
Russian Doll Search with Tree Decomposition

M. Sanchez, D. Allouche, S. de Givry, T. Schiex
UBIA, UR 875, INRA, F-31320 Castanet Tolosan, France
{msanchez,allouche,degivry,tschiex}@toulouse.inra.fr

Abstract
Optimization in graphical models is an impor-
tant problem which has been studied in many AI
frameworks such as weighted CSP, maximum sat-
isfiability or probabilistic networks. By identify-
ing conditionally independent subproblems, which
are solved independently and whose optimum is
cached, recent Branch and Bound algorithms offer
improved asymptotic time complexity. But the lo-
cality of bounds induced by decomposition often
hampers the practical effects of this result because
subproblems are often uselessly solved to optimal-
ity.
Following the Russian Doll Search (RDS) algo-
rithm, a possible approach to overcome this weak-
ness is to (inductively) solve a relaxation of each
subproblem to strengthen bounds. The algo-
rithm obtained generalizes both RDS and tree-
decomposition based algorithms such as BTD or
AND-OR Branch and Bound. We study its effi-
ciency on different problems, closing a very hard
frequency assignment instance which has been
open for more than 10 years.

1 Introduction
Graphical model processing is a central problem in AI. The
optimization of the combined cost of local cost functions,
central in the valued CSP framework [Schiex et al., 1995],
captures problems such as weighted MaxSAT, Weighted CSP,
Maximum Probability Explanation (MPE) in Bayesian net-
works or Markov random fields. It has applications in e.g.,
resource allocation [Verfaillie et al., 1996; Cabon et al.,
1999] and bioinformatics [Marinescu and Dechter, 2006;
Sanchez et al., 2008].

In the last years, in order to solve satisfaction, optimiza-
tion or counting problems, several tree-search algorithms
have been proposed that simultaneously exploit a decompo-
sition of the graph of the problem and the propagation of
hard information using local consistency enforcing. This in-
cludes Recursive Conditioning [Darwiche, 2001], Backtrack
bounded by Tree Decomposition (BTD) [Terrioux and Je-
gou, 2003], AND-OR graph search [Marinescu and Dechter,

2006], all related to Pseudo-Tree Search [Freuder and Quinn,
1985]. Compared to traditional tree-search, they offer im-
proved asymptotic time complexities, only exponential in the
treewidth of the graph. This comes however at the price of
restricted variable ordering (see [Jégou et al., 2007]).

In the context of optimization (w.l.o.g., we consider min-
imization problems), an additional side-effect of problem
decomposition is the loss of global bounds. In traditional
Depth-First Branch and Bound (DFBB), pruning occurs when
the cost of the best known solution of the problem (the upper
bound) meets a specific lower bound computed on a relax-
ation of the whole problem. Using problem decomposition,
when the assignment of the variables that connect a subprob-
lem to the rest of the problem makes it independent, an opti-
mal solution of the subproblem (conditionally to this assign-
ment) is sought. This is an expensive and often useless work
since this assignment is not necessarily part of the optimal
global solution (because of the rest of the problem). To limit
this thrashing behavior, one can inform the subproblem solver
that it must absolutely produce a sufficiently good solution or
stop if it proves this is unfeasible. This initial upper bound
is obtained by subtracting from the global upper bound any
available lower bound for the rest of the problem.

In this paper, we start from the approach of [de Givry et al.,
2006] which introduced lower bounds derived by soft local
consistency [Cooper and Schiex, 2004] in the BTD algorithm.
To improve the contribution of the global problem to the lo-
cal upper bound which is used for solving subproblems, we
replace the DFBB engine of BTD by the Russian Doll Search
(RDS) [Verfaillie et al., 1996] algorithm. RDS is extended to
use a tree-decomposition and stronger local consistency. In-
side RDS-BTD, relaxations of the conditionally independent
identified subproblems are solved inductively. The optimal
costs of these subproblems provide powerful lower bounds,
and therefore improved local upper bounds which strongly
reduce the trashing behavior.

In the rest of the paper, we first present the weighted CSP
framework, the BTD and the RDS algorithms. We then in-
troduce our new generic algorithm, which can also be spe-
cialized into either BTD or RDS. The RDS-BTD algorithm is
then evaluated on different real problem instances of radio
link frequency assignment (resource allocation in telecom-
munications) and tag SNP selection (bioinformatics, genet-
ics).

Figure 1: The graph of a WCSP and its tree decomposition.

2 Weighted Constraint Satisfaction Problem
A Weighted CSP (WCSP) is a quadruplet (X,D,W,m). X
and D are sets of n variables and finite domains, as in a stan-
dard CSP. The domain of variable i is denoted Di. The maxi-
mum domain size is d. For a set of variables S ⊂ X , we note
`(S) the set of tuples over S. W is a set of cost functions.
Each cost function wS in W is defined on a set of variables
S called its scope, assumed to be different for each cost func-
tion. A cost function wS assigns costs to assignments of the
variables in S i.e. wS : `(S) → [0,m]. The set of possible
costs is [0,m] and m ∈ {1, . . . ,+∞} represents an intoler-
able cost. Costs are combined by the bounded addition ⊕,
such as a⊕ b = min{m, a+ b} and compared using ≥.

For unary/binary cost functions, we use wi (resp. wij) to
denote a cost function involving i (resp. i and j). For every
variable i, we add a unary cost function wi if it does not exist.
We also add a nullary cost function, notedw∅ (a constant cost
payed by any assignment). All these additional cost functions
have initial cost 0, leaving an equivalent problem.

The cost of a complete assignment t ∈ `(X) in a problem
P = (X,D,W,m) is ValP (t) =

⊕
wS∈W wS(t[S]) where

t[S] denotes the projection of a tuple on the set of variables
S. The problem of minimizing ValP (t) is an optimization
problem with an associated NP-complete decision problem.

3 Tree decompositions and DFBB
A tree decomposition of a connected WCSP is defined by a
tree (C, T). The set of nodes of the tree isC = {C1, . . . , Ck}
where each Ce is a set of variables (Ce ⊂ X) called a cluster.
T is a set of edges connecting clusters and forming a tree (a
connected acyclic graph). The set of clusters C must cover
all the variables (

⋃
Ce∈C Ce = X) and all the cost functions

(∀wS ∈W, ∃Ce ∈ C s.t. S ⊂ Ce). Furthermore, if a variable
i appears in two clusters Ce and Cg , i must also appear in the
clusters Cf on the unique path from Ce to Cg in T .

For a given WCSP, we consider a rooted tree decom-
position (C, T) with an arbitrary root C1. We denote by
Father(Ce) (resp. Sons(Ce)) the parent (resp. set of sons) of
Ce in T . The separator ofCe is the set Se = Ce∩Father(Ce).
The set of proper variables of Ce is Ve = Ce \ Se.

Example 1 Consider the MaxCSP in Figure 1. It has
eleven variables with two values (a, b) in their domains.
Edges represent binary difference constraints (wij(a, a) =
wij(b, b) = 1, wij(a, b) = wij(b, a) = 0) between the two
variables. An optimal solution is (a, b, b, a, b, b, a, b, b, a, b)
in lexicographic order, with optimal cost 5. A C1-rooted
tree decomposition with clusters C1 = {1, 2, 3, 4}, C2 =
{4, 5, 6}, C3 = {5, 6, 7}, C4 = {4, 8, 9, 10}, and C5 =
{4, 9, 10, 11}, is given on the right hand-side in Figure 1.
C1 has sons {C2, C4}, the separator of C3 with its father
C2 is S3 = {5, 6}, and the set of proper variables of C3 is
V3 = {7}. The subproblem P3 has variables {5, 6, 7} and
cost functions {w5,7, w6,7, w7}. P1 is the whole problem.

The essential property of tree decompositions is that as-
signing Se separates the initial problem in two subproblems
which can then be solved independently. The first subprob-
lem, denoted Pe, is defined by the variables of Ce and all its
descendant clusters in T and by all the cost functions involv-
ing at least one proper variable of these clusters. The remain-
ing cost functions, together with the variables they involve,
define the remaining subproblem.

A tree search algorithm can exploit this property as far as
a suitable variable ordering is used: the variables of any clus-
ter Ce must be assigned before the variables which remain in
its son clusters. In this case, for any cluster Cf ∈ Sons(Ce),
once the separator Sf is assigned, the subproblem Pf condi-
tioned by the current assignment Af of Sf (denoted Pf/Af)
can be solved to optimality independently of the rest of the
problem. The optimal cost of Pf/Af may then be recorded
which means it will never be solved again for the same assign-
ment of Sf . This is how algorithms such as BTD or AND-OR
graph search are able to keep the complexity exponential in
the size of the largest cluster only.

In [de Givry et al., 2006], the BTD algorithm is further
sophisticated by maintaining lower bounds provided by soft
local consistency. For every cluster Ce, a cluster specific con-
stant cost function we∅ is used and possibly increased by soft
local consistency, providing a lower bound on the optimal
cost of each cluster. Beyond improved pruning, this allows
to avoid to always solve subproblems to optimality by com-
puting a required maximum cost for every subproblem Pf .
For P1, the cost of the best known solution defines the ini-
tial upper bound cub1 (we want to improve over this cost).
Consider now an arbitrary cluster Cf , son of of Ce with an
associated bound cube. Then the upper bound for the sub-
problem Pf is obtained by subtracting from cube the lower
bounds associated to all the other sons clusters of Ce. Thus,
stronger lower bounds on other subproblems will induce a
stronger upper bound for the current problem.

Because of this initial upper bound, the optimum of Pf is
not necessarily computed but only a lower bound on it. This
lower bound and its optimality are recorded in LBPf/Af

and
OptPf/Af

respectively, initially set to 0 and false.
For improved pruning and upper bounding, BTD uses

the maximum between local consistency (we∅) and recorded
(LBPf/Af

) lower bounds. Recorded lower bounds can only
be used when the separator Sf is completely assigned by
the current assignment A. This inductively define the lower

bound used in [de Givry et al., 2006] as lb(Pe/A) = we∅ ⊕⊕
Cf∈Sons(Ce) max(lb(Pf/A), LBPf/Af

).

Example 2 In Example 1, variables {1, 2, 3, 4} of C1 are as-
signed first, using e.g. the min domain/max degree dynamic
variable ordering. Let A = {(4, a), (1, a), (2, b), (3, b)}
be the current assignment. Enforcing EDAC local consis-
tency [de Givry et al., 2005] on P1/A produces w1

∅ =
2, w2

∅ = w4
∅ = 1, w3

∅ = w5
∅ = 0, resulting in lb(P1/A) =⊕

Ce∈C w
e
∅ = 4 since no recorded bound is available yet.

Then, subproblems P2/{(4, a)} and P4/{(4, a)} are
solved independently and the corresponding optimal solu-
tions are recorded as LBP2/{(4,a)} = 1, LBP4/{(4,a)} = 2,
OptP2/{(4,a)} = OptP4/{(4,a)} = true (no local upper bound
can be derived since there is no known solution). A first com-
plete assignment of costw1

∅⊕LBP2/{(4,a)}⊕LBP4/{(4,a)} =
5 is found.

The resulting BTD algorithm has worst-case time com-
plexity exponential in the maximum cluster size minus one,
called the treewidth w of the tree decomposition (C, T). Its
space complexity is exponential in swith s = maxCe∈C |Se|,
the maximum separator size [de Givry et al., 2006].

4 Russian Doll Search and tree decomposition
The original Russian Doll Search (RDS) algorithm [Verfail-
lie et al., 1996] was proposed in 1996, when soft local con-
sistency for WCSP had not yet been introduced. Its underly-
ing mechanism was designed to build powerful lower bounds
from weak ones using tree search. RDS consists in solving n
nested subproblems of an initial problem P with n variables.
Given a fixed variable order, it starts by solving the subprob-
lem with only the last variable. Next, it adds the preceding
variable in the order and solves this subproblem with two
variables, and repeats this process until the complete prob-
lem is solved. Each subproblem is solved by a DFBB al-
gorithm with a static variable ordering following the nested
subproblem decomposition order. The improved lower bound
is derived by combining the weak lower bound produced by
partial forward checking (similar in power to Node Consis-
tency [Larrosa and Schiex, 2004]) with the optimum of the
problem previously solved by RDS.

We propose to exploit the RDS principle using a tree de-
composition (RDS-BTD). The main difference with RDS is
that the set of subproblems solved is defined by a rooted
tree decomposition (C, T): RDS-BTD solves |C| subprob-
lems ordered by a depth-first traversal of T , starting from the
leaves to the root P RDS

1 = P1.
We define P RDS

e as the subproblem defined by the proper
variables of Ce and all its descendant clusters in T and by
all the cost functions involving only proper variables of these
clusters. P RDS

e has no cost function involving a variable in
Se, the separator with its father, and thus its optimum is a
lower bound of Pe conditioned by any assignment of Se. This
optimum will therefore be denoted as LBRDS

Pe

Each subproblem P RDS
e is solved by BTD instead of

DFBB. This allows to exploit the decomposition and the

caching done in BTD, offering improved asymptotic time
complexity. The lower bound used by BTD can now ex-
ploit the LBRDS

Pe
lower bounds already computed on pre-

vious clusters together with local consistency and recorded
lower bounds1. The lower bound corresponding to the cur-
rent assignment A is now inductively defined as lb(Pe/A) =
we∅ ⊕

⊕
Cf∈Sons(Ce) max(lb(Pf/A), LBPf/Af

, LBRDS
Pf

),
which is obviously stronger.

In BTD, caching is only performed on completely assigned
separators and P RDS

e does not contain the separator variables
Se. We therefore assign Se before solving P RDS

e using the
fully supported value maintained by EDAC [de Givry et al.,
2005]2 of each variable as temporary values used for caching
purposes only. An alternative approach would be to cache
lower bounds for partial assignments but this would require a
complex cache management in BTD that we leave for future
work.

The advantage of using BTD is that recorded lower bounds
can also be reused between each iterations of RDS-BTD.
However, an optimum cached by BTD for a given subprob-
lem Pf when solving P RDS

e is no longer necessarily opti-
mum in P RDS

Father(e) if a cost function between Pf and vari-
ables inCFather(e) exist. Therefore, at each iteration of RDS-

BTD, after P RDS
e is solved, we reset all OptPf/Af

such that
Sf ∩ Se 6= ∅ (line 4).

Example 3 Consider Example 1, RDS-BTD successively
solves the subproblems P RDS

3 , P RDS
2 , P RDS

5 , P RDS
4 and

P RDS
1 = P1. P RDS

3 contains just {7} as variables and
{w7} as cost functions. Before solving P RDS

3 , RDS-BTD as-
signs variables {5, 6} of the S3 separator to their fully sup-
ported value ({(5, a), (6, a)} in this example). When P RDS

2
is solved, the optimum of P3/{(5, a), (6, a)}, which is equal
to zero since w5,6 does not belong to P3 is recorded and
can be reused when solving P1. When P RDS

4 is solved, the
optimum of P5/{(4, a), (9, a), (10, a)}, also equal to zero is
recorded. In this case, since variable 4 belongs to S5 ∩ S4

and P RDS
4 does not contain w4,11, this recorded optimum is

just a lower bound for subsequent iterations of RDS-BTD. So,
we set OptP5/{(4,a),(9,a),(10,a)} to false before solving P1.

The optima found are LBRDS
P3

= LBRDS
P5

= 0, LBRDS
P2

=
LBRDS

P4
= 1 and LBRDS

P1
= 5, the optimum of P1.

In this simple example, for an initial empty assignment
A = ∅, we have lb(P1/∅) = LB

PRDS
2

⊕ LB
PRDS

4
= 2

instead of 0 for BTD (assuming EDAC local consistency in
preprocessing and no initial upper bound).

The pseudo-code of the RDS-BTD algorithm is presented
in Algorithm 1. The BTD algorithm used is the same as in [de

1Actually, because local consistency may move cost between
clusters, the LBRDS

Pf
lower bound must be adjusted. This can be

achieved using the ∆W data-structure of [de Givry et al., 2006] by
subtracting

L
i∈Sf

maxa∈Di ∆W f
i (a)) from it.

2Fully supported value a ∈ Di such that wi(a) = 0 and ∀wS ∈
W with i ∈ S,∃t ∈ `(S) with t[i] = a such that wS(t) = 0.

Givry et al., 2006] except for the fact that it uses the RDS en-
riched lower bound above. We assume that solving P RDS

e
with an initial assignment A of the separator Se and an ini-
tial upper bound cube using BTD is achieved by a call to
BTD(P RDS

e , A, Ve, cube).
RDS-BTD calls BTD to solve each subproblem P RDS

e

(line 3). An initial upper bound for P RDS
e is deduced from

the global upper bound and the available RDS lower bounds
(line 1). It initially assigns variables in Se to their fully sup-
ported value at line 2 as discussed above. The initial call is
RDS-BTD(P). It assumes an already local consistent prob-
lem P RDS

1 = P and returns its optimum.

Algorithm 1: RDS-BTD algorithm

Function RDS-BTD(P RDS
e) : [0, +∞]

foreach Cf ∈ Sons(Ce) do RDS-BTD(P RDS
f) ;

cube := cub1 − lb(P/∅) + lb(P RDS
e /∅) ;1

Let A be the assignment of Se to fully supported values;2

LBRDS
Pe

:= BTD(P RDS
e , A, Ve, cube) ;3

foreach Cf descendant of Ce st. Sf ∩ Se 6= ∅ do
Set to false all recorded OptPf /A, for all A ∈ `(Sf) ;4

return LBRDS
Pe

;

Notice that as soon as a solution of P RDS
e is

found having the same optimal cost as lb(P RDS
e /∅) =⊕

Cf∈Sons(Ce) LBPRDS
f

, then the search ends.

The time and space complexity of RDS-BTD is the same
as BTD. Notice that RDS-BTD without caching, using only
node consistency and a pseudo-tree based tree decomposition
(i.e. a cluster for each variable, implying a static variable
ordering) is equivalent to Pseudo-Tree RDS [Larrosa et al.,
2002]. If we further restrict the algorithm to use a specific tree
decomposition (C, T) such that |C| = n, ∀e ∈ [1, n], Ce =
{1, . . . , e}, and ∀e ∈ [2, n],Father(Ce) = Ce−1, then it be-
comes equivalent to RDS.

5 Experimental results
We implemented DFBB, BTD, RDS-BTD, and RDS in C++
(the source code URL will be inserted in the final ver-
sion).The min domain / max degree dynamic variable order-
ing, breaking ties with maximum unary cost, is used inside
clusters (BTD and RDS-BTD) and by DFBB. The dynamic
variable ordering heuristic is modified by a conflict back-
jumping heuristic as suggested in [Lecoutre et al., 2006].
EDAC local consistency is enforced [de Givry et al., 2005]
during search. RDS enforces Node Consistency [Larrosa
and Schiex, 2004] only. Tree decompositions are built us-
ing the Maximum Cardinality Search (MCS) heuristic, with
the largest cluster used as root. From the MCS derived
tree decomposition, we computed alternative tree decompo-
sitions based on a maximum separator size smax as proposed
in [Jégou et al., 2007]: starting from the leaves of the MCS
tree decomposition, we merge a cluster with its parent if the
separator size is strictly greater than smax. A variable or-
dering compatible with the rooted tree decomposition used is

used for DAC enforcing [Cooper and Schiex, 2004] and RDS.
Recorded (and if available RDS) lower bounds are ex-

ploited by local consistency enforcing as soon as their sep-
arator variables are fully assigned. If the recorded lower
bound is optimal or strictly greater than the lower bound pro-
duced by local consistency, then the corresponding subprob-
lem (Pe/Ae) is disconnected from local consistency enforc-
ing and the positive difference in lower bounds is added to its

parent cluster lower bound (wFather(Ce)
∅), allowing for new

value removals by node consistency enforcing.
All the solving methods exploit a binary branching scheme.

If d > 10, the ordered domain is split in two parts (around the
middle value), else the variable is assigned to its EDAC fully
supported value or this value is removed from the domain.
In both cases, it selects the branch which contains the fully
supported value first, except for RDS and BTD-like methods
where it selects the branch which contains the value corre-
sponding to the last solution(s) found first if available. Un-
less mentioned, no initial upper bound is provided. The CPU
times reported correspond to finding the optimum and prov-
ing its optimality.

5.1 Radio Link Frequency Assignment
Among the different CELAR instances [Cabon et al., 1999]
which can be described as binary weighted CSP, we se-
lected the two difficult instances scen06 and scen07.
The scen07 instance was reduced by several preprocessing
rules (domain pruning by singleton EDAC consistency and
Koster’s dominance rules, and variable elimination of small
degree) leading to an instance with n = 162, d = 44 and
e = 764. The tree decomposition used smax = 3, with a
treewidth of 53. An initial upper bound (354008) was pro-
vided to all methods. This bound and the solution were found
by DFBB enhanced by Limited Discrepancy Search. This so-
lution is also used by RDS-BTD as an initial value choice
(we found DFBB and BTD performed worse with it). The
root cluster was selected based on the first fail principle (most
costly cluster). BTD and RDS-BTD found the optimum of
343592 and proved optimality in respectively 6 and 4.5 days
(26% improvement for RDS-BTD) on a 2.6 GHz computer
with 32GB. BTD learnt 90528 recorded lower bounds (20%
of total separator assignments) compared to 29453 (6.4%) by
RDS-BTD. DFBB did not finish in 50 days. This is the first
time this 10-year-old open problem is solved to optimality.

We also solved scen06 instance (100 variables with tree-
width of 11) without preprocessing rules nor upper bound.
BTD and RDS-BTD took 221 and 316 seconds respectively
to find the optimum and prove optimality. There were only
5633 and 7145 recorded lower bounds respectively despite
the fact that we did not restrict separator sizes (smax = 8).
DFBB took 2588 seconds and RDS did not finish in 10 hours.

5.2 The Tag SNP selection
This problem occurs in genetics and polymorphism analy-
sis. Single nucleotide polymorphisms, or SNPs, are DNA
sequence variations that occur when a single nucleotide
(A,T,C,or G) in the genome sequence of an individual is al-
tered. For example a SNP might change the DNA sequence

AAGGCTAA to ATGGCTAA. For a variation to be considered
a SNP, it must occur in at least 1% of the population. There
are several millions SNPs in the 3 billions nucleotides long
human genome, explaining up to 90% of all human genetic
variation. SNPs may explain a portion of the heritable risk of
common diseases and can affect respond to pathogens, chem-
icals, drugs, vaccines, and other agents. The TagSNP prob-
lem is a sort of lossy compression problem which consists
in selecting a small subset of SNPs such that the selected
SNPs, called tag SNPs, will capture most of the genetic in-
formation. The goal is to capture a maximally informative
subset of SNPs to make screening of large populations feasi-
ble [Hirschhorn and Daly, 2005].

The correlation measure r2 between a pair of SNPs can be
computed on a first small population. A tag SNP is consid-
ered as representative of another SNP if the two SNPs are
sufficiently linked. The simplest TagSNP problem is to select
a minimum number of SNPs (primary criteria) such that all
SNPs are represented. This is captured by the fact that the
r2 measure between the two SNPs is larger than a threshold
θ (often set to θ = 0.8 [Carlson et al., 2004]). We there-
fore consider a graph where each vertex is a SNP and where
edges are labelled by the r2 measure between pairs of nodes.
Edges are filtered if their label is lower than the threshold
θ. The graph obtained may have different connected compo-
nents. The TagSNP problem then reduces to a set covering
problem (NP-hard) on these components. This simplest vari-
ant has been studied in [Arthur Choi et al., 2008] where it is
solved using the d-DNNF compiler c2d with good results.

In practice the number of optimal solutions may still be ex-
tremely large and secondary criteria are considered by state-
of-the-art tools such as FESTA [Qin et al., 2006] (relying on
two incomplete algorithms). Between tag SNPs, a low r2 is
preferred, to maximize tag SNP dispersion. Between a non
tag SNP and its representative tag SNP, a high r2 is preferred
to maximize the representativity.

For a given connected graphG = (V,E), we build a binary
WCSP with integer costs capturing the TagSNP problem with
the above secondary criteria. For each SNP i, two variables
is and ir are used. is is a boolean variable that indicates if
the SNP is selected as a tag SNP or not. The domain of ir
is the set of neighbors of i together with i itself. It indicates
the representative tag SNP which covers i. For a SNP i, hard
binary cost functions (with 0 or infinite costs) enforces the
fact that is ⇒ (ir = i). Similar hard cost functions enforce
(ir = j) ⇒ js with neighbor SNPs j in G. A unary cost
function on every variable is generates an elementary cost U
if the variable is true. The resulting weighted CSP captures
the set covering problem defined by TagSNP.

To account for the representativity, a unary cost function
is associated with every variable ir that generates cost when

ir 6= i. In this case, the cost generated is b100.
1−r2i,ir

1−θ c. For
dispersion between SNPs i and j, a binary cost function be-
tween the boolean is and js is created which generates a cost

of b100. r
2
ij−θ
1−θ c when is = js = true The resulting WCSP

captures both dispersion and representativity. In order to keep
these criteria as secondary, we just use a large enough value
for U (the elementary cost used for tag selection).

This problem is similar to a set covering problem with ad-
ditional binary costs. Such secondary criteria are ignored
by [Arthur Choi et al., 2008]. Here, c2d yields a compact
compiled representation of the set of solutions of the pure
set covering problem, but the number of solutions is so huge
(typ. more than billions) that applying the second criteria on
solutions generated by c2d would be too expensive. A di-
rect compilation of the criteria in the d-DNNF does not seem
straightforward and would probably necessitate a Max-SAT
formulation as the authors acknowledge in their conclusion.

The instances considered have been derived from human
chromosome 1 data provided by courtesy of Steve Qin [Qin
et al., 2006]. Two values, θ = 0.8 and 0.5 have been tried.
For θ = 0.8, a usual value in tag SNP selection, 43, 251 con-
nected components are identified among which we selected
the 82 largest ones. These problems, with 33 to 464 SNPs, de-
fine WCSP with domain sizes ranging from 15 to 224 and are
relatively easy. Solving to optimality selects 359 tag SNPs in
2h37’ instead of 487 in 3’ for FESTA-greedy (21% improve-
ment) or 370 in 39h17’ for FESTA-hybrid (3% improvement,
15-fold speedup).

To get more challenging problems, we lowered θ to 0.5.
This defined 19, 750 connected components, among which
516 are not solved to optimality by FESTA. We selected the
25 largest one. These problems, with 171 to 777 SNPs have
graph densities between 6% and 37%. They define WCSP
with max domain size ranging from 30 to 266 and include
between 8000 to 250, 000 cost functions. The decompos-
ability of these problems, estimated by the ratio between the
treewidth of the MCS tree-decomposition (smax = +∞) and
the n. of variables varies from 14% to 23%.

All the problems were solved with an initial upper bound
found by FESTA (greedy) on 2.8 Ghz CPU with 32 GB RAM.
To better show the importance of bounded separator size (us-
ing smax), we considered values ranging from 0 (DFBB), 4,
8, 12, 24, 32 to +∞ for both BTD and RDS-BTD. We report
both the number of problems solved within a 2 hour limit per
instance and the total amount of CPU time used (an unsolved
instance contributes for 2 hours). RDS exhibited poor perfor-
mances and is not reported here.

Using smax = 4, our implementation improves the com-
pression ratio of FESTA by 15% (selecting 2952 tag SNPs
instead of 3477). Note that the differences in CPU time be-
tween BTD and RDS-BTD would increase if a larger time

limit was used. From a practical viewpoint, the criterion of
the TagSNP problem could be further refined to include : se-
quence annotation information (e.g. preferring tag SNPs oc-
curring in genes), and measures between triplets of markers
as proposed in [Arthur Choi et al., 2008] (SNPs covered by
a pair of tag SNPs). The good performances of RDS-BTD
may allow to tackle this more complex problem with realistic
θ = 0.8.

6 Conclusion
The practical exploitation of tree decompositions to solve
combinatorial optimization problems that have structure is
not always straightforward. Optimization problems explic-
itly define a global criterion which needs to be optimized on
the complete problem. By solving conditionally independent
subproblems, algorithms that exploit a tree decomposition of
the problems often loose a global view on the criterion by
exploiting loose local bounds. By providing strong lower
bounds associated with each subproblem, the Russian Doll
Search approach allows to inject more global information in
each subproblem resolution through a strengthened initial up-
per bound, avoiding a lot of thrashing and offering important
speedups.

Beside this, our experiments show that, even on problems
that have a nice visible structure, it is often very profitable and
sometimes crucial to restrict the maximum size of the sepa-
rators of the decomposition exploited. Theory says that sep-
arator size influences the space complexity of the structural
algorithm like BTD and RDS-BTD, but even with unbounded
separator size, none of the instances considered here ran out
of memory in our experiments. In practice, the improvement
in efficiency is mostly explainable by the added freedom in
variable ordering allowed by cluster merging, an observation
consistent with [Jégou et al., 2007] conclusions.

Our current algorithm still leaves areas for improvements.
For example, the synergy between RDS and BTD could be
improved by allowing BTD to cache on partial assignments.
This would reduce redundant searches between successive
RDS-BTD iterations and would be also useful if an iterative
deepening strategy is used similarly to what has been done in
[Cabon et al., 1998].

Acknowledgments This research has been partly
funded by the French Agence Nationale de la Recherche
(STALDECOPT project).

References
[Arthur Choi et al., 2008] Arthur Choi, Noah Zaitlen, Buhm Han,

Knot Pipatsrisawat, Adnan Darwiche, and Eleazar Eskin. Effi-
cient Genome Wide Tagging by Reduction to SAT. In Proc. of
WABI (Workshop on Algorithms in Bioinformatics), volume 5251
of LNCS, pages 135–147, 2008.

[Cabon et al., 1998] B. Cabon, S. de Givry, and G. Verfaillie. Any-
time Lower Bounds for Constraint Optimization Problems. In
Proc. of CP-98, pages 117–131, Pisa, Italy, 1998.

[Cabon et al., 1999] B. Cabon, S. de Givry, L. Lobjois, T. Schiex,
and J.P. Warners. Radio link frequency assignment. Constraints
Journal, 4:79–89, 1999.

[Carlson et al., 2004] C. S. Carlson, M. A. Eberle, M. J. Rieder,
Q. Yi, L. Kruglyak, and D. A. Nickerson. Selecting a maximally
informative set of single-nucleotide polymorphisms for associa-
tion analyses using linkage disequilibrium. Am. J. Hum. Genet.,
74(1):106–120, 2004.

[Cooper and Schiex, 2004] M. Cooper and T. Schiex. Arc consis-
tency for soft constraints. Artificial Intelligence, 154:199–227,
2004.

[Darwiche, 2001] A. Darwiche. Recursive Conditioning. Artificial
Intelligence, 126(1-2):5–41, 2001.

[de Givry et al., 2005] S. de Givry, M. Zytnicki, F. Heras, and
J. Larrosa. Existential arc consistency: Getting closer to full arc
consistency in weighted CSPs. In Proc. of IJCAI-05, pages 84–
89, Edinburgh, Scotland, 2005.

[de Givry et al., 2006] S. de Givry, T. Schiex, and G. Verfaillie.
Exploiting Tree Decomposition and Soft Local Consistency in
Weighted CSP. In Proc. of AAAI-06, Boston, MA, 2006.

[Freuder and Quinn, 1985] E. Freuder and M. Quinn. Taking ad-
vantage of stable sets of variables in constraint satisfaction prob-
lems. In Proc. of the 9th IJCAI, pages 1076–1078, Los Angeles,
CA, 1985.

[Hirschhorn and Daly, 2005] J.N. Hirschhorn and M.J. Daly.
Genome-wide association studies for common diseases and com-
plex traits. Nature Reviews Genetics, 6(2):95–108, 2005.

[Jégou et al., 2007] P. Jégou, S. N. Ndiaye, and C. Terrioux. Dy-
namic management of heuristics for solving structured csps. In
Proc. of CP-07, pages 364–378, Providence, USA, 2007.

[Larrosa and Schiex, 2004] J. Larrosa and T. Schiex. Solving
Weighted CSP by Maintaining Arc-consistency. Artificial Intel-
ligence, 159(1-2):1–26, 2004.

[Larrosa et al., 2002] J. Larrosa, P. Meseguer, and M. Sanchez.
Pseudo-tree search with soft constraints. In Proc. of ECAI-02,
pages 131–135, Lyon, France, 2002.

[Lecoutre et al., 2006] C. Lecoutre, L. Sais, S. Tabary, and V. Vidal.
Last conflict based reasoning. In Proc. of ECAI-2006, pages 133–
137, Trento, Italy, 2006.

[Marinescu and Dechter, 2006] R. Marinescu and R. Dechter.
Memory intensive branch-and-bound search for graphical mod-
els. In Proc. of AAAI-06, Boston, MA, 2006.

[Qin et al., 2006] Z. S. Qin, S. Gopalakrishnan, and G. R. Abecasis.
An efficient comprehensive search algorithm for tagsnp selection
using linkage disequilibrium criteria. Bioinformatics, 22(2):220–
225, 2006.

[Sanchez et al., 2008] M. Sanchez, S. de Givry, and T. Schiex.
Mendelian error detection in complex pedigrees using weighted
constraint satisfaction techniques. Constraints, 13(1):130–154,
2008.

[Schiex et al., 1995] T. Schiex, H. Fargier, and G. Verfaillie. Val-
ued constraint satisfaction problems: hard and easy problems. In
Proc. of the 14th IJCAI, pages 631–637, Montréal, Canada, 1995.

[Terrioux and Jegou, 2003] C. Terrioux and P. Jegou. Hybrid back-
tracking bounded by tree-decomposition of constraint networks.
Artificial Intelligence, 146(1):43–75, 2003.

[Verfaillie et al., 1996] G. Verfaillie, M. Lemaı̂tre, and T. Schiex.
Russian Doll Search for Solving Constraint Optimization Prob-
lems. In Proc. of AAAI-96, pages 181–187, Portland, OR, 1996.

