Discrete sampling with
universal hashing”. In: Advances in Neural Information Processing
Systems. 2013, pp. 2085–2093.

Ivelin Georgiev, Ryan H Lilien, and Bruce R Donald. “The minimized
dead-end elimination criterion and its application to protein redesign in
a hybrid scoring and search algorithm for computing partition
functions over molecular ensembles.” In: Journal of computational
chemistry 29.10 (July 2008), pp. 1527–42. issn: 1096-987X. doi:
10.1002/jcc.20909. url:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3263346%5C&tool=pmcentrez%5C&rendertype=abstract.

http://www.ncbi.nlm.nih.gov/pubmed/21488406
http://dx.doi.org/10.1002/jcc.20909
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3263346%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3263346%5C&tool=pmcentrez%5C&rendertype=abstract

References IV

R F Goldstein. “Efficient rotamer elimination applied to protein
side-chains and related spin glasses.” In: Biophysical journal 66.5
(May 1994), pp. 1335–40. issn: 0006-3495. doi:
10.1016/S0006-3495(94)80923-3. url:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

1275854%5C&tool=pmcentrez%5C&rendertype=abstract.

Federico Heras, Javier Larrosa, and Albert Oliveras. “MiniMaxSAT: An
Efficient Weighted Max-SAT solver.” In: J. Artif. Intell. Res.(JAIR) 31
(2008), pp. 1–32.

Federico Heras, Antonio Morgado, and Joao Marques-Silva.
“Core-Guided Binary Search Algorithms for Maximum Satisfiability.”
In: Proceedings of 21th National Conference on Artificial Intelligence
(AAAI’11). 2011.

Carleton L Kingsford, Bernard Chazelle, and Mona Singh. “Solving
and analyzing side-chain positioning problems using linear and integer
programming.” In: Bioinformatics (Oxford, England) 21.7 (Apr.
2005), pp. 1028–36. issn: 1367-4803. doi:
10.1093/bioinformatics/bti144. url:
http://www.ncbi.nlm.nih.gov/pubmed/15546935.

http://dx.doi.org/10.1016/S0006-3495(94)80923-3
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1275854%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1275854%5C&tool=pmcentrez%5C&rendertype=abstract
http://dx.doi.org/10.1093/bioinformatics/bti144
http://www.ncbi.nlm.nih.gov/pubmed/15546935

References V

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

A.M.C.A Koster, S.P.M van Hoesel, and A.W.J. Kolen. Solving
Frequency Assignment Problems via Tree-Decomposition. Tech. rep.
RM/99/011. Maastricht, The Netherlands: Universiteit Maastricht,
1999.

Adrian Kuegel. “Improved exact solver for the weighted Max-SAT
problem”. In: Workshop Pragmatics of SAT. 2010.

Akshat Kumar and Shlomo Zilberstein. “Point-based backup for
decentralized POMDPs: Complexity and new algorithms”. In:
Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1-Volume 1. International
Foundation for Autonomous Agents and Multiagent Systems. 2010,
pp. 1315–1322.

J. Larrosa and F. Heras. “Resolution in Max-SAT and its relation to

local consistency in weighted CSPs”. In: Proc. of the 19th IJCAI.
Edinburgh, Scotland, 2005, pp. 193–198.

Christophe Lecoutre, Olivier Roussel, and Djamel E Dehani. “WCSP
integration of soft neighborhood substitutability”. In: Principles and
Practice of Constraint Programming. Springer. 2012, pp. 406–421.

References VI

Kim Marriott et al. “The design of the Zinc modelling language”. In:
Constraints 13.3 (2008), pp. 229–267.

Paul Maier, Dominik Jain, and Martin Sachenbacher. “Compiling AI
engineering models for probabilistic inference”. In: KI 2011: Advances
in Artificial Intelligence. Springer, 2011, pp. 191–203.

Paul Maier, Dominik Jain, and Martin Sachenbacher. “Diagnostic
hypothesis enumeration vs. probabilistic inference for hierarchical
automata models”. In: the International Workshop on Principles of
Diagnosis (DX), Murnau, Germany. 2011.

Jean-Philippe Métivier, Samir Loudni, and Thierry Charnois. “A
constraint programming approach for mining sequential patterns in a
sequence database”. In: Proceedings of the ECML/PKDD Workshop
on Languages for Data Mining and Machine Learning. arXiv preprint
arXiv:1311.6907. Praha, Czech republic, 2013.

Rolf Niedermeier and Peter Rossmanith. “New Upper Bounds for
Maximum Satisfiability”. In: J. Algorithms 36.1 (2000), pp. 63–88.

Bertrand Neveu and Gilles Trombettoni. “Incop: An open library for
incomplete combinatorial optimization”. In: Principles and Practice of
Constraint Programming–CP 2003. Springer. 2003, pp. 909–913.

References VII

Lars Otten and Rina Dechter. “Anytime AND/OR depth-first search
for combinatorial optimization”. In: AI Communications 25.3 (2012),
pp. 211–227.

Abdelkader Ouali et al. “Cooperative parallel decomposition guided
VNS for solving weighted CSP”. In: Hybrid Metaheuristics. Springer,
2014, pp. 100–114.

T. Petit, J.C. Régin, and C. Bessière. “Meta constraints on violations
for over constrained problems”. In: Proceedings of IEEE ICTAI’2000.
Vancouver, BC, Canada, 2000, pp. 358–365.

Hélène Papadopoulos and George Tzanetakis. “Modeling Chord and
Key Structure with Markov Logic.” In: Proc. Int. Conf. of the Society
for Music Information Retrieval (ISMIR). 2012, pp. 121–126.

Hélene Papadopoulos and George Tzanetakis. “Exploiting structural
relationships in audio music signals using Markov Logic Networks”. In:
ICASSP 2013-38th International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Canada (2013). 2013, pp. 4493–4497.

Niles A Pierce and Erik Winfree. “Protein design is NP-hard.” In:
Protein engineering 15.10 (Oct. 2002), pp. 779–82. issn: 0269-2139.
url: http://www.ncbi.nlm.nih.gov/pubmed/12468711.

http://www.ncbi.nlm.nih.gov/pubmed/12468711

References VIII

Daniel Prusa and Tomas Werner. “Universality of the local marginal
polytope”. In: Pattern Analysis and Machine Intelligence, IEEE
Transactions on 37.4 (2015), pp. 898–904.

T. Schiex. “Arc consistency for soft constraints”. In: Principles and
Practice of Constraint Programming - CP 2000. Vol. 1894. LNCS.
Singapore, Sept. 2000, pp. 411–424.

M.I. Schlesinger. “Sintaksicheskiy analiz dvumernykh zritelnikh
signalov v usloviyakh pomekh (Syntactic analysis of two-dimensional
visual signals in noisy conditions)”. In: Kibernetika 4 (1976),
pp. 113–130.

Peter Struss, Alessandro Fraracci, and D Nyga. “An Automated Model
Abstraction Operator Implemented in the Multiple Modeling
Environment MOM”. In: 25th International Workshop on Qualitative
Reasoning, Barcelona, Spain. 2011.

Mart́ı Sánchez, Simon de Givry, and Thomas Schiex. “Mendelian Error
Detection in Complex Pedigrees Using Weighted Constraint
Satisfaction Techniques”. In: Constraints 13.1-2 (2008), pp. 130–154.

David Sontag et al. “Tightening LP relaxations for MAP using
message passing”. In: arXiv preprint arXiv:1206.3288 (2012).

References IX

Seydou Traoré et al. “A new framework for computational protein
design through cost function network optimizatio n”. In:
Bioinformatics 29.17 (2013), pp. 2129–2136.

C. Viricel et al. “Approximate Counting with Deterministic Guarantees
for Affinity Computations”. In: Proc. of Modeling, Computation and
Optimization in Information Systems and Management Sciences -
MCO’15. Metz, France, May 2015.

R. Wallace. “Directed Arc Consistency Preprocessing”. In: Selected
papers from the ECAI-94 Workshop on Constraint Processing. Ed. by
M. Meyer. LNCS 923. Berlin: Springer, 1995, pp. 121–137.

T. Werner. “A Linear Programming Approach to Max-sum Problem: A
Review.” In: IEEE Trans. on Pattern Recognition and Machine
Intelligence 29.7 (July 2007), pp. 1165–1179. url:
http://dx.doi.org/10.1109/TPAMI.2007.1036.

Matthias Zytnicki, Christine Gaspin, and Thomas Schiex. “DARN! A
weighted constraint solver for RNA motif localization”. In:
Constraints 13.1-2 (2008), pp. 91–109.

http://dx.doi.org/10.1109/TPAMI.2007.1036

